Experimental and finite element simulation study of capsule-free hot isostatic pressing of sintered gears
Artikel i vetenskaplig tidskrift, 2018

A novel approach to reach full density in powder metallurgy (PM) components is demonstrated in this work. Water-atomised Mo-prealloyed steel powder is utilised for manufacturing cylindrical and gear samples through double pressing and double sintering (DPDS) process route. The effect of sample geometry and powder size fraction on densification is investigated and it is found that the DPDS route enables a density level of > 95% which is sufficient to eliminate the surface open pores. Reaching such high density is necessary, in order to perform capsule-free hot isostatic pressing (HIP). After HIP, full densification is achieved for the cylindrical samples and only near full density is realised for the gears resulting in neutral zone formation due to the density gradient. In order to predict the densification behaviour during the compaction, FEM simulations considering the gear geometry are performed for both the pressing stages and HIP. The simulation predicted a similar densification behaviour with the formation of the neutral zone. The proposed DPDS route with capsule-free HIP in combination with FEM simulation is demonstrated as a potential route for manufacturing full-density PM steel components, e.g. gears, suitable for high-performance applications.

Density

Capsule-free HIP

Pressing

Gears

PM steels

Finite element simulations

Författare

Maheswaran Vattur Sundaram

Chalmers, Industri- och materialvetenskap, Material och tillverkning

Alireza Khodae

Kungliga Tekniska Högskolan (KTH)

Michael Andersson

Höganäs

Lars Nyborg

Chalmers, Industri- och materialvetenskap

Arne Melander

Kungliga Tekniska Högskolan (KTH)

Swerea KIMAB

International Journal of Advanced Manufacturing Technology

0268-3768 (ISSN) 1433-3015 (eISSN)

Vol. 99 1725-1733

Innovativ pulverbaserad tillverkning av kugghjul med höga prestanda (HIPGEAR)

VINNOVA, 2014-10-01 -- 2017-03-31.

Ämneskategorier

Maskinteknik

Produktionsteknik, arbetsvetenskap och ergonomi

Materialteknik

Bearbetnings-, yt- och fogningsteknik

Drivkrafter

Hållbar utveckling

Styrkeområden

Produktion

Materialvetenskap

DOI

10.1007/s00170-018-2623-4

Mer information

Senast uppdaterat

2018-12-10