New bounds for bilinear Calderon-Zygmund operators and applications
Artikel i vetenskaplig tidskrift, 2018

In this work we extend Lacey's domination theorem to prove the pointwise control of bilinear Calderon-Zygmund operators with Dini-continuous kernel by sparse operators. The precise bounds are carefully tracked following the spirit in a recent work of Hytonen, Roncal and Tapiola. We also derive new mixed weighted estimates for a general class of bilinear dyadic positive operators using multiple A(infinity), constants inspired in the Fujii-Wilson and Hruscev classical constants. These estimates have many new applications including mixed bounds for multilinear Calderon-Zygmund operators and their commutators with BMO functions, square functions and multilinear Fourier multipliers.

commutators

Domination theorem

multilinear Calderon-Zygmund operators

Dini condition

square functions

Fourier multipliers

Författare

Wendolin Damian

Universidad de Sevilla

Helsingin Yliopisto

Mahdi Hormozi

Matematik

Kangwei Li

Basque Center for Applied Mathematics (BCAM)

Helsingin Yliopisto

Revista Matematica Iberoamericana

0213-2230 (ISSN)

Vol. 34 3 1177-1210

Ämneskategorier

Reglerteknik

Signalbehandling

Matematisk analys

DOI

10.4171/RMI/1021

Mer information

Senast uppdaterat

2018-09-11