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Coercive Subtyping in Lambda-free Logical Frameworks ∗

Robin Adams
Royal Holloway, University of London

robin@cs.rhul.ac.uk

Abstract
We show how coercive subtyping may be added to a lambda-free
logical framework, by constructing the logical framework TF<, an
extension of the lambda-free logical framework TF with coercive
subtyping. Instead of coercive application, TF< makes use of a
typecasting operation. We develop the metatheory of the resulting
framework, including providing some general conditions under
which typecasting in an object theory with coercive subtyping is
decidable. We show how TF< may be embedded in the logical
framework LF, and hence how results about LF may be deduced
from results about TF<.

Categories and Subject Descriptors F.4.1 [Mathematical Logic
and Formal Languages]: Mathematical Logic—Lambda calculus
and related systems, Mechanical theorem proving; I.2.3 [Artifi-
cial Intelligence]: Deduction and Theorem Proving—Metatheory;
I.2.4 [Artificial Intelligence]: Knowledge Representation
Formalisms and Methods—Representation languages

General Terms Languages, Theory

Keywords Coercive subtyping, Type theory, Lambda-free logical
framework, Typecasting, Metatheory

1. Introduction
When working with dependent type theories, we often find it con-
venient to introduce a notion of subtyping. Intuitively, to say the
type A is a subtype of the type B is to say that every term of type
A is also a term of type B. We often find ourselves in a situation
where there are two types, A and B — say N, the type of natural
numbers, and Z, the type of integers — such that we would like to
work as if A is a subtype of B, but it is not literally true that every
term of type A is itself a term of type B.

One approach to this problem is coercive subtyping. We con-
struct a function c : (A)B — say, the function that maps each
natural number n to the integer +n. We declare this function to be
a coercion, which we write asA <c B, indicating that we intend to
identify each term a : A with the term ca : B. Whenever a context
expects a term of type B, we allow the user to enter a term a of
type A instead; the machine is to proceed as if the user had entered
ca.
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When working in a logical framework, this can be implemented
using coercive application. If we have declaredA <c B, then given
any meta-function f : (x : B)K and term a : A, we allow the
object fa to be typed. We make it computationally equal to f(ca),
and we make its kind [ca/x]K. This idea has been very important
in the literature on the theory of coercive subtyping in dependent
type theories.

A number of systems known as lambda-free logical frameworks
have been developed fairly recently. These are logical frameworks
that contain no features other than those that are essential for
representing object theories. In particular, there are no product
kinds, λ-abstractions, nor framework-level β- or η-reduction. They
thus have a relatively small syntax and few rules of deduction,
which makes certain technical questions easier to answer than
in a ‘traditional’ framework; that is, a framework with lambda-
abstraction.

It would therefore be very desirable to construct lambda-free
logical frameworks with coercive subtyping. However, it is not im-
mediately obvious how to do so. We cannot use coercive applica-
tion, because there are no meta-functions f in a lambda-free frame-
work.

Our solution in this paper is to use typecasting. We allow the
user to form objects MB , the object M typecast to have type B.
If M is of a subtype of B, then MB will be the result of apply-
ing the appropriate coercion to M . There is a close connection be-
tween coercive application and typecasting, and it is possible to add
typecasting to a lambda-free logical framework in a straightforward
manner.

Our aim in this paper is to extend the lambda-free logical frame-
work TF [Adams 2009, 2004b] with coercive subtyping, to form the
framework we shall call TF<. This system extends TF with sub-
typing judgements of the form Γ ` A <[x]N B, denoting that A
is a subtype of B, with an arbitrary object x : A being coerced to
the object N : B. If this judgement is derivable and Γ ` M : A,
then we may form the object MB , which is M that has been type-
cast to have type B. This object will be computationally equal to
{M/x}N .

1.1 Logical Frameworks
A logical framework is a typing system that is intended to be
used as a metalanguage for specifying other formal systems, the
object theories. These object theories are often typing systems
themselves.

Let us first fix some terminology. When the object theory is a
typing system, we shall call the entities of the object theory terms
and types, while the entities of the framework we shall call objects
and kinds1. However, we shall still talk an object k being ‘typable’,
meaning it has a kind.

1 This terminology is not universal. In particular, in Martin-Löf’s Logical
Framework, our ‘types’ are called ‘sets’ and our ‘kinds’ are called ‘types’.
Unfortunately, there is no universal choice of terminology here yet.



What does it mean to ‘specify’ or ‘represent’ an object theory in
a logical framework? Typically, there is a special kind Type and,
for each A : Type, a kind El (A). To represent a type theory T in
the framework is to declare a number of constants and computation
rules in the framework such that we can map or encode the terms
and types of T as objects of the framework. That is, such that

• for each type A of T , we can find an object A : Type;

• for each term M of type A, we can find an object M : El
`
A
´
.

This should be done in such a way that the object M behaves in
the framework similarly to the way M behaves in T ; for example,
we should have M = N if and only if M = N . The result that
states that such a correspondence holds for T is called the adequacy
theorem for T .

The correspondence between the entities of T and the objects of
the framework is generally not as close as we might wish. It would
be ideal if the correspondence were both injective and surjective.
However, we typically have neither of these properties:

1. Each entity of T is represented by more than one object of
the framework. Typically, if two framework objects are βη-
convertible, then they represent the same entity of T .

2. There are typable objects in the framework that do not corre-
spond to entities of T .

Example Suppose T contains non-dependent product types A ×
B. We may represent these by declaring a constant

times : (Type,Type)Type .

The objects of the form times a b then represent the types of the
form A×B:

A×B ≡ times A B .

However:

1. this representation is not unique; A×B is represented by both
times A B and ([x : Type]times x B)A;

2. there are objects such as times A, of kind (Type)Type,
which does not represent a type or term of T ; rather, it rep-
resents the meta-function that maps a typeB to the typeA×B.

Adequacy theorems are often notoriously difficult to prove,
largely because of disparities such as these between an object
theory and its representation in a logical framework.

1.1.1 Lambda-free Logical Frameworks
Lambda-free logical frameworks are a recently constructed family
of logical frameworks intended to remedy this problem. A lambda-
free logical framework contains nothing but what is essential for
representing object theories. In particular, they contain:

• the kinds Type and El (A);
• the ability to declare constants and variables with parameters;
• the ability to apply constants and variables to arguments.

but they do not contain:

• the ability to apply abstractions to arguments, to form β-
redexes;

• any framework-level notion of β- or η-reduction;
• partial application — that is, the ability to apply an n-ary

constant or variable to fewer than n arguments.

Because of this, the correspondence between an object theory and
its representation in a lambda-free logical framework is extremely
close; each entity in the object theory is typically represented by

an object in the framework that is unique (up to α-conversion), and
each typable object in the framework represents an entity in the
object theory.

Several lambda-free logical frameworks have been constructed
over the last seven years, including the Canonical LF [Harper and
Licata 2007, Lovas and Pfenning 2008], TF and its subsystems
[Adams 2009, 2004b], and DMBEL and its subsystems [Plotkin
2006, Pollack 2007]. We describe the history of lambda-free logical
frameworks in more detail in Section 5.

1.1.2 Embedding Lambda-free Frameworks in Traditional
Frameworks

We do not claim that lambda-free logical frameworks are ‘better’
than traditional frameworks in every respect. The features that have
been removed from lambda-free frameworks, while extraneous in
theory, are often useful in practice. For example, β-redexes can pro-
vide a useful abbreviational mechanism. However, many theoreti-
cal questions are easier to study in a lambda-free logical frame-
work, because a lambda-free framework has a smaller syntax and
fewer rules of deduction.

Fortunately, it is possible to enjoy the benefits of both worlds.
It is possible to embed a lambda-free framework L in a traditional
framework F ; that is, to define mutually inverse translations be-
tween L and F . By means of these translations, L can be regarded
as a conservative subsystem of F . For example, TF can be seen as a
subsystem of LF2 [Luo 1994] — it is the fragment of LF that deals
only with objects β-normal, η-long form, and LF is conservative
over this fragment. Likewise, the Canonical LF can be regarded
as the fragment of ELF that deals only with objects in β-normal,
η-long form, and ELF is conservative over this fragment.

Once L has been embedded in F in this way, we can lift results
from L to F ; we can prove that a theoretical property holds in L,
and deduce that the same property holds in F . The proof is often
easier in L than in F . There is a price to be paid for this, of course;
the basic metatheoretic properties of L, and the properties of the
translations between L and F , are often quite difficult to establish.
This can be seen as a ‘one-time’ cost of using L, however; once
these properties have been established, they can be used to lift any
number of results from L to F .

There is another advantage of working with lambda-free logical
frameworks. They are modular, in the following sense.

We shall shortly introduce the lambda-free logical framework
TF. A large family of subsystems of TF have been constructed
that extend one another conservatively, in a modular hierarchy
of logical frameworks [Adams 2004a,b]. These differ in the class
of object theories they allow to be specified, and the traditional
frameworks in which they can be embedded. For example, the
subsystem SPar (ω)− can be embedded in the Edinburgh Logical
Framework, ELF, while TF itself cannot [Adams 2004a, 2009].

It is very often possible to find general results and general tech-
niques that apply to all these subsystems at once. The techniques
developed in this paper, for example, could be used with hardly any
modification to add coercive subtyping to any of the frameworks in
the modular hierarchy. Thus, the techniques in this paper could be
used to prove more easily results about coercive subtyping, not just
in LF, but also in PAL+, ELF, and any other framework in which
some member of the modular hierarchy can be embedded.

1.2 Outline
In Section 2, we shall give a summary of the background on co-
ercive subtyping and lambda-free logical frameworks. In Section

2 The framework we refer to as LF in this paper is a Church-typed version
of Martin-Löf’s Logical Framework. It is not to be confused with the
Edinburgh Logical Framework, which is also often called LF.



3, we shall present the formal definition of TF<, and investigate
its metatheoretic properties. In particular, we shall give conditions
under which a type theory with coercive subtyping is conservative
over the same theory without coercive subtyping, and conditions
under which typechecking in a theory with coercive subtyping is
decidable. In Section 4, we shall show how TF< can be embedded
in the traditional framework LF, and hence that the results proved
in Section 3 also hold for LF.

2. Background
2.1 The Lambda-free Logical Framework TF
We shall now introduce the lambda-free logical framework TF. We
shall first discuss the intuitive ideas behind its construction, then
present a summary of its syntax and rules of deduction. For more
technical details, see [Adams 2009].

As we described in the Introduction, TF is designed so that,
when an object theory has been specified, the objects of TF are in
one-to-one correspondence with the terms and types of the object
theory.

For example, suppose the object theory we wish to represent
contains Π-types; whenever A is a type, and B is a type that
depends on x : A, then Πx : A.B is to be a type. We can achieve
this in TF — as in many logical frameworks — by declaring the
constant

Π : (A : Type)(B : (A)Type)Type . (1)

However, the rules that govern how this constant Π behaves in TF
are different to the rules of traditional logical frameworks.

Once the constant Π has been declared, the following is an
instance of a rule of deduction in TF:

Γ ` A : Type Γ, x : A ` B : Type

Γ ` Π[A, [x : A]B] : Type

Thus, the only way Π can occur is in an object of the form Π[A, [x :
A]B]. In particular, Π cannot appear on its own on the left-hand
side of a judgement, and nor can the partial application Π[A].
Likewise, the abstraction [x : A]B cannot occur on its own on
the left-hand side of a judgement, but only as the argument to a
variable or constant.

Nevertheless, it will be very convenient to be able to talk about
abstractions such as [x : A]B, and to be able to write the first
premise Γ, x : A ` B : Type above as

Γ  [x : A]B : (x : A)Type . (2)

We shall refer to expressions like [x : A]B as abstractions, and
expressions like (x : A)Type as product kinds. To distinguish
them, we shall refer to the kinds Type and El (A) as base kinds.

We shall introduce defined judgement forms; when F is an
abstraction and K a product kind, we shall write Γ  [x : A]B :
(x : A)Type as an abbreviation for a set of judgements of TF.
In particular, by our definition, the judgement (2) shall abbreviate
the singleton {Γ, x : A ` B : Type}. We shall always use the
symbol  in a defined judgement form.

We turn now to the formal definition of TF.

2.1.1 Syntax of TF
Arities The syntax of TF is organised by arities α. Every con-
stant, variable, abstraction and product kind shall be associated
with an arity α; we shall speak of α-ary variables, constants, etc.
The set of arities is defined by the grammar

α ::= (α, . . . , α) .

The intuition behind arities is that an (α1, . . . , αn)-ary object is a
function that takes n arguments — namely an α1-ary object, . . . ,

and an αn-ary object — and returns a term or type of the object
theory.

We write 0 for the arity (), 1 for (0), 2 for (0,0), and so forth.
For example, the constant Π declared above has arity (0,1), as it
takes a 0-ary objectA and a 1-ary abstraction [x : A]B, and returns
an object Π[A, [x : A]B].

We can also speak of the order of an arity, defined as follows: 0
is 0th-order; otherwise the order of (α1, . . . , αn) is the maximum
of the orders of α1, . . . , αn plus one. Thus, 1 and 2 are first-
order, (1,2) is 2nd-order, and so forth. We may speak of nth-order
abstractions, product kinds and contexts similarly.

Objects and Kinds of TF The objects of TF are defined thus:

If z is an (α1, . . . , αn)-ary constant or variable, then

z[[x11, . . . , x1r1 ]M1, . . . , [xn1, . . . , xnrn ]Mn]

is an object, where αi ≡ (αi1, . . . , αiri), xij is an αij-ary
variable, and Mi is an object.

For example, if z is a 0-ary constant or variable, then z[] is an
object. If z is a 1-ary constant or variable, then z[M ] is an object
for every object M .

We define the α-ary product kinds as follows. An (α1, . . . , αn)-
ary product kind has the form

(x1 : K1, . . . , xn : Kn)T

where xi is an αi-ary variable, Ki an αi-ary product kind, and T
is a base kind; that is, T is either Type or El (M) for some object
M .

An abstraction of arity (α1, . . . , αn) is an expression of the
form [x1 : K1, . . . , xn : Kn]M , where each xi is an αi-ary
variable, Ki is an αi-ary product kind, and M is an object.

An (α1, . . . , αn)-ary context in TF is a sequence of declarations
x1 : K1, . . . , xn : Kn, where xi is an αi-ary variable and Ki an
αi-ary product kind of the same arity.

The judgements of TF are of three forms: Γ valid, Γ ` M : T ,
and Γ `M = N : T , where Γ is a context, M and N objects, and
T a base kind.

Remark

1. We could have written the definition on objects in the following
form. An object of TF has the form z[F1, . . . , Fn], where z is
an (α1, . . . , αn)-ary variable or constant, and each Fi is an αi-
ary abstraction.
Likewise, we could have said: an α-ary abstraction has the form
[∆]M , where ∆ is an α-ary context and M an object.

2. All of the expressions we have introduced — objects, base
kinds, product kinds, abstractions, contexts and judgements —
are identified up to α-conversion.

Instantiation and Defined Judgement Forms We cannot use sub-
stitution in TF, as we can in most logical frameworks. In general,
the result of substituting an abstraction for x in the object x[~F ] is
not an object; rather, it would be a β-abstraction, which we have
gone to such pains to exclude from TF.

Instead, the operation of instantiation (or hereditary substitu-
tion) plays the role in TF that substitution plays in a traditional
framework. We shall define {F/x}M , the result of instantiating
the variable x with the abstraction F . This can be thought of as the
normal form of [F/x]M . It is defined iff F and x have the same
arity α, and the definition is by recursion on the arity α.

Definition 1 (Instantiation) If F ≡ [y1 : K1, . . . , yn : Kn]N ,
then

{F/x}z[ ~G] ≡ z[{F/x}~G] (if x 6≡ z)
{F/x}x[G1, . . . , Gn] ≡ {G1/y1, . . . , Gn/yn}N



We also define an operation of employment, which shall play the
role in TF that application plays in a traditional framework. If F is
an (α1, . . . , αn)-ary abstraction, and G1 is an α1-ary abstraction,
then the abstraction F •G1 is defined by

([x1 : K1, . . . , xn : Kn]M) •G1

≡ {G1/x1}[x2 : K2, . . . , xn : Kn]M .

We introduce defined judgement forms to denote an abstraction
inhabiting a product kind Γ  F : K; or two abstractions being
equal in a product kind Γ  F = G : K; or two kinds being equal
Γ  K = K′. Each of these is defined as a set of judgements of
the three primitive forms given above.

1. Equality of Base Kinds We define

(Γ  Type = Type) ≡ {Γ valid}
(Γ  El (A) = El (B)) ≡ {Γ ` A = B : Type}

Γ  Type = El (B) and Γ  El (A) = Type are left
undefined.

2. Equality of Product Kinds and Contexts Γ  K = K′ is
defined only if K and K′ have the same arity. Γ  ∆ = Θ is
defined only if ∆ and Θ have the same arity.

(Γ  (∆)S = (Θ)T )

≡ (Γ  ∆ = Θ)

∪(Γ,∆  S = T )

(Γ  (x1 : J1, . . . , xn : Jn) = (x1 : K1, . . . , xn : Kn))

≡ {Γ valid}
∪(Γ  J1 = K1)

∪(Γ, x1 : J1  J2 = K2)

∪ · · ·
∪(Γ, x1 : J1, . . . , xn−1 : Jn−1  Jn = Kn)

3. Inhabitation of a Product Kind Γ  F : K is defined only if
F and K have the same arity.

(Γ  [∆]M : (Θ)T ) ≡ (Γ  ∆ = Θ)

∪{Γ,∆ `M : T}

4. Equality of Abstractions Γ  F = G : K is defined only if
F , G and K have the same arity.

(Γ  [∆1]M = [∆2]N : (Θ)T )

≡ (Γ  ∆1 = Θ)

∪(Γ  ∆2 = Θ)

∪{Γ,∆1 `M = N : T}

A type theory is specified in TF by declaring a number of
constants c : K and computation rules (x1 : K1, . . . , xn :
KN )(M = N : T ). The rules of deduction of TF are then as given
in Fig. 1. We shall write Γ `T J to denote that the judgement
Γ ` J is derivable under the type theory specification T .

2.1.2 Metatheoretic Properties
The metatheoretic properties of a lambda-free framework are very
difficult to prove. We shall list in Theorem 1 some properties
that we would expect to hold in general. So far, however, these
have only been proven for a few limited classes of type theory
specifications.

Theorem 1 If the type theory specification T satisfies the property

Equation Validity If Γ ` M = N : S is derivable, so are
Γ `M : S and Γ ` N : S.

〈〉 valid

Γ  K kind

Γ, x : K valid

Γ  ~F :: ∆
(x : (∆)S ∈ Γ)

Γ ` x~F : {~F/∆}S

Γ  ~F = ~G :: ∆
(x : (∆)S ∈ Γ)

Γ ` x~F = x~G : {~F/∆}S
For each constant declaration c : (∆)S in T :

Γ  ~F :: ∆

Γ ` c ~F : {~F/∆}S

Γ ` ~F = ~G :: ∆

Γ ` c ~F = c ~G : {~F/∆}S
For each equation declaration (∆)(M = N : S) in T :

Γ  ~F :: ∆

Γ ` {~F/∆}M = {~F/∆}N : {~F/∆}S

Figure 1. Rules of Deduction of TF

then it satisfies the following properties.

Instantiation If Γ, x : K,Γ′ ` J and Γ  F : K are derivable,
so is Γ, {F/x}Γ′ ` {F/x}J .

Functionality If Γ, x : K,Γ′ ` M : T and Γ  F = G : K
are derivable, so is Γ, {F/x}Γ′ ` {F/x}M = {G/x}M :
{F/x}T .

Context Conversion If Γ, x : K,Γ′ ` J and Γ  K = K′ are
derivable, so is Γ, x : K′,Γ′ ` J .

Proof See [Adams 2009]. �

2.2 Coercive Subtyping
When working in a type theory with coercive subtyping, we may
declare a meta-function c : (A)B to be a coercion from A to B,
written

A <c B .

The type A is then to be regarded as a subtype of the type B, with
each object a : A being identified with, or coerced to, the object
ca : B.

This is achieved in a traditional logical framework such as LF by
means of coercive application and coercive definition. If A <c B,
then for any objects a : A and f : (x : A)K, the object fa is well-
typed, and is set equal to f(ca). This is achieved by extending LF
with additional rules of deduction, that include the following two.

(CA)
Γ ` a : A Γ ` f : (x : A)K Γ ` A <c B : Type

Γ ` fa : [ca/x]K

(CD)
Γ ` a : A Γ ` f : (x : A)K Γ ` A <c B : Type

Γ ` fa = f(ca) : [ca/x]K
Provided the subtyping judgements obey certain conditions, the
resulting framework obeys some very nice metatheoretic proper-
ties. We say that the coercions form a well-defined set of coer-
cions (WDC) when these conditions are satisfied (see [Luo and Luo
2005]). The conditions include coherence, the requirement that any
two coercions between A and B be equal.

This approach has been studied in a series of papers by Luo,
Luo, Soloviev and the present author [Luo 1999, Soloviev and



Luo 2002, Luo and Luo 2005, Luo and Adams 2006]. Much more
recently, coercive subtyping has been used to allow an intensional
construction of manifest fields in dependent record types [Luo
2009].

Coercive subtyping has been implemented in proof checkers
such as Coq [Barras and et al. 2000], LEGO [Luo and Pollack
1992] and Plastic [Callaghan and Luo 2001], and several large
proof developments have made extensive use of coercions [Bailey
1998, Geuvers et al. 2002].

2.2.1 Coercive Application and Typecasting
If we wish to add coercive subtyping to a logical framework, there
is an alternative to coercive application. We can instead introduce
the operation of typecasting.

By typecasting, we mean the operation of taking an object M
and ‘forcing’ or casting it to have type A. We write MA for ‘the
object M , considered as an object of type A’. If M : A, we can
‘consider’ M to have type A; if M : A and A <c B, we can
‘consider’ M to have type B. More formally:

• If M : A, then MA : A and MA = M : A.
• If M : A and A <c B, then MB : B and MB = cM : B.

There is a very close connection between typecasting and co-
ercive application3. We can define either operation in terms of the
other. Given coercive application, we can defineMA to be the iden-
tity on A applied to M :

MA ≡ ([x : A]x)M .

This operation has the properties we require of a typecasting oper-
ation. If M : A, then MA = M by a β-reduction; if M : A and
A <c B, then MB = cM by coercive definition.

Conversely, given a typecasting operation, we can define coer-
cive application as follows. If a : A, f : (x : B)K, and A <c B,
then let

fa ≡ f(aB) .

This is typable and equal to f(ca), as required.
Thus, in a traditional logical framework, we may take either

coercive application or typecasting as primitive, then define the
other.

2.2.2 Coercive Subtyping in a Lambda-free Logical
Framework

It is not immediately obvious how to extend a lambda-free logical
framework with coercive subtyping. We cannot introduce coercive
application; the rules for coercive application make use of objects
fa and f(ca), and these do not exist in a lambda-free framework.
However, we can introduce typecasting in a straightforward man-
ner; and, as we have just seen, this should give us the same power
as coercive application.

In order to obtain a lambda-free framework with coercive sub-
typing, therefore, we shall introduce subtyping judgements A <c

B, (where c must be an abstraction of product kind (A)B), and an
operation of typecasting with the following properties:

• If M : El (A), then MA : El (A) and MA = M : El (A).
• If M : El (A) and A <c B, then MB : El (B) and MB =
c •M : El (B).

We shall call the resulting framework TF<.
We shall now give the formal definition of this framework, dis-

cuss its metatheoretic properties, and show how it may be embed-
ded in LF with coercive subtyping.

3 This connection was first observed by Aczel ([Aczel 1994], as reported in
[Luo 1996]).

For each basic coercion (∆;A;B; [x]M) ∈ C:

(basic)
Γ  ~F :: ∆

Γ ` {~F/∆}A <[x]{~F/∆}M {~F/∆}B

(cong)

Γ ` A <[x]M B : Type
Γ, x : El (A) `M = M ′ : El (B)

Γ ` A = A′ : Type
Γ ` B = B′ : Type

Γ ` A′ <[x]M′ B′ : Type

(cast)
Γ `M : El (A) Γ ` A <[x]N B

Γ `MB : El (B)

(cast eq)
Γ `M = M ′ : El (A) Γ ` B = B′ : Type

Γ ` A <[x]N B

Γ `MB = M ′B′ : El (B)

(cast def)
Γ `M : El (A) Γ ` A <[x]N B

Γ `MB = {M/x}N : El (B)

(tcast)
Γ `M : El (A)

Γ `MA : El (A)
(tcast def)

Γ `M : El (A)

Γ `MA = M : El (A)

Figure 2. Rules of Deduction of TF<

3. The Lambda-free Logical Framework TF<

We present here the formal definition of the lambda-free logical
framework TF<, an extension of TF that allows for coercive sub-
typing.

3.1 Subtyping Judgements and Typecasting
The syntax of TF< extends the syntax of TF with one new object
constructor, and one new judgement form:

• If M and A are objects, then MA is an object.
• If A, B and M are objects, then Γ ` A <[x]M B is a

judgement.

The object MA denotes the result of typecasting the object M to
have type A. The judgement Γ ` A <[x]M B denotes that A and
B are types, and that there is a coercion from A to B that maps an
arbitrary object N : A to the object {N/x}M : B.

A type theory with coercive subtyping is specified in TF< by
giving:

• A type theory specification T in TF;
• A set C of quadruples (∆;A;B; [x]M), which we call basic

coercions.

We write this specification as T [C].
The rules of deduction of TF< are the rules of deduction of TF,

together with the rules given in Fig. 2

3.2 Metatheoretic Properties
There are certain properties that the basic coercions must satisfy
in order for the theory T [C] to be useful. These were summarised
in the definition of a well-defined set of coercions (WDC). The
definition was first given for LF in [Luo and Luo 2001] (see also
[Luo and Luo 2005]), and it is a straightforward matter to adapt the
definition for TF<.



Definition 2 (Well-Defined Set of Basic Coercions) The set C is
a well-defined set of basic coercions (WDC) with respect to the
type theory T iff the following conditions are satisfied:

1. Whenever (∆;A;B; c) ∈ C, then ∆ ` A : Type, ∆ ` B :
Type and ∆  c : (A)B in T .

2. Whenever (∆;A;B; c) ∈ C, then ∆ 0 A = B : Type.
3. Coherence

Whenever (∆;A;B; c) ∈ C and (∆;A′;B′; c′) ∈ C, if ∆ `
A = A′ : Type and ∆ ` B = B′ : Type, then ∆  c =
c′ : (A)B.

4. If (∆;A;B; c) ∈ C, ∆ ⊆ ∆′ and ∆′ valid in T , then
(∆′;A;B; c) ∈ C.

5. If (∆, x : K,Θ;A;B; c) ∈ C and ∆  F : K in T , then
(∆, {F/x}Θ; {F/x}A; {F/x}B; {F/x}c) ∈ C.

6. Transitivity
If (∆;A;B; c) ∈ C, (∆, B′, C, d) ∈ C and ∆ ` B = B′ :
Type, then (∆;A;C; d ◦ c) ∈ C, where
d ◦ c ≡ [x : A]d • (c • x).

The property of Coherence, in particular, is essential; if there were
two unequal coercions from A to B, then the typechecker would
not know which object of B to coerce a given object of A to.

The basic metatheoretic properties that TF< enjoys are laid out
in the following theorem.

Theorem 2 Suppose C is a WDC. Then T [C] satisfies the following
properties.

Weakening If Γ ` J , ∆ valid and Γ ⊆ ∆, then ∆ ` J .
Context Validity If Γ ` J then Γ valid.

Further, if we assume that T [C] satisfies

Equation Validity If Γ ` M = N : S, then Γ ` M : S and
Γ ` N : S.

then T [C] satisfies the following four properties:

Cut If Γ, x : K,∆ ` J and Γ  F : K, then Γ, {F/x}∆ `
{F/x}J .

Functionality If Γ, x : K,∆ `M : S and Γ  F = G : K, then
Γ, {F/x}∆ ` {F/x}M = {G/x}M : {F/x}S.

Context Conversion If Γ, x : K,∆ ` J and Γ  K = K′, then
Γ, x : K′,∆ ` J .

Type Validity If Γ ` M : A or Γ ` M = N : A, then
Γ ` A : Type.

Proof The proof follows the same pattern as in [Adams 2004b].
We omit the details. �

For the remainder of this paper, we shall assume that T [C] is a
good specification.

Lemma 1 The following rule of deduction is admissible in TF<:

Γ `M = M ′ : A Γ ` A = A′ : Type

Γ `MA = M ′A′ : A

Proof We have Γ ` MA = M : A and Γ ` M ′A′ = M ′ : A′,
and the desired conclusion follows. �

We can also show that the properties of the set of basic coercions
in Definition 2 hold for the set of all derivable subtyping judge-
ments:

Theorem 3 1. If Γ ` A <[x]M B, then Γ ` A : Type,
Γ ` B : Type and Γ, x : A `M : B.

2. Γ 0 A <[x]M A
3. If Γ ` A <[x]M B and Γ ` A <[x]N B, then Γ, x : A `M =
N : B.

4. If Γ ` A <[x]M B and Γ ` B <[y]N C, then Γ `
A <[x]{M/y}N C.

Proof

1. This part is proven by a simple induction on derivations.

2. Prove that, if Γ ` A <[x]M B, then Γ 0 A = B : Type, by
induction on the derivation of Γ ` A <[x]M B.

3. Prove that, if Γ ` A <[x]M B, Γ ` A′ <[x]N B′, Γ ` A =
A′ : Type, and Γ ` B = B′ : Type, then Γ, x : A ` M =
N : B, by double induction on the first two premises.

4. Prove that, if Γ ` A <[x]M B, Γ ` B′ <[y]N C, and
Γ ` B = B′ : Type, then Γ ` A <[x]{M/y}N C, by double
induction on the first two premises. �

3.3 Insertion of Coercions
In a theory T [C] with coercive subtyping, every object M is, in a
sense, an abbreviation for an object of T . It should, in particular,
be the case that every object of T [C] is computationally equal to an
object of T .

We shall now show how, when C is computable (to be defined
shortly), we can give an algorithm for inserting coercions; that is,
given an object M of T [C], to compute the corresponding object
M of T . We shall use this to show how to extend any typechecking
algorithm for T to a typechecking algorithm for T [C].

Definition 3 (Computable Set of Basic Coercions) A set of ba-
sic coercions C is computable iff there exists an algorithm A such
that, given Γ, A and B, the algorithm A decides whether there
exists c such that (Γ, A,B, c) ∈ C and, if so, returns such a c.

In order to define the algorithm for insertion of coercions, we
shall need the notion of the principal kind KΓ(M) of an object
M . This is a base kind such that, if M is typable, then it has kind
KΓ(M).

Definition 4 (Principal Kind) The base kind KΓ(M) is defined
as follows.

If x : (∆)S ∈ Γ, then KΓ(x~F ) ≡ {~F/∆}S.
If c has been declared with kind (∆)S, then KΓ(c ~F ) ≡

{~F/∆}S.
KΓ(MA) ≡ El (A).

We can easily prove that KΓ has the property we require:

Lemma 2 If Γ `M : S, then Γ ` S = KΓ(M).

Proof A simple induction on derivations. �
Now, the algorithm for inserting coercions can be provided.

Definition 5 (Insertion of Coercions) Let T be a type theory
specification, and suppose that typechecking in T is decidable.
LetC be a computable WDC with algorithm A. Given a T [C]-object
M and a T -context Γ, we define the T -object M

Γ
as follows.

x~F
Γ

≡ x~F
Γ

c ~F
Γ

≡ c ~F
Γ

MA
Γ ≡

8>>>>>><>>>>>>:

M
Γ

if KΓ(M
Γ
) ≡ El (B)

and Γ T A
Γ

= B : Type

cM
Γ

if KΓ(M
Γ
) ≡ El (B)

and A(Γ, B,A
Γ
) ≡ c

undefined otherwise

(By coherence, the two conditions in the last equation are exclu-
sive.)

We extend the definition to contexts, product kinds, abstractions
and judgements in the obvious manner.



Note that, if M does not involve typecasting, then M
Γ ≡M .

This mapping satisfies the property we require:

Theorem 4 If Γ `T [C] M : S, then Γ `T M
Γ

: S
Γ

and

T [C] Γ = Γ, Γ T [C] S = S
Γ

, Γ `T [C] M = M
Γ

: S.
Proof We must first show the following result.

If M
Γ,x:K,∆

is defined and Γ `T F : K, then
{F/x}M

Γ,{F/x}∆
is defined, and

Γ, {F/x}∆ ` {F/x}MΓ,x:K,∆
= {F/x}M

Γ,{F/x}∆
.

The proof is by induction on M , making use of coherence in the
case M ≡ NA. The theorem is now proven by induction on
derivations. �

Corollary 5 Suppose Γ ` M : S and Γ ` N : S in T [C]. Then
Γ `T [C] M = N : S if and only if Γ `T M = N : S.

Corollary 6 If typechecking in T is decidable, and C is a com-
putable WDC, then typechecking in T [C] is decidable.

Proof To decide whether Γ ` x~F : S is derivable in T [C], first
decide whether Γ valid and Γ  S kind. If either of these does not
hold, answer ‘no’. If x /∈ dom Γ, answer ‘no’.

Otherwise, let x : (∆)R ∈ Γ. Then Γ ` x~F : S if and only if
Γ  S = {~F/∆}R, if and only if Γ `T S = {~F/∆}R. Decide
whether this last condition holds using the typechecking algorithm
for T .

The other judgement forms are handled similarly. �
Another consequence of this theorem is that T [C] is a conserva-

tive extension on T :

Corollary 7 If J is a judgement of T derivable in T [C], then J is
derivable in T .

3.3.1 Non-computable Sets of Coercions
In fact, it holds even for non-computable C that, given any typable
object M of T [C], we can find the corresponding object M of T .
However, the algorithm for calculating M implicit in this proof
depends on the derivation of Γ ` M : S, not just on the object M
and context Γ.

Theorem 8 (Insertion of Coercions) If Γ `T [C] M : S, then
there exist Γ, M and S such that Γ `T M : S and

T [C] Γ = Γ Γ T [C] S = S Γ `T [C] M = M : S

Further, ifM does not involve typecasting, thenM ≡M ; similarly
for Γ and S.
Proof We prove the following three statements simultaneously by
induction on derivations:

1. Suppose Γ `T [C] M : El (A), and Γ `T A : Type,
T [C] Γ = Γ, and Γ T [C] A = A : Type. Then there exists
M such that Γ `T M : El

`
A
´

and Γ `T [C] M = M : El (A).
If M does not involve typecasting, then M ≡M .

2. Suppose Γ `T [C] A : Type and Γ `T valid, T [C] Γ = Γ.
Then there exists A such that Γ T A kind and Γ T [C] A =

A : Type. If A does not involve typecasting, then A ≡ A.

3. Suppose Γ `T [C] A <[x]M B and Γ `T valid, T [C] Γ = Γ.
Then there exist A, B and M such that Γ, x : A `T M : B,
Γ `T [C] A = A : Type, Γ `T [C] B = B : Type, and
Γ, x : A `T [C] M = M : B. �

It follows immediately from this theorem that T [C] is a conser-
vative extension of T , as in Corollary 7.

4. Embedding TF< in LF
We now consider the traditional logical framework LF. It is possible
to embed TF in LF — that is, to define mutually inverse translations
between TF and LF. Using these translations, we can “lift” many
results from the TF world to the LF world. That is, we can prove
properties of the TF systems then, using the properties of the
translations that we have established, deduce that the corresponding
properties hold of the LF systems.

This is often a profitable approach as many properties are sim-
pler to prove for the TF systems, since they have fewer constructors
in their grammar and fewer rules of deduction. It was employed to
prove the injectivity of type constructors in LF in [Luo and Adams
2006].

In this section, we shall show how TF< may be embedded in
LF with coercive subtyping, and show how the properties of TF<

proven in the previous section can be lifted to the LF systems.

4.1 The Logical Framework LF
The logical framework LF was introduced by Luo in [Luo 1994].
It is a Church-typed version of Martin-Löf’s logical framework
[Nordström et al. 1990], and is intended for use as a meta-language
for specifying type theories. In particular, it contains the ability to
declare computation rules in a type theory. It has been implemented
in the proof checker Plastic [Callaghan and Luo 2001].

Its grammar deals with objects and kinds. The kinds K in LF
are of the following forms: Type, whose objects are the types
of the type theory being specified; El (A), whose objects are the
terms of type A; and (x : K)K′, whose objects are the meta-
functions which, given an object k of kind K, return an object of
kind [k/x]K′.

An object k in LF may be a variable, a constant, a lambda-
abstraction [x : K]k, or an application k1k2.

An object theory is specified in LF by declaring a number of
constants and computation rules. We may declare a constant c of
kind K, or a computation rule of the form ‘k = k′ : K where x1 :
K1, . . . , xn : Kn’.

4.1.1 Embedding TF in LF
We have two type systems, TF and LF, intended for use as logical
frameworks. LF can be seen as a conservative extension of TF. We
can see TF as picking out the derivable judgements of LF in which
everything is in normal form.

To make this precise, we introduce translations NF from LF to
TF, and lift from TF to LF. The action of NF can be thought of as
reducing every object to its normal form. The definitions are given
in [Adams 2009], as well as the proof of the following properties:

Theorem 9 Let T be a type theory specified in LF. Let NF(T )
be the TF specification defined as follows: for every constant dec-
laration c : K in T , we declare c : NF〈〉(K) in NF(T ); and
for every computation rule declaration ‘k = k′ : K where x1 :
K1, . . . , xn : Kn’ in T , we declare (NF(x1 : K1, . . . , xn :
Kn))(NF~x:: ~K(k) = NF~x:: ~K(k′) : NF~x:: ~K(K)) in NF(T ). Then

1. If J is derivable in T, then NF(J) is derivable in NF(T ).
2. For J an NF(T ) judgement, J is derivable in NF(T ) if and

only if lift(J) is derivable in T .
3. (a) NFΓ(lift(M)) ≡M

(b) NFΓ(lift(K)) ≡ K
4. (a) If Γ ` k : K is derivable in T , then so is Γ ` k =

lift(NFΓ(k)) : K.
(b) If Γ ` K kind is derivable in T , then so is Γ ` K =

lift(NFΓ(K)).

It is thanks in particular to part 2 of this theorem that we can
view LF as being a conservative extension of TF.



4.2 Translations between TF< and LF
We now show how these translations NF and lift may be extended
to TF<. We do so by making use of the ideas discussed in Section
2.2.1. The translation lift shall map MA to the identity applied to
lift(M):

lift(MA) ≡ ([x : lift(A)]x)lift(M)

It is harder to define the translation in the other direction. We
shall give the name NF to the translation from LF to TF<. Intu-
itively, when calculating NF(fa), we should:

• infer the kind of NF(f) — say (x : K)K′;

• cast NF(a) to have the kind K;

• return NF(f) •NF(a)K .

The second step requires something stronger than typecasting; it
requires us to cast abstractions to have a particular product kind.
We shall call this operation kindcasting. We shall also refer to the
operation in the last step as coercive employment. We begin by
defining kindcasting and coercive employment formally.

4.2.1 Kindcasting
We extend typecasting to the kinds of higher arity. Given an ab-
straction F of kind K, we shall define the object FK′ , the result of
casting F to have kind K′.

The formal definition is as follows. For each variable x and kind
K of the same arity, let xK be the η-long form of x considered as an
abstraction of kind K. Given an abstraction F and kind K, both of
the same arity α, we define the α-ary abstraction FK by recursion
on α thus:

MEl(A) ≡MA MType ≡M

([x : K]G)(y:K′)L′ ≡ [y : K′]({(yK′
)K/x}G)L′

4.2.2 Coercive Employment
Suppose we wish to employ an abstraction F , which expects argu-
ments of kind K, on an abstraction G, which may be of kind K or
a subkind of K. We give the name of coercive employment to the
following operation: first castG to be of kindK, then employ F on
the result. (It is for this reason that we included trivial typecasting:
without it, we would need some method of deciding whether or not
to use kindcasting on G.)

Formally, we define the abstraction F �G by:

([x : K]F ′) �G ≡ {GK/x}F ′ .

4.2.3 The Translation NF

We now wish to define a translation from LF to TF<. This trans-
lation cannot agree with NF on every object; for, if k : A and
A < B, then k and ([x : B]x)k have different typing properties
in LF, yet NF(([x : B]x)k) ≡ NF(k). For this reason, we use a
new symbol NF for the new translation. (We shall define it so that
NF(([x : B]x)k) is the result of typecasting NF(k) to have type
NF(B).)

For the rest of this paper, assume we have declared a type
theory T [C] in LF with coercive subtyping. Declare the theory
NF(T )[NF(C)] in TF<, where NF(T ) is as in Theorem 9, and
C is the set of all basic coercions

(NF(Γ); NF(A); NF(B); NF(c))

such that (Γ;A;B; c) ∈ C. We assume that NF(T )[NF(C)] is a
WDC.

We now define NFΓ(k), NFΓ(K), NF(Γ) and NF(J) for
every well-aritied object k, kind K, context Γ and judgement J .
The definition is as follows.

• If c has been declared with kind K, then NFΓ(c) ≡ cK .

• If x : K is in Γ, then NFΓ(x) ≡ xK .

• NFΓ([x : K]k) ≡ [x : NFΓ(K)]NFΓ,x:K(k).

• NFΓ(kk′) ≡ NFΓ(k) �NFΓ(k′).

• NFΓ(Type) ≡ Type.

• NFΓ(El (k)) ≡ El
`
NFΓ(k)

´
.

• NFΓ((x : K)L) ≡ (x : NFΓ(K))NFΓ,x:K(L).

We can define NF(Γ) and NF(J) for Γ a context and J a judge-
ment of LF in the obvious way.

4.2.4 The Translation lift

The translation lift from TF< to LF is much easier to define. We
map typecasting to coercive application of identity functions. The
definition of lift on objects is as follows:

lift(x~F ) ≡ x lift(~F )

lift(c ~F ) ≡ c lift(~F )

lift(MA) ≡ ([x : El (lift(A))]x) lift(M)

We extend this mapping to abstractions, contexts, etc. in the obvi-
ous manner.

We can show that these translations are sound and mutually
inverse, up to equality in the relevant framework:

Theorem 10 1. If J is derivable in LF, then NFJ is derivable in
TF<.

2. If J is derivable in TF<, then lift(J) is derivable in LF.
3. If Γ ` k : K is derivable in LF, then so is Γ ` k =

lift(NFΓ(k)) : K.
4. If Γ ` M : T is derivable in TF<, then so is Γ ` M =

NFlift(Γ)(lift(M)) : T .
Proof Parts 1 and 2 are proven by induction on derivations, after
establishing several lemmas about how substitution and instantia-
tion behave under NF and lift. Part 3 is proven by induction on k,
simultaneously with a corresponding statement for kinds. Part 4 is
proven by induction on M . We omit the details here. �

We have shown that NF and NF do not agree on all the objects
typable in LF; however, using the previous theorem, we can prove
immediately that NF and NF agree (up to judgemental equality in
TF<) on the objects typable in T .

Theorem 11 If Γ `T k : K, then NF(Γ)  NFΓ(k) = NFΓ(k) :
NFΓ(K) is derivable in NF(T )[NF(C)].
Proof Suppose Γ `T k : K. Then Γ `T k = lift(NFΓ(k)) =
lift(NFΓ(k)) : K. Therefore, using the soundness of NF,

NF(Γ)  NFΓ(lift(NFΓ(k))) = NFΓ(lift(NFΓ(k))) : NFΓ(K)

is derivable in NF(T ), hence in NF(T )[NF(C)]. Therefore, as NF
is a left inverse to lift up to equality (which can be proven in
NF(T )[NF(C)] just as it was in NF(T )), we have

NF(Γ) NF(T )[NF(C)] NFΓ(k) = NFΓ(k) : NFΓ(K) . �

4.3 Lifting Results
Using the translations NF and lift, we can deduce that the property
we have called Insertion of Coercions holds in LF as well as in TF:

Corollary 12 If Γ `T [C] k : K, then there exist Γ, k and K

such that Γ `T k : K, T [C] Γ = Γ, Γ `T [C] K = K, and
Γ `T [C] k = k : K.



Proof Suppose Γ `T [C] k : K. Then, by the soundness of NF,

NF(Γ) NF(T )[NF(C)] NFΓ(k) : NFΓ(K) .

Therefore, by Theorem 8, there exist ∆, F and L such that

∆ NF(T ) F : L
NF(T )[NF(C)] NF(Γ) = ∆

NF(Γ) NF(T )[NF(C)] NFΓ(K) = L
NF(Γ) NF(T )[NF(C)] NFΓ(k) = F : NFΓ(K)

Let Γ ≡ lift(∆), k ≡ lift(F ), and K ≡ lift(L). Then, by the
soundness of lift, we have

Γ `T k : K

T [C] lift(NF(Γ)) = Γ

lift(NF(Γ)) `T [C] lift(NFΓ(K)) = K

lift(NF(Γ)) `T [C] lift(NFΓ(k)) = k : lift(NFΓ(K))

The desired results follow using the fact that lift is a left inverse to
NF. �

The pattern of this proof is typical of the method for lifting
results from TF to LF.

This result was first proved for LF by Soloviev and Luo (it is
an easy consequence of the main theorem in [Soloviev and Luo
2002]). The proof is long and difficult, and this result is a good
example of how the use of lambda-free logical frameworks leads to
results being easier to prove. (If we tried to prove Theorem 8 for
LF by the same technique, the induction would fail for the cases of
the rules governing application and coercive application.)

Corollary 7 cannot be lifted directly to the LF systems; in
general, T [C] is not literally a conservative extension of T . (If
Γ `T [C] A < B : Type, then Γ, y : El (A) `T [C] ([x :
El (B)]x)y : El (B). This judgement can be formed in the syntax
of T , but is not derivable in T .)

However, a weaker version of this result can be lifted: the
equational theory of the objects typable in T is the same in T and
T [C].
Corollary 13 If Γ `T k : K, Γ `T k′ : K, and Γ `T [C] k = k′ :
K, then Γ `T k = k′ : K.
Proof Suppose the hypotheses hold. By the soundness of NF,

NF(Γ) `NF(T )[NF(C)] NFΓ(k) = NFΓ(k′) : NFΓ(K) .

By the soundness of NF, we have that NFΓ(k) and NFΓ(k′) are
typable in NF(T ), hence do not involve typecasting. Therefore, by
Corollary 7,

NF(Γ) `NF(T ) NFΓ(k) = NFΓ(k′) : NFΓ(K)

∴ Γ `T k = lift(NFΓ(k)) = lift(NFΓ(k′)) = k′ : K . �
The result about typechecking, Corollary 6, can be lifted.

Corollary 14 If typechecking in T is decidable, and NFC is a
computable WDC, then typechecking in T [C] is decidable.
Proof By Corollary 6, the TF<-theory NF(T )[NF(C)] is de-
cidable. It follows that equality is decidable in T [C]; that is, if
Γ ` k : K and Γ ` k′ : K, it is decidable whether Γ ` k =
k′ : K. This is so because Γ `T [C] k = k′ : K if and only if
NF(Γ) `NF(T )[NF(C)] NFΓ(k) = NFΓ(k′) : NFΓ(K). Once we
have a decision procedure for equality, it is straightforward to pro-
duce a decision procedure for the whole of T [C]. �

5. Related Work
5.1 History
The concept of a lambda-free logical framework has been invented
three times independently over the last 13 years. The first lambda-

free framework to appear was the Linear Logical Framework (LLF)
[Cervesato 1996, Cervesato and Pfenning 2002], a framework for
representing linear object theories. This framework only allows
objects in canonical form; that is, β-normal, η-long form.

In 2000, Luo [Luo 2003] presented the logical framework
PAL+, and it was for this framework that the phrase ‘lambda-free
logical framework’ was coined. However, it is important to note
that PAL+ is stronger than the other lambda-free frameworks we
consider in this paper. Not all the comments we have made about
lambda-free logical frameworks apply to PAL+. PAL+ does not
allow partial application, but it does have a mechanism for forming
abstractions, and makes use of framework-level reduction. It is not
true that PAL+ only makes use of canonical forms.

Aczel independently developed the framework TF [Aczel 2001],
and the present author developed an infinite number of subsys-
tems of TF, the modular hierarchy of logical frameworks [Adams
2004a,b].

LLF was extended to the Concurrent Logical Framework (CLF)
[Watkins et al. 2003], which again deals only with canonical forms.
A subsystem of both LLF and CLF was developed called the
Canonical LF [Harper and Licata 2007, Lovas and Pfenning 2008];
this is also a subsystem of ELF. It can be seen as the fragment of
ELF that deals only with objects in canonical form.

Independently, a family of four related systems were developed
by Plotkin [Plotkin 2006, Pollack 2007]: BEL (Binding Equational
Logic), MBEL (Multi-Sorted Binding Equational Logic), DBEl
(Dependent Binding Equational Logic) and DMBEL (Dependent
Multi-Binding Equational Logic). Again, these systems only deal
with objects in β-normal, η-long form.

5.2 The Modular Hierarchy of Logical Frameworks
The modular hierarchy of logical frameworks [Adams 2004a,b] is
an infinite family of subsystems of TF, with the names

SPar (n) ,LPar (n) ,SPar (n)− ,LPar (n)−

where n may be a natural number or ω. The systems vary in
strength in the following manner:

• The systems SPar allow only small parameters — that is, if a
constant or variable has kind (∆)T , then the symbol Type
may not occur in ∆. The systems LPar do not have this
restriction; they allow large parameters.

• If n is a natural number, it is the largest order of constant that
may be declared (e.g. only constants of order ≤ 2 may be
declared in SPar (2).) If n = ω, then constants of any order
may be declared.

• The systems SPar (n) and LPar (n) allow computation rules
to be declared; the systems SPar (n)− and LPar (n)− do not.

These systems are all constructed in a uniform manner, and
may be embedded in different traditional frameworks. For example,
SPar (ω)− may be embedded in the Edinburgh Logical Frame-
work.

The Canonical LF and the four systems developed by Plotkin
are very close to five of the systems in the modular hierarchy. In
particular, the Canonical LF is isomorphic to SPar (ω)−. The sys-
tem DMBEL can easily be added to the hierarchy; it sits between
SPar (2)− and SPar (3)−. These correspondences are investi-
gated in more detail in [Adams 2009].

The techniques developed in this paper apply equally well to
all the other systems in the hierarchy. They could be used to add
coercive subtyping to any of the systems in the hierarchy, and
therefore could easily be adapted to add coercive subtyping to
the Canonical LF or DMBEL. They could therefore be useful
for proving theoretical results about coercive subtyping in ELF,



CLF, LLF or PAL+. One of the strengths of lambda-free logical
frameworks is that their modularity means that results usually have
this general applicability.

6. Conclusion
We have shown how to extend the lambda-free logical framework
TF with coercive subtyping. We have shown how several metatheo-
retic properties may be proven for such a system, and observed that,
once we are past the basic metatheoretic properties, the proofs are
generally shorter and simpler than when we work in a traditional
logical framework. We have show how many of these results may
then be lifted to a traditional logical framework.

Lambda-free logical frameworks provide an alternative to tra-
ditional logical frameworks, with some advantages and some dis-
advantages. They do not eliminate all technical complexity by any
means; rather, they move it to a different place. They have a sim-
pler syntax and fewer rules of deduction, at the expense of needing
complex defined operations and judgement forms. Their advanced
properties are easier to prove, but the basic metatheoretic properties
are much more difficult to prove.

While we have worked in TF for this paper, the techniques
developed can be applied to all the subsystems of TF in the modular
hierarchy. The results we have proved here are very general, and
should therefore prove a powerful tool for proving the theoretical
properties of a wide range of logical frameworks with coercive
subtyping.
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