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EXTENDED ABSTRACT

In online automotive applications it is common to use look-
up tables, or maps, to model nonlinearities in component
models that are to be valid over large operating ranges.
If the component characteristics change with ageing or
wear, these look-up tables must be updated online. For
2-D look-up tables, the existing methods in the literature
only adapt the observable parameters in the look-up table,
which means that parameters in operating points that have
not been visited for a long time may be far from their true
values (see e.g. (Hockerdal et al., 2011)).

In this work, correlations between different operating
points are used to also update non-observable parameters
of the look-up table. The method is applied to Open
Circuit Voltage (OCV) curves for aged battery cells. From
laboratory experimental data it is demonstrated that the
proposed method can significantly reduce the average
deviation from an aged OCV-curve compared to keeping
the OCV curve from the beginning of the cell’s life, both
for observable and non-observable parameters.

Battery cells

When a battery cell is charging, ions leave the positive
electrode and enters the negative electrode in a process
called intercalation. At discharge this process is reversed.
The energy of a battery cell depends on the difference
between the energy states of the lithium intercalated in
the positive and in the negative electrode, which give rise
to a potential difference. When the cell is at rest, this
potential difference is often referred to as the open circuit
voltage (OCV).

The remaining capacity of the cell, Q(t), is the energy
that can be drawn from the cell until it is fully discharged
and the nominal capacity, Qnom, is the energy that can be
drawn from the cell starting with the cell fully charged
and ending with the cell fully discharged. Using these
definitions the State of Charge (SoC), can be defined as the
ratio of the remaining capacity and the nominal capacity
of the cell, i.e.,

zSoC(t) =
Q(t)

Qnom
. (1)

The OCV can be measured directly over the terminals of
the cell when the cell is at rest. By doing this for different
values of SoC, a nonlinear mapping between OCV and SoC
is obtained. This mapping is fundamental in equivalent
circuit models of battery cells and is usually referred to as
the OCV-curve.
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Fig. 1. (a) Measured OCV-curves from 20 different cells
at their beginning of life. (b) Deviation between the
measured OCV-curves and the OCV-curves at their
beginning of life. Green curves corresponds to zSoH ∈
[90% 100%), orange curves to zSoH ∈ [80% 90%)
and red curves to zSoH ∈ [70% 80%). Linear inter-
polation is used between the measurement points.

Ageing of battery cells is commonly quantified by the so-
called State of Health (SoH), which is usually defined as a
measure of the capacity fade as the usable capacity of the
battery, Qnom, decreases with time, i.e.,

zSoH(t) =
Qnom(t)

Qnom,BoL
, (2)

where Qnom,BoL is the capacity of the cell at its beginning
of life (BoL). As a consequence of ageing the cells’ OCV-
curves change with time. In Figure 1a OCV-curves mea-
sured at BoL of 20 different cells are shown. All the cells
should nominally be identical, implying that the OCV-
curves are close to identical at BoL. Figure 1b presents
the deviations of the measured OCV-curves from their
corresponding curves at BoL, each for 10 levels of SoH
ranging from 100% down to 70%.

To capture these individual variations we use the following
model of an OCV-curve
ÛOCV (zSoC , zSoH) = UBoL(zSoC) + ∆Uz(zSoC , zSoH),

(3)
where UBoL represents the OCV-curve at the beginning of
the cell’s life, and ∆Uz represents the effects of ageing on
the OCV-curve.

2-D Look-up tables

A look-up table is defined by data values at fixed break-
points. Here we denote the break points by (zSoC,i, zSoH,j),
where 0 ≤ zSoC,1 ≤ · · · ≤ zSoC,n ≤ 1 and 0 ≤ zSoH,1 ≤
· · · ≤ zSoH,m ≤ 1, and consequently n and m defines the
size of the table. To keep track of what part of the table
that is active we define the time varying indices



i(k) = max{li = 1, ..., n|zSoC,li < zSoC(k)} (4a)

j(k) = max{lj = 1, ...,m|zSoH,lj < zSoH(k)}, (4b)
where k denotes the time step. All break points have
corresponding data values, ∆Ui,j , which are collected as
entries in a concatenated parameter vector

∆U = [∆U1,∆U2, ...,∆UN ]T

≡ [∆U1,1, ...,∆U1,m,∆U2,1, ...,∆Un,m]T ,
(5)

where N = nm. Between the break-points the output from
the look-up table is described by bilinear interpolation, i.e.

∆Uz =ci,j∆Ui,j + ci+1,j∆Ui+1,j+

+ ci,j+1∆Ui,j+1 + ci+1,j+1∆Ui+1,j+1,
(6)

where

ci,j =
(zSoH,j+1 − zSoH)(zSoC,i+1 − zSoC)

(zSoH,j+1 − zSoH,j)(zSoC,i+1 − zSoC,i)
(7a)

ci+1,j =
(zSoH,j+1 − zSoH)(zSoC,i − zSoC)

(zSoH,j+1 − zSoH,j)(zSoC,i+1 − zSoC,i)
(7b)

ci,j+1 =
(zSoH − zSoH,j)(zSoC,i+1 − zSoC)

(zSoH,j+1 − zSoH,j)(zSoC,i+1 − zSoC,i)
(7c)

ci+1,j+1 =
(zSoH − zSoH,j)(zSoC − zSoC,i)

(zSoH,j+1 − zSoH,j)(zSoC,i+1 − zSoC,i)
.(7d)

By introducing Ck = [c1,1(k), ..., cn,m(k)], where all ele-
ments not declared in (6) are zero, the look-up table output
can be expressed in matrix notation as

∆Uz(k) = Ck∆U(k) + v(k), (8)
where v(k) ∼ N (0, σ2

v,k) naturally is interpreted as mea-
surement noise.

To allow adaption of the unobservable parts (correspond-
ing to the zero entries in Ck) of the look-up table we model
all table entries as a random walk, i.e.,

∆U(k + 1) = ∆U(k) + w(k) (9)
where w(k) ∼ N (0,Σw) and white (Fridholm et al., 2016).
The covariance should then be set to the symmetric matrix

Σw =


σ2
1 ρ12σ1σ2 · · · ρ1Nσ1σN

ρ21σ2σ1 σ2
2 · · · ρ2Nσ2σN

...
...

. . .
...

ρN1σNσ1 ρN2σNσ2 · · · σ2
N

 , (10)

where σ2
i is the variance for parameter i and ρij is the

correlation coefficient between parameter i and j given by

ρij =
E
[(

∆Ui −E[∆Ui]
)(

∆Uj −E[∆Uj ]
)]

σiσj
. (11)

The parameters can then be estimated by applying a
Kalman filter to (8) and (9).

Simulation study

In this section the potential of the method is demonstrated
with a simulation study based on experimental data. In the
study the OCV-curves visualized in Figure 1 are randomly
divided into two data sets; DI comprising data from 10
cells available in the design phase, and DV comprising
data from 10 cells used for validation. The study aims
at investigating how well the algorithm can adapt ÛOCV

to the OCV-curves in DV . However, before the results are
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Fig. 2. (a) Deviation from the true OCV-curve for one
cell in DV for zSoH = 0.9. Keeping the OCV-curve
at BoL is denoted "∆Uz = 0" (b) Average RMS for
the cells in DV calculated for observable parameters
with zSoH = 0.9. (c) Average RMS for the cells in DV

calculated for non-observable parameters. The initial
guess is denoted "Static ∆Uz" and the output from
the algorithm is denoted "Adapted ∆Uz".

presented some more details about the setup need to be
explained.

This work is not focused on SoH estimation, but it is
assumed that we can obtain unbiased estimates, i.e.,

ẑSoH(k) = zSoH(k) + vSoH(k), (12)
where vSoH(k) ∼ N (0, σ2

SoH). SoC is estimated by sim-
ply integrating the current through the cell. Moreover,
the Kalman filter is initiated by parameter values that
minimizes the mean square error for the curves in DI .

In Figure 2a, the deviations from the true OCV-curve for
one cell in DV are visualised. In the figure it is seen that
the adapted OCV-curve is significantly better than keeping
the OCV-curve measured at BoL. In Figure 2b the average
RMS for all cells in DV is presented for each cycle. In
the figure we can see that the algorithm, after 30 cycles,
manages to reduce the Root Mean Square error (RMS) by
more than 40% compared to the initial guess used in the
EKF. In Figure 2c we see that the average RMS is reduced
with more than 10% even though the RMS is calculated for
a region not yet visited. The RMS for keeping the OCV-
curve from beginning of life is 15 · 10−4 V, more than 3.5
times higher than the RMS for the OCV-curves produced
by the algorithm.
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