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The recoil associated with photon emission is key to the dynamics of ultrarelativistic electrons in

strong electromagnetic fields, as found in high-intensity laser-matter interactions and astrophysical

environments such as neutron star magnetospheres. When the energy of the photon becomes com-

parable to that of the electron, it is necessary to use quantum electrodynamics (QED) to describe

the dynamics accurately. However, computing the appropriate scattering matrix element from

strong-field QED is not generally possible due to multiparticle effects and the complex structure of

the electromagnetic fields. Therefore, these interactions are treated semiclassically, coupling proba-

bilistic emission events to classical electrodynamics using rates calculated in the locally constant

field approximation. Here, we provide comprehensive benchmarking of this approach against the

exact QED calculation for nonlinear Compton scattering of electrons in an intense laser pulse. We

find agreement at the percentage level between the photon spectra, as well as between the models’

predictions of absorption from the background field, for normalized amplitudes a0 > 5. We discuss

possible routes towards improved numerical methods and the implications of our results for the

study of QED cascades. VC 2018 Author(s). All article content, except where otherwise noted, is
licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/
licenses/by/4.0/). https://doi.org/10.1063/1.5037967

I. INTRODUCTION

Petawatt and multipetawatt laser facilities that reach

focussed intensities in excess of �1022 W cm�2 (Refs. 1 and

2) hold great promise for the study of the interaction of

charged particles with electromagnetic fields of unprece-

dented strength.3–6 In these environments, the recoil associ-

ated with emission of radiation, known as radiation reaction,

can become so large that it dominates the particle dynam-

ics.7,8 Furthermore, when the energy of individual photons

of this radiation becomes comparable to that of the emitting

particle, it becomes essential to incorporate quantum effects

on this radiation reaction9 in our modelling of plasmas as

sources of high-energy photons,10 electron-positron

pairs,11,12 or as laboratory analogues of high-field astrophysi-

cal environments.13,14

However, it is not currently possible to use the most

general and accurate approach, the theory of strong-field

quantum electrodynamics (QED), to model many scenarios

of interest, for reasons we will shortly outline. Instead, a

semiclassical approach has been widely adopted for use in

numerical simulations of laser-plasma and laser-particle-

beam interactions. Inherent to this model are a number of

assumptions, making it essential that we benchmark its pre-

dictions against those from QED. In this work, we do so for

photon emission in the collision of ultrarelativistic electrons

with intense laser pulses. We focus on the classically nonlin-

ear, moderately quantum regime, motivated not only by

progress in the development of the next generation of high-

intensity laser facilities,15,16 but also by recent experimental

work on radiation reaction in strong fields.17–19

Strong-field QED is not used directly to model these

kinds of interactions for a number of reasons. First, a

scattering-matrix calculation connects asymptotic free states,

thereby requiring ab initio complete knowledge of the spa-

tiotemporal structure of the background electromagnetic

field; exact analytical calculations have thus far proven to be

possible only for certain field configurations that possess

high symmetry,20 such as plane electromagnetic waves21 and

static magnetic fields.22 Furthermore, it is generally assumed

that back-reaction effects may be neglected. This is espe-

cially important when considering QED cascades,11,23,24 in

which the initial state contains a single electron, positron, or

photon and the final state many of these, because we expect

significant absorption of energy from the background.25 (See

Ref. 26 for analysis beyond this approximation.) Even in the

absence of significant depletion, the multiplicity alone makes

the calculation of a cascade within strong-field QED

extremely challenging. State-of-the-art results are those in

which the final state contains two additional particles, such

as double Compton scattering27–29 and trident pair crea-

tion30–33 from single electrons.

These conditions, namely, complex field structure,

strong depletion due to back-reaction, and high multiplicity,

are ubiquitous in the interaction of high-intensity lasers with

particle beams or plasma targets. As such, considerable

effort has been devoted to the development of numericala)tom.blackburn@chalmers.se
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schemes that can model QED cascades as well as self-

consistent plasma dynamics.34,35 We characterize these as

semiclassical because they factorize the cascade into a prod-

uct of first-order processes that occur in vanishingly small

regions linked by classically determined trajectories; the pro-

duction rates and spectra are calculated for the equivalent

QED process in constant, crossed fields.36 This is possible

because at high intensity (to be defined in Sec. II), the forma-

tion length over which a photon is emitted, or an electron-

positron pair is created, is much smaller than the length scale

over which the field varies.21 The approximation that emis-

sion occurs instantaneously, and therefore that the rate for a

constant, crossed field may be employed, is called the locally
constant field approximation (LCFA). Monte Carlo imple-

mentations of QED processes based on this have found wide-

spread adoption in particle-in-cell (PIC) codes (see Ref. 37

for details). Depletion in these codes is therefore treated clas-

sically, as QED processes alter the plasma current density j,

which alters the energy density of the self-consistent electric

and magnetic fields E and B via the j � E term in Poynting’s

theorem; see Refs. 38–40 for examples of how this drives

laser absorption.

Identifying the parameter regime where this semiclassi-

cal picture works, and why, has been the subject of much

theoretical work.41–43 However, there has been limited direct

benchmarking of numerical and analytical results in regimes

of experimental interest. For nonlinear Compton scattering

(photon emission by an electron), Harvey et al.44 compared

the frequency and angular spectra predicted by (1) integra-

tion of the QED probability rate for a monochromatic plane

wave and (2) semiclassical simulation of a 100 fs pulsed

plane wave with a super-Gaussian temporal profile, conclud-

ing that the neglect of interference effects in the latter caused

the harmonic structure to be missed.

In this work, we present systematic comparisons of not

only the longitudinal and transverse momentum spectra

(Secs. III A and III B) but also the absorption of energy from

the background field (Sec. III C). We introduce a normaliza-

tion framework in Sec. II C that guarantees that we compare

precisely the same physical scenario. This permits direct,

quantitative benchmarking of semiclassical codes against

analytical results from QED in the parameter regime relevant

for recent and upcoming experiments.

II. METHODS

The interaction geometry is illustrated in Fig. 1. An

electron with initial Lorentz factor c0 collides head-on with a

circularly polarized laser pulse that has dimensionless ampli-

tude a0, central frequency x0, and invariant duration s.

Throughout this work, we set �h ¼ c ¼ 1 and denote the ele-

mentary charge by e and the electron mass by m. The pulse

vector potential eAlð/Þ ¼ ma0gð/Þð0; sin/; cos/;0Þ, where

a0 ¼ eE0/(mx0) for electric field strength E0 (Ref. 45) and

gð/Þ ¼ cos2½/=ð4sÞ� for phases j/j< 2ps. In all the results

presented here, c0 ¼ 1000 and x0 ¼ 1.55 eV (equivalent to a

wavelength of k ¼ 0.8lm). We will consider dimensionless

amplitudes in the range of 5�a0 � 30, which covers the

transition between the weakly and highly nonlinear classical

regimes, and restrict the laser duration to be s ¼ 2 or 3 so

that the expected number of photons is of order one. This is

because our QED calculations are performed for single scat-

tering only, and so that we can gather sufficient statistics in

the semiclassical simulations (the fraction of collisions in

which only one photon is emitted is exponentially sup-

pressed with increasing a0).

The quantum interaction of charged particles and pho-

tons with strong fields is characterized by the invariants

ve ¼ e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðF:pÞ2

q
=m3 and vc ¼ e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðF:k0Þ2

q
=m3, where F is

the electromagnetic field tensor and p and k0 are the four-

momenta of the electron and photon, respectively.21 ve may

be interpreted as a measure of the field strength in the rest

frame of the electron relative to that of the critical field of

QED Ecrit ¼ m2/e.46–48 It is often referred to as the “quantum

nonlinearity parameter” by analogy with a0, which is the

classical nonlinearity parameter.21 We have ve � 0.1 for the

interaction parameters under consideration here, and so,

quantum effects are non-negligible.

A. QED

The strong-field QED scattering matrix (S-matrix) con-

nects asymptotic free states, evolving the initial state from

the distant past to the distant future. The calculation is per-

formed to all orders in the coupling to the background field

a0, i.e., non-perturbatively, as the number of photons

absorbed and reemitted by an electron in an intense laser

field is very large. For the lowest order process shown in Fig.

2, the emission of one photon or single nonlinear Compton

scattering,49–52 it reads

S1 ¼ �ieð2pÞ3dlfðp0 þ k0 � pÞ
X

j
TjCj: (1)

The delta function ensures the conservation of momentum

in the lightfront and transverse directions. By lightfront

FIG. 1. An electron (blue) with initial Lorentz factor c0 � 1 collides head-

on with an intense, circularly polarized laser pulse (red) that has strength

parameter a0, angular frequency x0, and duration s.

FIG. 2. Feynman diagrams for the emission of photons with four-momenta

k01;2;… in the scattering of a laser-dressed electron from asymptotic four-

momentum p to p0. The double lines indicate that the interaction with the

background field is calculated to all orders in the coupling a0.
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momentum, we mean pþ � k.p/x0, which is conserved in a

plane wave with wavevector k in the absence of radiation

reaction. Other features are the transition operators Tj,

which are sensitive to the electron spins and the photon

polarization, and Cj, which are integrals over the laser phase

(see the study by Seipt et al.52 for details)

Cj ¼
ð

d/Fjð/Þei
Ð

d/k0 :pð/Þ
k:p0 : (2)

Here, Fj are functions of the vector potential A(/) and p(/)

in the exponent is the classical kinematic four-momentum of

the electron, a solution to the radiation-free Lorentz force

equation.

The one-photon emission probability is

d3P1

df d2r?
¼ am2

ð4px0pþÞ2
f

1� f

1

2

X
spin;pol

����
X

j
TjCj

����
2

; (3)

where we have defined the lightfront momentum transfer

fraction f ¼ k0þ=pþ and normalized transverse photon

momentum r? ¼ k0?=ðfmÞ. The magnitude of the latter

r? ¼ ðpþ=mÞ tanðh=2Þ, where h is the polar angle of the

emitted photon, becoming r? ’ ch if c� 1 and h	 1.

If a3
0=ve � 1 and f is not too small, the phase interval

which contributes to the emission of a single photon

becomes much smaller than the wavelength of the back-

ground field21 and interference between emission from dif-

ferent formation regions is suppressed.41 In this case, the

field may be treated as constant over the photon formation

region. As the photons are emitted into a narrow cone around

the direction of the electron’s instantaneous momentum, we

can integrate over the transverse momenta r? to obtain the

instantaneous probability rate per unit phase and lightfront

momentum transfer

dW

df
¼ � am2

x0pþ
Ai1ðzÞ þ

2

z
þ vef

ffiffi
z
p

� �
Ai0ðzÞ

� �
; (4)

where z3=2 ¼ f=½veð1� f Þ� and ve � veð/Þ the local value of

the quantum parameter.

B. Semiclassical

In the semiclassical interpretation of the collision pro-

cess, the electron follows a (radiation-free) classical trajec-

tory between point-like, probabilistically determined, QED

events. These events are implemented using the standard

Monte Carlo algorithm,36,37 with rates calculated in the

LCFA, i.e., Eq. (4) (see also Refs. 21, 22, and 53). We use

circe, a particle-tracking code that simulates photon and

positron production by high-energy electrons (and photons)

that collide with laser pulses that have a0� 1. In one spatial

dimension, the external field is assumed to be a plane elec-

tromagnetic wave, i.e., the fields are determined by a single

parameter / ¼ x0n.x, where x0 is the wave frequency,

n ¼ ð1; k̂Þ for the direction of propagation k̂, and x is the

four-position of the electron. Between emissions, the elec-

tron dynamics are determined by the Lorentz force alone.

The spatial components of the four-momentum p ¼ (cm, p)

that are perpendicular to the wavevector are obtained by

integrating

dp?
d/
¼ � eE?ð/Þ

x0

; (5)

where E? is the electric field at phase /. The remaining

components of p are determined by the two conditions pþ

¼ const and p2 ¼ m2. The four-position is determined by
dx
d/ ¼ p=ðx0pþÞ.

Photon emission is implemented as follows: Each electron

is assigned an optical depth against emission s ¼ �logð1� RÞ
for pseudorandom 0�R< 1, which evolves as

ds
d/
¼ �

ð1

0

dW

df
df ; (6)

where W is the instantaneous probability rate of emission

given by Eq. (4), until the point where it falls below zero.

Then, the lightfront momentum transfer f ¼ vc/ve is pseudor-

andomly sampled from the differential rate and s is reset.

Assuming that emission occurs in the direction parallel to

the initial momentum, as the electron emits into a narrow

cone of opening angle 1/c, the momenta of the electron and

the photon after the scattering are

p0 ¼ ðm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð1� f Þ2ðc2 � 1Þ

q
; ð1� f ÞpÞ;

k0 ¼ fm
ffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � 1

p
; f p

� 	
:

(7)

As discussed in Ref. 34, this leads to an error in energy con-

servation of

DE ¼ m

2c
f

1� f
þ Oðc�3Þ; (8)

which is small for ultrarelativistic particles.

C. Comparison basis

In this work, we present quantitative, as well as qualita-

tive, comparisons of electron and photon spectra predicted

by the exact QED and semiclassical methods. We discuss

here how the normalization may be set consistently, but

independently by the two methods.

The final result of the QED calculation is the probability

P1 that a single photon is emitted in collision of an electron

with a pulsed electromagnetic plane wave. However, even

for the short pulses under consideration here, the fact that a0

> 1 makes it possible for P1 > 1. Where this occurs, the

probability is generally interpreted as the mean number of

emitted photons, i.e., P1 ! Nc;QED, as this quantity can cer-

tainly exceed unity.9,44,54 We emphasise that this interpreta-

tion is exact only in the classical limit, where recoil can be

neglected. The true probability for single scattering is given

by the renormalized quantity P1=ð1þ
P1

n¼1 PnÞ. To deter-

mine this would require the calculation of the scattering

probability to a state containing an arbitrary number of pho-

tons n. Efforts to characterize such multiphoton interactions

analytically have been limited due to the complexity of the
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calculations; at present, all the results in the literature are

restricted to n� 2. For these reasons, we will define the QED

“number of photons” as

Nc;QED �
ð

d3P1

df d2r?
df d2r?: (9)

In the semiclassical calculation, multiphoton emission is

accounted for by factorisation of the multiphoton emission into

a product of first-order processes. Localizing emission in this

way allows us to determine the branching fraction to a final

state containing an arbitrary number of particles, thereby guar-

anteeing that P1 < 1. In the classical limit (i.e., negligible

recoil per photon), one emission event is independent of any

other and the probability that n photons are emitted in a given

collision Pn ¼ kne�k=n!, where k � Nc;sc, the mean number of

photons in the semiclassical case. However, we consider here

collisions where v � 0.1 and recoil is not negligible. As the

emission rate (at fixed field strength) decreases with increasing

particle energy, emitting a photon and so losing energy make it

more probable that further photons are emitted. As such, the

numbers of photons emitted in two non-overlapping intervals

are not independent and the probability Pn ceases to be

Poisson-distributed. In summary, radiation reaction, the recoil

due to photon emission, affects the average number of photons

because “the emission of each photon modifies the electron

state and, consequently, the next emissions.”9

Since it is not possible, as yet, to determine the renorm-

alization factor by which the QED results should be scaled,

we propose this alternative. The QED results from Eq. (9)

are not scaled. Equivalent semiclassical spectra are obtained

statistically, by generating a large set of collision data,

accepting only those collisions in which exactly one photon

is emitted, and rescaling such that the spectra have integral

Nc,sc. The mean number of photons Nc,sc is determined by

considering the entire set of collision data, i.e.,

Nc;sc �
P

i iNiP
Ni

1

N1

ð
d2N1

df dr?
df dr?; (10)

where Ni is the number of simulated collisions in which

exactly i photons are emitted.

This definition ensures that only collisions with a single

emission contribute to the shape of the spectrum and that its

integral may be interpreted in a manner consistent with the

QED result. From now on, all differential spectra will be

given in terms of the “number of photons” defined by Eqs.

(9) and (10). We note that while this post-facto selection cri-

terion lets us compare the same physical scenario as the

QED approach, multiphoton and recoil corrections are still

present because Nc,sc is affected by radiation reaction. We do

not necessarily expect the QED “probability” P1 to satisfy

P1 ! Nc;QED ¼ Nc;sc for this reason.

III. RESULTS

A. Lightfront momentum

The symmetries of a plane electromagnetic wave

make lightfront momentum uþ� n.u a natural choice of

parametrization for the differential scattering probability

because the conservation of momentum for (single) nonlinear

Compton scattering reads uþ0 ¼ uþe þ uþc , where uþe ¼ p0þ=m
and uþc ¼ k0þ=m are the normalized lightfront momenta of

the scattered electron and photon, respectively. We will plot

differential spectra in terms of the transfer fraction f ¼ uþc =uþ0
¼ 1� uþe =uþ0 . In the back-scattering limit, f ’ x0=ðc0mÞ,
where x0 is the energy of the scattered photon.

We compare the analytical and simulation predictions

for the number of photons emitted in the head-on collision of

an electron with initial energy c0 ¼ 1000 and a two- or three-

cycle laser pulse in Fig. 3(a), with examples of the differen-

tial spectra in Fig. 3(c). The percentage difference between

the results of the two methods is given for the total number

of photons in Fig. 3(b). We find that the semiclassical

method systematically overestimates the number of photons

but that the fractional discrepancy diminishes with increas-

ing a0, falling below 10% when a0 
 20. Nc scales approxi-

mately linearly with a0 as expected in the strong-field

regime; the growing discrepancy towards the lower end of

the plotted range is an indication of the transition to the per-

turbative regime where Nc / a2
0 instead.

The origin of the discrepancy is shown in Fig. 3(c).

While there is very good agreement for large f, i.e., high

energy, the semiclassical method strongly overestimates the

number of photons with vanishing f. This is because the

underlying LCFA rate contains an integrable singularity

/ f�2=3 absent in the exact QED calculation.55 In the latter

case, the probability tends to a finite value43

lim
f!0

dP1

df
¼ aa3

0

2ve

ð
d/ g2ð/Þ; (11)

where g(/) is the envelope function given in Sec. II. It is not

surprising that the semiclassical spectra do not reproduce

this limit because the LCFA arises from an expansion in the

parameter ve=a3
0 	 1.41

The physical meaning of this parameter is that it com-

pares the formation length of the photon to the length scale

over which the field varies. If this is sufficiently small, we

can assume that emission occurs instantaneously and thereby

neglect interference effects. As discussed in the study by

Harvey et al.,44 this means that Monte Carlo implementa-

tions of localized rates cannot reproduce the harmonic struc-

ture that becomes visible in the emission spectrum at small f.
A simple way to estimate the smallest f for which the LCFA

should be valid is to recall that in a monochromatic plane

wave, emission over a complete phase oscillation contributes

to photons at the first nonlinear Compton edge, for which the

transfer fraction fC ’ 2ve=a3
0. The requirement that the for-

mation length be smaller than the laser wavelength is then

equivalent to having f � fC. This limit is consistent with the

results shown in Fig. 3(c) and with a more detailed calcula-

tion performed by Di Piazza et al.43 In fact, if we cut off the

QED and semiclassical spectra below f ¼ fC, the percentage

discrepancy in the number of photons falls from 17% to 5%

at a0 ¼ 10 and from 5% to 2% at a0 ¼ 30.

While it is important to capture the number spectrum

accurately, the dynamically significant quantity is the
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spectrum weighted by uþc , as this gives the momentum

change of the electron or radiation reaction.56,57 When we

compare the total radiated lightfront momentum

Iþ � uþ0

ð
f

dNc

df
df (12)

in Fig. 4(a), we find much better agreement between the two

methods, with a relative discrepancy below 4% even for a0

¼ 5. This is because the contribution to the electron recoil

from the low-energy tail, i.e., the part of the spectrum where

the LCFA fails, is very small and diminishes with increasing

a0. This can also be seen in Figs. 4(c) and 4(d) where we

show the intensity spectra without log scaling on the vertical

axis.

B. Perpendicular momentum

We parametrize the perpendicular momentum spectrum

using the scaled quantity r? � u?c =f . For c0� a0 and c0� 1,

as we have here, r? ’ c0h, where h is the photon scattering

angle. The comparison between the analytical and simulation

results, shown in Fig. 5, is for r? scaled by the laser strength

parameter a0 for the following reason.

Analysis of nonlinear Compton scattering in a monochro-

matic, circularly polarized plane wave only in terms of the

number of laser photons absorbed has been shown to repro-

duce the classical result that the photons are typically emitted

along the direction of the instantaneous momentum of the

electron in the electromagnetic field.25 Assuming that the elec-

tron and the laser were initially counterpropagating and that

both the electron Lorentz factor c0 and the laser amplitude a0

� 1, we have that the most probable angle of emission is

tan h ¼ 4a0c0= ð4c2
0 � a2

0Þ ’ a0=c0.

In the semiclassical calculation, we capture the elec-

tron’s transverse oscillation directly by solving the classical

equations of motion and rely on relativistic beaming to jus-

tify setting the photon’s emission direction to be parallel to

the electron’s instantaneous momentum. We may derive a

scaling relation for the average r? for the pulsed plane waves

under consideration here within the framework of the LCFA.

The instantaneous angle between the electron momentum

and the laser axis is hð/Þ ’ a0gð/Þ=c0 for c0 � a0 � 1,

where g(/) is the pulse envelope described in Sec. II.

Assuming that the photon is emitted parallel to the electron

momentum, we have that the mean value of r?

hr?i ¼
c0

Ð
hð/ÞWð/Þ d/Ð
Wð/Þ d/

’ 3a0

4
; (13)

where W(/) is the emission rate [Eq. (4)] integrated over all

f, and we obtain an analytical result by working in the classi-

cal limit ve 	 1. In this expression, the mean r? is normal-

ized to the number of photons. Consequently, if v is not too

large, we expect hr?i=a0 predicted by semiclassical simula-

tion to be independent of a0 and the pulse duration s. This is

indeed what is shown in Fig. 5(a). The exact QED results are

generally larger but tend towards the semiclassical results as

a0 is increased. This is because photons are emitted into a

broader range of angles in the QED calculation, which can

be seen by the fact that the standard deviations of the spectra

(normalized to the mean) shown in Fig. 5(c), i.e., the widths

of the distribution, are larger in the analytical case.

These integral comparisons lead us to expect important

qualitative differences between the r? spectra predicted by

QED and by semiclassical simulation. Indeed, Fig. 5(e)

shows that, unlike the former, the latter exhibit a universal

shape when plotted as a function of r?/a0. Furthermore, they

diverge as r?! a0. No photons are emitted with r? > a0.

The range of accessible r? is much larger for the QED spec-

tra although we note that as a0 increases, the peak of the

spectrum (i.e., the most probable r?) tends towards a0 and

the spectra generally become narrower. As we have scaled

r? down by a0, this indicates that the characteristic width of

the spectrum is approximately constant for all a0.

The cause of these differences is the assumption of

collinear emission in the semiclassical simulations, i.e.,

FIG. 3. (a) The number of photons emitted in the collision of an electron with c0 ¼ 1000 and a laser pulse with given a0 and duration s, calculated analytically

from QED (points) and from semiclassical simulation (lines). (b) The percentage difference between the number of photons as evaluated by the two methods.

(c) The lightfront-momentum spectrum for the specified collision parameters: results from QED (solid, grey) and semiclassical simulation (dashed, coloured).

Vertical, dotted lines indicate fC, the first Compton edge of a monochromatic plane wave with the same a0.
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assigning the final momenta according to Eq. (7).

Relativistic beaming means that the photon is emitted for-

ward into a cone of half-angle �1/c0, corresponding to a

width in r? of rr � 1. We have neglected this extra angular

divergence, which is why the semiclassical results have a

sharp edge at r? ¼ a0. The range of angles at which a photon

can be emitted is bound by the angle between the electron’s

instantaneous momentum and the laser wavevector, which is

at most a0/c0 for the circularly polarized pulses under consid-

eration here.

A more subtle discrepancy may be seen for small r? in

Fig. 5(e). Whereas the analytical results tend to zero as r?
does, exhibiting a pronounced shoulder as they do so, all the

semiclassical spectra tend to a finite value of approximately

0.022. (This is consistent with a classical calculation of the

angular spectrum, which gives dNc=dr? ’ 5a=
ffiffiffi
3
p
’ 0:021

for r? ¼ 0.) The difference is a consequence of the LCFA:

recall that in the semiclassical approach, photons are emitted

parallel to the electron’s instantaneous momentum.

Therefore, photons with small r? originate from the leading

and trailing edges of the pulse, where the local field strength

is small and so too is the angle between the electron trajec-

tory and the laser wavevector. In these regions, the effective

a0 is small enough that interference effects become impor-

tant, suppressing photon emission.

C. Absorption

Energy-momentum conservation demands that the emis-

sion of a photon by an electron in a strong background field

be accompanied by the absorption of energy from that back-

ground field. As the background under consideration here is

an electromagnetic wave, this can be interpreted as the

absorption of a certain number ‘ of photons. Seipt et al.25

have shown that in a circularly polarized, monochromatic

plane wave with strength parameter a0, the emission of a

photon with quantum parameter f ¼ vc=ve is associated with

the absorption of ‘ ¼ s laser photons, where

s ¼ a3
0

ve

f

1� f
: (14)

For the short pulses in this work, the probability that ‘ pho-

tons are absorbed is determined numerically.

In the semiclassical method, the background field is

treated entirely classically. Nevertheless, we may define an

equivalent number of absorbed photons by dividing the clas-

sical work done on the moving charge by the laser frequency

x0

‘ ¼ � 1

x0

ð
ev � E dx0: (15)

FIG. 4. (a) The total lightfront momentum lost by an electron with c0 ¼ 1000 in a collision with a laser pulse with given a0 and duration s, calculated analyti-

cally from QED (points) and from semiclassical simulation (lines). (b) The percentage difference between the two. (c) and (d) The lightfront-momentum inten-

sity spectrum for the specified collision parameters: results from QED (solid, grey) and semiclassical simulation (dashed, coloured).

FIG. 5. (a) The mean r? of the photon emitted in the collision of an electron with c0 ¼ 1000 and a laser pulse with given a0 and duration s, calculated analyti-

cally from QED (points) and from semiclassical simulation (lines). (b) The percentage difference between the two. (c) The standard deviation of r?, normal-

ized to the mean, and (d) the percentage difference between the QED and semiclassical results. (e) Differential r? spectra for the specified collision

parameters: results from QED (solid, coloured) and semiclassical simulation (dashed, grey).
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Note that for a plane wave, the above integral would be iden-

tically zero in the absence of radiation. (The same result

holds in the QED calculation: if no photon is emitted, ‘ ¼ 0.)

circe computes Eq. (15) for each test electron, integrating

the work done across the entire trajectory of the electron in

the pulse.

A comparison between the total number of absorbed

photons NL �
Ð
‘ dNc, as computed by the two methods, is

shown in Fig. 6(a). We find that the semiclassical method

systematically underestimates the absorption but that this

difference occurs at the level of a few percent and decreases

with increasing a0. This is in contrast to what we found for

the number of photons and the total radiated lightfront

momentum, where the semiclassical result was generally

larger than the QED result. In all three cases, we expect

errors to arise due to the finite size of the formation length

and the associated interference; however, here, our results

imply that there is some “missing” absorption.

In their analysis of electron-positron pair creation by a

photon in a strong laser field, Meuren et al.42 divided the

absorbed energy into “classical” and “quantum” parts, with

the former being the work done accelerating the daughter

particles out of the laser pulse and the latter being the

absorption of photons over the formation length. They

showed that the classical part scales approximately like

a3
0=ve and the quantum part like a0/ve, concluding that the

classical absorption should be dominant at high intensity.

This is consistent with the results presented here, in that we

capture the acceleration of the electron post-emission but not

any absorption over the formation length, which is assumed

to be vanishingly small. Recall that in the semiclassical sim-

ulations, there is an error in energy conservation due to the

assumption of collinear emission (see Sec. II B). Equation

(8) predicts that the magnitude of this error is 2.8% at a0

¼ 10 and 0.3% at a0 ¼ 30. This is comparable to the discrep-

ancy shown in Fig. 6(b) but for the largest a0, where recoil

corrections to Nc,sc take effect.

Equation (14) indicates that the larger the lightfront

momentum transfer f, the more the photons are absorbed

from the external field. Both the lightfront momentum trans-

ferred to an individual photon and the number of emissions

increase with a0, and so, we expect the absorption to increase

as well. Integrating Eq. (14) weighted by the emission rate

Eq. (4) over all f, we find that NL � a2
0Iþ. Here, Iþ is the

total radiated lightfront momentum given by Eq. (12), which

scales like a2
0 in the classical limit. Then, we expect NL � a4

0,

which agrees reasonably well with a power-law fit to the

data shown in Fig. 6(a); we find NL / a3:7
0 for both the QED

and semiclassical results. The true scaling is weaker than a4
0

because of quantum corrections that reduce the radiated

power.22

We showed in Sec. III A that the semiclassical method

predicts the large-f part of the emission spectrum accurately

even for a0 ¼ 5. As this part of the spectrum is associated

with the largest ‘, the agreement between the QED and semi-

classical results should be best for ‘ � 1. Four examples of

the spectrum of probable ‘ are shown in Fig. 6(c). The agree-

ment between the two is excellent for ‘ > 10, but the semi-

classical method fails to capture the small-‘ part of the

spectrum accurately. This is because it localizes emission,

thereby neglecting interference effects; these suppress the

emission probability for small ‘ and give rise to the harmonic

structure that can be seen in the QED spectra.

D. Exemplary case

Finally, we present a comparison for a specific set of

collision parameters, drawing on the systematic results we

have so far, to discuss the role of multiple emissions. Figure

7 shows the full set of double- and single-differential photon

spectra for lightfront momentum, perpendicular momentum,

and absorption for a collision between an electron with c0

¼ 1000 and a laser pulse with a0 ¼ 20 and s ¼ 2. The aver-

age number of photons is Nc ¼ 2.36 for these parameters,

and therefore, multiphoton effects should be taken into

account. However, as the QED calculation is performed only

for single scattering, we filter the semiclassical collision data

to ensure that the same physical scenario is being compared.

FIG. 6. (a) The number of laser photons absorbed in the emission of a single c photon when an electron with c0 ¼ 1000 collides with a laser pulse with given

a0 and duration s: results from QED (points) and semiclassical simulation (lines). (b) The percentage difference between the two. (c) The weighted probability

that ‘ photons are absorbed, from QED (grey, solid) and semiclassical simulation (coloured, dashed).

083108-7 Blackburn et al. Phys. Plasmas 25, 083108 (2018)



Now, we can show the effect of this filtering on the semiclas-

sical results.

The double differential spectrum obtained when all

emissions are taken into account is shown in Fig. 7(b); when

only single scattering events are binned, we obtain the spec-

trum shown in Fig. 7(c). As discussed in Sec. III B, in the lat-

ter case, we find a sharp cutoff at r? ¼ a0 as this is the

largest angle between the electron momentum and the laser

wavevector, and we assume that photons are emitted in the

collinear direction. Then, photons with r? > a0 can only

come from secondary scattering. Notice that while the QED

result [Fig. 7(a)] is generally broader in the vertical direction,

the probability that r? > a0 diminishes with increasing f,
which apparently justifies the assumption of collinear emis-

sion for f � 1. The QED result is also smoother as it is free

from the numerical noise inevitable in Monte Carlo simula-

tions. The single scattering spectrum appears noisier as it

represents only 20% of the collision data.

Figure 7(d) shows that the effect of the filtering on the

lightfront intensity spectrum is rather small. Nevertheless,

the agreement is better when only single scattering is

included. The spectrum in this case is slightly harder, as sec-

ondary photons tend to be emitted with smaller f. Taken in

isolation, Fig. 7(e) appears to suggest that the agreement

between the QED and semiclassical spectra is better if we do

not filter the collision data. The shape of the peak, if not its

maximum value, is actually captured better when all emis-

sions are included. This is coincidental. Recalling that we

have assumed collinear emission in the semiclassical

approach, we would expect the QED result for double

Compton scattering to be even broader in r?. In fact, the

most significant difference is found when we compare the

probability that ‘ photons are absorbed from the laser pulse

in Fig. 7(f). The two semiclassical spectra have the same

integral (by construction, see Sec. II C), and therefore, small

values of ‘ must be suppressed when multiple emissions are

included. The probability that ‘ ¼ 2� 104, for example, is

6� larger when all emissions are accounted for. Without the

selection procedure we have introduced, it would not be pos-

sible to compare these against the QED result in a consistent

way.

IV. DISCUSSION

It is generally assumed that the semiclassical approach

used in modelling high-intensity laser interactions is valid

when a0 � 1 and a3
0=ve � 1. The precise value of a0 for

which these conditions are satisfied depends, however, on the

particular quantity that is being calculated. We have shown

that for a0 as low as 5, semiclassical codes accurately capture

the part of the emission spectrum for which f � 1. On the

other hand, there is still a significant discrepancy in the total

number of photons even when a0 ¼ 30. The error is concen-

trated in the low-f part of the spectrum, i.e., photons with low

energy and large angle; clearly, a semiclassical code should

not be used to predict the result of an experimental measure-

ment in the spectral region f � 2ve=a3
0. Improving these codes

could be accomplished by calculating this threshold and

replacing the LCFA rate for photons with smaller f (Ref. 43)

although this does require the external field to be treated as a

slowly varying plane electromagnetic wave.

Alternatively, it might be possible to bypass this prob-

lem by using a PIC code, in which a hybrid description of

the electromagnetic field is employed. The Nyquist fre-

quency associated with the finite spacing of the grid naturally

separates radiation into two components: lower frequencies

are resolved on the grid, i.e., classically, and higher frequen-

cies are treated as “photons,” just as we outlined in Sec. II B.

This is why many implementations of QED processes in PIC

codes include the option of a low-frequency cutoff below

which macrophotons are not emitted.58 It would be

FIG. 7. (Upper row) Double differential photon spectra d2Nc=ðdf dr?Þ (log10-scaled) for a collision between an electron with c0 ¼ 1000 and a laser pulse with

a0 ¼ 20 and s ¼ 2: (a) from QED, (b) from semiclassical simulation, including all emissions, and (c) from semiclassical simulation, filtered to single scattering

only. (Lower row) Single differential spectra for (d) the lightfront momentum transfer fraction f, (e) the scaled perpendicular momentum r?, and (f) the number

of laser photons absorbed: results from QED (grey, solid) and from semiclassical simulation including all emissions (blue, dotted) and single scattering only

(red, dashed).
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interesting to compare the QED results in this work with the

predictions of a semiclassical code in which the radiation

spectrum below a certain cutoff is obtained by Fourier analy-

sis of the Li�enard-Wiechart potentials in the far field. This

would ensure that the formation length is resolved at low f,
thereby capturing interference effects. It is reasonable to

expect a classical description to be appropriate because both

the quantum corrections and the electron recoil should be

negligible for photons with f	 1.

While it is important to make these improvements at

low f, this part of the spectrum contributes negligibly to the

momentum change of the electron, which is dominated by

photons with large f. As the agreement between the QED

and semiclassical spectra is much better here, it is not sur-

prising that we find the average lightfront momentum loss

predicted semiclassically to be within a few percent of the

QED value even at a0 ¼ 5. At a0 ¼ 10, for example, the error

in the total number of photons is 16% for both s ¼ 2 and 3,

whereas in the total radiated momentum Iþ, it is 1.5%, an

order of magnitude better. For the experimental parameters in

the study by Cole et al.17 (a0 ’ 10; ve ’ 0:1, and c0 ’ 1000),

the lower limit on f is equivalent to x � 100 keV; this part of

spectrum represents approximately 16% of the total number

of photons but only 0.04% of the total radiated energy, using

their parametrization of the spectrum and the measured criti-

cal energy of 30 MeV.

This is encouraging for semiclassical or PIC-based

modelling of radiation reaction of an electron population. In

laser-beam interactions, the particle number density is gener-

ally low enough that the radiation spectrum can be obtained

by incoherent summation over all photons emitted by the

individual particles; this allows the treatment of a beam with

a spectrum of energies and non-zero divergence. Although

these two effects will wash out, for example, detailed har-

monic structure in the momentum spectrum,59 the overesti-

mate at low f will survive. Nevertheless, as radiation reaction

is an intrinsically multiphoton process,9 proper benchmark-

ing requires the calculation of the higher-order diagrams

shown in Fig. 2. The selection and scaling scheme we have

presented here could easily be extended to comparisons with

QED calculations of double, triple, etc., nonlinear Compton

scattering.

Perhaps more important for the case of multiple emis-

sions are the comparisons we present for the perpendicular

momentum spectra. These test the assumption of collinear

emission, which is distinct from the LCFA. While the peak

at r? ’ a0 is common to both QED and semiclassical results,

the width of the distribution around this point is not captured

semiclassically. The angle at which the photon and the elec-

tron travel after the scattering affects their quantum parame-

ter, and so, the rates at which secondary processes occur.

Even if the change to the rates is small, the cumulative error

could become large if the multiplicity is high. Accurate

modelling of the angular spectrum is important because, for

example, the transverse broadening of an electron beam has

been proposed as a signature of quantum effects on radiation

reaction.60 This broadening would be in addition to that from

the finite beaming of the radiation and any initial divergence

of the beam (a few milliradians for the laser-wakefield-

accelerated electron beams reported in Refs. 17 and 19). It

would also be important for the study of QED avalanches, in

which even a single electron accelerated by counterpropagat-

ing lasers can seed the creation of a critically dense electron-

positron pair plasma. One possible approach would be to

implement an angularly resolved LCFA rate that includes

the finite 1/c beaming of the scattered photon (see Ref. 53

for example).

We have also found that the absorption of energy from

the background is dominated by the “classical” component,

i.e., j � E work done by the external field in accelerating the

scattered electron. This is assumed to be the case in PIC

modelling of QED avalanches and suggests that a classical

treatment of backreaction is reasonably accurate at high

intensity. (Recall that in these codes, the fields and currents

are evolved self-consistently but classically.) There remains

the question of the “missing” absorption we discussed in

Sec. III C. On the one hand, the fraction of the total depletion

diminishes with increasing a0; however, if this error does

arise on a “per-emission” basis, the increased multiplicity at

high a0 could mean that it becomes significant. It is reason-

able to expect a causal relationship between the absorption

discrepancy and the assumption of collinear emission. This

is something we will consider in future work.

V. CONCLUSIONS

In this work, we have presented benchmarking of semi-

classical simulations against exact QED results for nonlinear

Compton scattering in an intense laser pulse, using a method

that guarantees that we compare precisely the same physical

scenarios.

The differential spectra agree both qualitatively and quan-

titatively in the dynamically important region f � 2ve=a3
0 that

dominates the electron recoil and absorption from the laser

fields. We find that the lightfront momentum loss and the

number of absorbed photons from semiclassical simulations

are within a few percent of the exact QED results for a0 > 5.

However, improvements are clearly called for at low f, where

the LCFA breaks down, and in the angular distribution, where

the agreement is only qualitative due to the assumption of col-

linear emission in the simulations.

It remains to be seen whether improving these will lead

to significant differences in the results of simulations of

laser-plasma interactions. In deciding what is most impor-

tant, we should be guided by further comparison with QED

calculations that include multiple emissions. These will

place more stringent limits on the validity of the approxima-

tions that underpin the semiclassical approach. The fact that

experimental exploration of the strong-field, multiphoton

regime (a0 � 10, ve � 0.1, Nc � 10) is already underway

makes this an urgent question.
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