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ARTICLE OPEN

Human protein secretory pathway genes are expressed in a
tissue-specific pattern to match processing demands of the
secretome
Amir Feizi 1,2, Francesco Gatto 1, Mathias Uhlen2,3,4 and Jens Nielsen 1,2,3,4

Protein secretory pathway in eukaryal cells is responsible for delivering functional secretory proteins. The dysfunction of this
pathway causes a range of important human diseases from congenital disorders to cancer. Despite the piled-up knowledge on the
molecular biology and biochemistry level, the tissue-specific expression of the secretory pathway genes has not been analyzed on
the transcriptome level. Based on the recent RNA-sequencing studies, the largest fraction of tissue-specific transcriptome encodes
for the secretome (secretory proteins). Here, the question arises that if the expression levels of the secretory pathway genes have a
tissue-specific tuning. In this study, we tackled this question by performing a meta-analysis of the recently published transcriptome
data on human tissues. As a result, we detected 68 as called “extreme genes” which show an unusual expression pattern in specific
gene families of the secretory pathway. We also inspected the potential functional link between detected extreme genes and the
corresponding tissues enriched secretome. As a result, the detected extreme genes showed correlation with the enrichment of the
nature and number of specific post-translational modifications in each tissue’s secretome. Our findings conciliate both the
housekeeping and tissue-specific nature of the protein secretory pathway, which we attribute to a fine-tuned regulation of defined
gene families to support the diversity of secreted proteins and their modifications.

npj Systems Biology and Applications  (2017) 3:22 ; doi:10.1038/s41540-017-0021-4

INTRODUCTION
In eukarya, the protein secretory pathway is an essential, efficient,
and accurate molecular machinery for preparing and exporting
proteins to expose the extracellular environment. This machinery
includes various functional modules which are compartmentalized
along the endoplasmic reticulum (ER) and Golgi apparatus. These
modules are responsible for folding, processing of the post-
translational modifications (PTMs), and trafficking of the proteins
routed to the membrane of extracellular space.1, 2 In human, a
functioning secretory pathway is essential for the body physiol-
ogy. The majority of the hormones, peptidases, receptors/
channels, extracellular matrix components, coagulation factors,
transporters are all clients of this machinery.2 Unsurprisingly,
dysfunction of the secretory pathway is the cause of a variety of
systemic or developmental diseases, like cancer, diabetes,
Parkinson’s disease, and congenital neurodegenerative disor-
ders.3–7 The molecular biology and biochemistry of this pivotal
pathway are well-studied for its core components.8–10 However,
the knowledge how these components are expressed across
tissues is lacking. Although, primary transcription is a key player in
defining which genes has specific expression in certain tissue(s),
yet, until recent advances in sequencing technologies it was not
possible to measure the precise quantity of the RNA expression
level in the genome scale.11 The recent studies based on RNA-
sequencing (RNA-seq) have shown that human tissues exhibit
unique transcriptional signatures that show stability even in

postmortem sampls.12 The Genotype-Tissue Expression Project
(GTEx),13 and the Human Protein Atlas (HPA)5 has been recently
published as two independent and comprehensive RNA-seq data
sources on 30 human tissues. In HPA study, one of the major
conclusion of the paper was that the largest fraction of the tissue
enriched transcriptome codes for the secretory proteins (secre-
tome). The secretory pathway has evolved to process specific
PTMs encoded in secretory protein. Among the PTMs, glycosyla-
tion, sulfation and adding GPI-anchored (glycosylphosphatidyli-
nositol) are the major modifications. Each secretory protein has its
composition regarding the PTMs type and number of the sites.
Therefore, tissue-specific secretome implies in each tissue a
different set of proteins with specific PTMs form enter to the
secretory pathway. This further means, in each tissue, functional
modules which are responsible for the processing of the PTMs
types are faced with the particular load of the sites to processes
which is different from other tissue. Borrowed from manufacturing
world, if there is an input pressure on a particular operating
module in a production pipeline, to release the pressure more
processing units needs to be used in that specific modules. In the
context of the secretory pathway, the response to the tissue-
specific pressure on processing specific PTMs can be a fine tuning
of the components expression in a particular functional module. In
this study, we performed a meta-analysis approach utilizing the
transcriptome data to detect such adjustment (Fig .1a). Also, we
also examined whether the genes coding secretory pathway
components indicate a change in their expression level in
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connection with the explained processing pressure. The results of
this study advance the fundamental understanding of the tissue-
specific function of the secretion pathway in human tissues. The
findings can also possibly aid surpassing a long time standing
challenges in biopharmaceutical protein production, since the
current bottleneck in the production of human proteins is the
functional difference between the host (e.g., CHO cells) and parent
secretion system.14, 15

RESULTS
Overall assessment of the expression level of secretory pathway
genes in different tissues
Secretory pathway processes proteins in a stepwise manner. These
steps include several functional modules such as translocation,
folding and glycosylation. Each module involves a set of
cooperative proteins, in most cases, encoded by the genes which
belong to the same gene family. We previously have defined 169
components (proteins) of the secretory pathway in yeast, and we
mapped them into the subsystems representing distinct func-
tional modules16. Using a similar approach, we allocated our
defined 575 core components of the human general secretory
pathway into 13 subsystems (Fig. 1b, Table EV1). As earlier
mentioned, the major focus of this study was to dissect the extent
to which the expression levels of genes encoding the components
of the secretory pathway are tuned over different tissues.

Therefore, using available transcriptome data, we investigated
the tissue-wise variations in the mRNA levels of these 575 genes.
We used GTEx13 and HPA5 as the two independent and
comprehensive RNA-seq datasets on 30 intersected human
tissues. Both datasets have provided an unprecedented resolution
on RNA levels in the tissues, and the correlation between their
measurements has shown to be significant.12 We chose to analyze
the GTEx data as the primary dataset because he it benefits from a
careful experimental design with more tissues samples. The
expression levels are normalized for different confounding
parameters and variation sources such as individual, sex, and
age. Although in the paper the authors have reported some
variation depending on the individual, sex or age, however, we did
not found for any of our analyzed gene lists from secretory
pathway significant dependency on the individual, sex or age
expression variation (Fig. S3). We used HPA data as a control.
Before analyzing the variations, we performed a descriptive

analysis of the expression levels of the genes both in the secretory
pathway and secretome based on the HPA gene expression
categories. Therefore, we assigned the genes to the groups such
as expressed in all, tissue-elevated and tissue-enriched.5, 12 Of all
575 secretory pathway components, ~75% (n = 435) belonged to
the expressed in all category, while ~25% (n = 140) were in tissue-
specific categories (such as tissue-elevated and tissue-enriched) (see
the methods for the definitions, Table EV1). The distributions of
the 435 genes expression (expressed in all) are similar in different

Fig. 1 a The workflow of the analysis steps. As it has shown, we have reconstructed the secretory pathway network including different
subsystem. In parallel, we have defined human secretome integrating the post-translational modifications (PTMs) information obtained from
UniProt. Two independent transcriptome data including HPA and GTEx data sets were used for the meta-analysis to define the tissue-specific
secretome and secretory pathways. b The properties of the general secretory pathway network. The secretory pathway network has 575 core
components that are accommodated in four main functional modules and 13 subsystems. The complex column represent the number of the
protein complexes in each subsystem. The secretory column shows the number of components that are the clients of the secretory pathway
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tissues (in log10 FPKM) based on both GTEx and HPA data (median
approximately equal to 10 FPKM (Fragments Per Kilobase Million)).
The pancreas, skeletal muscle, heart, and liver slightly lower
median expression (Fig. S1).
On the other hand, 10–20% of the transcriptome in human

tissues (70% in the pancreas and salivary glands) translates into
the secreted or the cell-membrane proteins. It has been shown
that secretome holds the largest fraction of the tissue-specific
proteome(Fig. 2a).5 In human proteome, 3328 proteins were
predicted having an N-terminal signal peptide that dictates their
entrance into the secretory pathway.5 From this group, 1218 are
secreted proteins, and 1607 are cell membrane proteins.5 Contrary
to the secretory pathway components, most of these proteins
were assigned to the tissue-specific categories (e.g., tissue
enriched) (Fig. 2a). This simple descriptive analysis indicates most
of the secretory pathway genes are expressed in all tissues, while
the secretome is tissue specific. Considering this, we contended
that if the secretory pathway genes also follow any tissue-specific
expression adjustment, despite its ubiquitous expression.
Analyzing the expression variations, as a preliminary assess-

ment, we first checked for within-tissue variation of the secretory
pathway genes as a whole machinery. Therefore, we performed a
correlation analysis of the expression profiles of the genes
encoding secretory pathway components across 30 tissues. As a
result, interestingly, tissues were separated into the two groups.
One group includes ~70% of all tissues (n = 23) showing medium
to high correlation scores (ρ = 0.83 to 0.98). On the other hand,
eight tissues including the pancreas, blood, kidney, skeletal
muscle, heart, testis, and brain (cerebellum, and cerebrum) as
the second group, showed low to medium correlation scores with
the tissues in the first group (median coefficient ρ = 0.57 ± 0.17,
permutation test p < 0.05). We repeated the analysis using HPA
data and observed a similar clustering pattern (Fig. S2A). With a
negligible effect of including the secretory pathway genes, the

pancreas and the blood showed low cross-tissue correlation
scores also at the whole transcriptome level. The weak correlation
merits a potential confounding effect due to a deviance from their
expression profile in these tissues (Fig. S2B). But, collectively, these
results strengthen the idea of that opposite to the ubiquitous
expression of the secretory pathway, at least in eight tissue there
is a possible adjustment in the genes expression levels.

Finding tissue-specific fine-tuning in secretory pathway gene
families
Most of the subsystems in secretory pathway are comprised of
several gene families. We showed earlier that eight tissues cluster
away from other tissues because of the variations in the
expression level of their secretory pathway’s genes (Fig. 2b).
Therefore, to trace the differences causing these tissues to cluster
away, we intended to reanalyze the correlations in the gene family
level. Analyzing the variation in the gene family and subsystem
level helped us to interpret the results in proper biological
context. We identified 30 gene families with the size range
between 4–44 gene members. These gene families are spread
over different subsystems (summed up to 348 genes, see EV2 for
detail). For example, post-Golgi trafficking (the largest subsystem)
includes nine gene families including RAB family as the largest
family (n = 72). RAB family genes encode for several different
GTPase (diverged from the same ancestral origin17, 18) which are
involved in vesicles trafficking from the ER to the Golgi and further
down into the extracellular space. Reminding that most of the
secretory pathway genes were assigned to the category expressed
in all category (86%), the greatest fraction of all subsystems and
corresponding gene families also assigned to this category (Fig.
S4A, EV2). For instance, genes families in translocation subsystem
all have their genes in expressed in all category. Interestingly,
among 12 genes that have tissue-enriched, 11 genes are testis-

Fig. 2 Expression of the secretory pathway and its clients across human tissues. a The frequency of the different expression categories of
human secreted or membrane protein-encoding genes based on GTEx and localization information. Only protein with N-terminal signal
peptide is included. Proteins were grouped according to localization. From this set, 503 proteins are localized in the lumen or the membrane
of the ER and Golgi which encompass a large part of the secretory pathway components. b Shows the hierarchical clustering of cross-tissue
correlation coefficients for the expression of secretory pathway genes in the “tissue-elevated” and “expressed in all” category (see the
Methods for definition). The heatmap of the clustering for 30 human tissue pairwise correlation (Pearson correlations) is based on the
expression profiles of 575 secretory pathway genes. The color code for correlation is depicted next to the heatmap
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specific proteins, and one gene (CRYAA) is a kidney-specific
chaperone. The testis-specific genes spread to over ERAD
(Endoplasmic-reticulum-associated protein degradation) (5 genes),
protein folding (2 genes), Golgi glycosylation (2 genes) and
trafficking regulation (2 genes) (Fig. S4B). For testis, as one the
eight outlier tissues, these genes represent a specific expression
for the secretory pathway. However, for the other seven tissues,
there were no genes assigned to the tissue-enriched category Fig.
S4B. We designed a 1110 pair-wise correlation analysis using the
expression levels of each gene family expression profile across
tissues. As a result, we observed each gene family showing specific
correlations pattern across tissues.
To give an example, we take the expression levels of the five

gene families in the pancreas, as one of the least correlated tissues
(median ρ = 0.49 ± 0.11, Fig. 3). As you can see in Fig. 3, each of
these gene families has their correlation pattern. For instance, the
correlation scores for the SRP (signal receptor protein) and DNAJ
(chaperone) gene families (involved in translocation and protein
folding in ER) are low between the pancreas and most other
tissues. On the other hand, the pair-wise correlations scores in
most cases are high for the RAB or the SEC gene families (involved
in membrane coat formation). It is remarkable to note that while
the expression profile of secretory pathway in the pancreas as a
whole machinery does do not correlate with most tissues (Fig. 2b),
in gene family level, some gene families show a high correlation
with most tissues. This evidently highlights the tuning of the
expression profiles of the secretory pathway at gene family level
rather than machinery as the whole. Among all correlation scores,
ARF gene family (11 genes) shows high scores for most tissue-
pairs. ARF (ADP-ribosylation factor) genes belong to the trafficking
regulation subsystem and are involved in vesicle budding and
uncoating within the Golgi apparatus19 (Fig. S5A). Conversely, the
TBC (TBC1 domain family) gene family (19 genes) in more than
50% of the tissue pairs show low correlation (R < 0.6) (Fig. S5A and
SB). TBC family genes are GTPase-activating proteins and are
involved in the regulation of the vesicle trafficking.20 These results
indicate in some of the particular gene families; the expression
levels are modulated in a tissue-specific way.

Identification of tissue-specific “extreme” genes
We showed that tissue-specific modulation in the expression
levels of individual gene families could lead to the pair-wise low
correlation scores for secretory pathway’s expression profile. In
continue, we sought to identify the most extreme expression
variations in gene families with low correlation scores. Therefore,
for each gene family, we ran the Grubbs test21 to detect the outlier
gene expressions, assuming that the total expression level of a

gene family can vary among tissues (see Methods). We call the
detected outlier genes as “extreme” genes, and we created a
network of these identified genes connected to their correspond-
ing particular tissue (Fig. 4a). This network visualizes which
extreme genes from which gene families is specific or shared
between any tissues (Fig. 4b). The detected extreme genes
contribute the most to the low correlation scores calculated for
each gene families across tissues (Fig. S5A). The tissues earlier
were shown to cluster apart (Fig. 2b) have the largest set of
detected extreme genes. These extreme genes are in the gene
families which code the components for the subsystems like
trafficking regulation, ERAD, protein folding and post-Golgi
trafficking. Among the tissues, the Skeletal muscle has the largest
number of the extreme genes (Fig. 4b). Noteworthy, for cross-
validation, the genes with tissue-enriched category (from HPA) are
also among the detected extreme genes. But, most of the extreme
genes are marked as expressed in all category, therefore we
instead suggest tissue-specific tuning for them.
As a separate validation, we compared our results with GTEx

preferential expression analysis results. In the GTEx study, the
authors performed a pair-wise differential gene expression analysis
among tissue.13 The genes q > 0.99 (FDR = 0.01) and log2 fold
change ≥4 in exclusive tissues were reported by them as tissue-
preferential genes.13 Extracting preferential genes encoding secre-
tory pathway components, in trustingly, we observed a large
overlap with our detected extreme genes (Fig. S7). Meanwhile, we
also checked for the tissue-enriched genes of the secretome to see
if they are also reported as preferential genes. As a result, we found
most of them are reported as preferential genes in GTEx study with
top fold changes (Fig. S7). Some of these genes such as Leptin
(LEP), insulin (INL), or prolactin (PRL) encode well-known secretory
proteins, and their secretion has been studied for many years. This
comparison made us confident on our method of detecting
extreme genes that are assigned in expressed in all category.
Here we discuss some of the detected extreme genes in the

three tissues with lowest correlation scores including the
pancreas, skeletal muscle, and cerebrum (Fig. 4c). In the skeletal
muscle and the pancreas, extreme genes that were uniquely
associated with either of the two tissues, OPTN for skeletal muscle
or SEL1L (involved in ERAD) for pancreas, showed an evident
higher expression level (>10-fold change) comparing to the other
tissues. It has been shown that OPTN plays a major role in the
maintenance of the Golgi complex, in membrane trafficking and
exocytosis, and it interacts with myosin VI and Rab8.22, 23

Surprisingly, RAB12, another extreme gene in the skeletal muscle,
is shown to interact with OPTN.24 These findings suggest that even
if secretory pathway genes were expressed rather ubiquitously in
all tissues, specific tissues could spike the expression of specific
genes in defined subsystems in a tissue-specific fashion. Remind-
ing from our manufacturing example, now we could identify the
units (extreme genes) that seem to be fine-tuned in a particular
tissue. As next step, we, therefore, explored if these genes ultimate
expression is correlated with enrichment of specific PTMs and
functions in the secreted or membrane proteins specific in
corresponding tissues.

Tissue-specific enrichment in secreted and membrane proteins
PTMs associated with expression tuning of the secretory pathway
genes
To estimate the PTMs enrichment in each tissue, first, we had to
define the tissue-specific secretome and membrane proteins.
Therefore, we assembled a comprehensive list of 4098 genes
encoding conventional (with signal peptide) (n = 3328) and
unconventional (without signal peptide) (n = 680) secreted or
membrane proteins (shown in Fig. 2a). Then, we extracted the
GTEx expression profiles of these genes and performed hierarch-
ical clustering of the tissues based on their expression correlation

P
ea

rs
on

 c
or

re
la

tio
n

co
ef

fic
ie

nt

SEC (n=19) DNAJ (n=14)

Fig. 3 The correlations of the expression profiles from the selected
gene families between the pancreas and other tissues. The Pearson
correlation scores are shown as X-axis and tissues are located in
y-axis. Each dot represents a correlation score of a specific gene
family’s expression between the pancreas and another tissue. Each
example gene family are depicted in different color. The color code
for the gene families is located on the right side of the plot
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matrix (Pearson correlation). We limited this analyses to the genes
in tissue-specific categories based HPA (2047 genes). The heat
map of the clustering results reveals the tissue-specific expression
patterns of the secreted and membrane proteins (Fig. 5). The
tissues such as pancreas, testis, brain, skeletal muscle or kidney
that were clustered in the separate clade with low correlation
scores (shown in Fig. 2b) also show clear and specific expression in

their secretome and membrane genes (Fig. 5). Instead, rest of the
tissues that clustered together in Fig. 2b with high correlation
scores (e.g. colon, ovary, breast, or bladder) share a sizeable
number of highly expressed secreted and membrane proteins.
Also, the number of secreted or membrane proteins unique to
each tissue has a broad dynamic range, which reflects the
complexity of the secretory requirements differs in each tissue.

Fig. 4 Detecting the tissue-specific extreme genes of secretory pathway genes families. a A simple workflow of the detection strategy of the
extreme genes is shown. b shows the frequency of the extreme genes per subsystem and per tissue. c The represented network is the
reconstructed tissue-extreme gene network. Extreme genes, whether as individual genes (blue diamonds) or as part of a gene family (pale
orange circles), were grouped in the associated subsystem, and linked to each tissue (gray box) were they were detected as extreme. The detail
expression level for three tissue (skeletal muscle, pancreas, and brain cerebrum) are plotted in the inboxes for their first neighbored detected
extreme genes. All other colors not defined in the box refer to other tissue types
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Next, to integrate the PTMs information, we obtained informa-
tion from UniProt on the number of sites for N-glycosylation (NG),
the disulfide bond (DS), O-glycosylation (OG), GPI-anchored (GP)
for all of the defined tissue-specific secreted and membrane
proteins. Then, we integrated this information with the clustering
result (Fig. 5). In general, most of the tissue-specific secreted and
membrane proteins are enriched with N-linked glycosylation and
disulfide sites. Specifically, pancreas and pituitary secretome
displayed a lower enrichment in N-linked glycosylation sites and
highly enrichment in disulfide sites (Fig. 5). O-linked and GPI-
anchored sites are enriched rather in specific tissues. For example,
the liver secretome is enriched in O-linked sites, whereas brain
sub-regions are enriched with GPI-anchored membrane proteins
(Fig. 5).
Of the PTMs, we chose to explore the correlation between the

disulfide sites load and the expression levels of the disulfide
isomerase as processing components in each tissue. This is
because of complexity of disulfide bond processing in less than
other PTMs in secretory pathway regarding a number of the
involved gene family and processing reactions. Therefore, to
estimate the disulfide sites load on the secretory pathway in each
tissue, we defined an enrichment estimator using the expression
levels of proteins harboring disulfide sites as a proxy (see
Methods). In brief, the estimator is a product function of the
expression levels of secreted or membrane proteins and their
corresponding number of the disulfide sites. We hypnotized
higher estimator values to underscore a higher pressure on
disulfide isomerases. Thus, higher values should correlate with the
expression of the gene encoding the disulfide isomerase.
Consistent with this hypothesis, we observed that the expression
level of the PDI gene family, responsible for disulfide isomerase
activity, linearly correlated with the disulfide enrichment estimator
in each tissue (Fig. 6a). Strikingly, the expression level of ERO1LB

gene, previously detected as a pancreas-specific extreme gene
(Fig. 4c) was strongly correlated (p-value < 0.001) with calculated
disulfide enrichment estimator in the pancreas (Fig. 6a). ERO1LB,
an oxidoreductase involved in disulfide bond formation in the ER,
is known to efficiently reoxidizes P4HB. P4HB is an enzyme which
catalyzes the protein disulfide formation. Oxidation of P4HB by
ERO1LB allow P4HB to sustain additional rounds of disulfide
formation.25 We therefore also observed a correlation between the
expression of P4HB in liver (a shared extreme gene by the liver and
pancreas, Fig. 4c) and PDIA4 (a shared extreme gene by the liver
and thyroid, Fig. 4c) to the estimator values and found a positive
correlation (p-value < 0.001 for P4HB and p-value < 0.01 for PDIA4)
(Fig. 6a). These observations are clear evidence which suggests the
tissue-specific fine-tuning of the PDI family expression level in
response to the enrichment of the disulfide sites. As an
experimental validation, we found a recent report in the literature
that the expression level ERO1LB is precisely regulated in the
pancreas.26

DISCUSSION
As we mentioned in the introduction, Uhlen et al. (2015)5 has
recently shown that secretome is the largest fraction of the tissue-
specific proteome. However, among the genes coding of the
secretory pathway components which process and deliver the
secretome proteins, only a small fraction (13%) found to be
selectively expressed in certain tissues (mostly in testis). We
reasoned that expression of secretome in tissue-specific way could
put different PTMs processing pressure on secretory pathway
subsystems which are responsible for processing the correspond-
ing PTMs types. Searching for the footprints of this pressure, we
detected expression spikes in individual members of gene family
members in particular tissues. Detecting this kind of expression

Fig. 5 Hierarchical clustering of human tissue-specific secretome and membrane proteome expression and their PTMs. Each row represents a
tissue and each column a tissue-specific secreted or membrane protein-encoding gene. Z-scores are scaled FPKM values for the expression of
a given gene in a given tissue vs. other tissues. The annotation bars above the heatmap provide information regarding the expression
category, number of disulfides, N-linked or O-linked glycosylation sites, GPI-anchored sites, and localization. The number of the sites are
discretized to separate low, medium, and high number of PTM sites
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modulation in most gene-centric expression analysis such as
differential expression analysis in difficult, while considering all
members of a gene family expression gives us insight in the
expression adjustment across various tissues. Gene expression is a
dominant form of biological regulation that contributes to
conferring tissue-specific functionality to diverse cell processes.
It has previously shown by Kaessmann lab that purifying selection
plays a key role in shaping the evolution of gene expression levels
in mammalian organs27. Therefore, the tuning of the gene
expression in each tissue evolutionary is independent of other
tissues. The physiological and phenotypic demands have been the
primary driving selection pressure on tissues. Secretory pathway
has many gene families, and this indicates its function and
complexity has been evolved through many gene duplications
and neofunctionalization. So, it is not irrational for the cells to
overexpress a specific member of a gene family to release the
pressure caused by high processing load in a specific tissue. We
could show this clearly in the case of the PDI gene family (Fig. 6a).
Our result suggests that the expression levels in PDI gene family
are tuned in respect to the processing load of disulfide sites
(inside ER) in each tissue.
However, we do not assume this as the only source for the

tissue-specific function of the secretory pathway, and signaling

pathways, regulatory loops, and biological interactions are still
important players.28, 29 On the other hand, drawing this
conclusion is not trivial for other PTMs, because a large fraction
of UniProt information on PTMs is based on the computational
prediction; therefore, it includes a certain degree of false positives.
Despite the recent advances, databases to serve tissue-specific
information on N-linked or O-linked glycosylation are lacking. Also,
it has been shown that even for a protein with experimentally
detected glycosylation sites the glycoforms can be very hetero-
genic. Therefore, it is not easy to correlate the number of detected
size with the processing load.30–32 The gene family size is another
problem, for example despite PDI gene family, other genes
families in secretory pathway are large, and therefore, it is more
complex to link the detected extreme genes with specific
processing load. For example, RAB gene family which is one of
the human largest gene family has been studied comprehensively
from the evolutionary and molecular point of view. However, due
to their complex interaction network and complex function, more
analysis and experiment design are needed to validate and
understand why some members of this family have extreme
expression level in an individual tissue. Although the experimental
validation of our results remained to be explored, we found one
external validation for TMED2, shared extremely gene between the

Fig. 6 The link between the PDI gene family expression level and tissue-wise disulfide site enrichment. a The expression level (FPKM) of three
detected extreme genes of PDI family (ERO1LB, P4HB, and PDIA4) are plotted against the calculated disulfide enrichment estimator. The linear
regression lines are shown in blue with 95% of confidence interval. b ERO1LB and P4HB as detected extreme genes for PDI family in the
pancreas are shown as eclipse, and their color is mapped to their FPKM values in the pancreas. The pancreas-specific extreme genes shown in
rectangular boxes belongs to the gene families allocated to the translocation subsystem (SSR4 and RRBP1) and ERAD (SEL1L)
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liver and the pancreas (Fig. 4c). In a recent study, TMED2 is shown
to be a pancreas-specific protein,33 and it plays a critical role in
cargo detection from ER (COPII vesicle) and the regulation of
exocytic trafficking from the Golgi to the plasma membrane.34–36

All in all, these results shed light on important fundamental cross-
tissue differences in the expression levels of the genes coding the
secretory pathway’s component. A key question which remains to
be explored is whether tissue-specific fine-tuning is the result of
tissue specialization through evolution or the presence of
regulatory programs specific to each tissue to fine-tune the
control of its secretory pathway. This knowledge will empower us
to boost our understanding of important diseases linked to the
secretory pathway function in human and, on the other hand, to
design better heterologous proteins expression host for biotech-
nological production.

METHODS
Data collection
Transcriptome. We obtained the FPKM values for the human tissues from
the analysis that has been performed by Uhlén et al. between12 on
comparing the recently published RNA-Seq data generated by the
Genotype-Tissue Expression (GTEx) consortium13, 37 and HPA consortium.5

In these datasets cutoff of 1 FPKM is used to indicate the presence or
absence of transcripts for each gene in a tissue. We also used the
categories defined in their paper. All human protein-coding genes were
classified into one of six categories based on the FPKM levels in 32 tissues:
(1) “Not detected”: FPKM < 1 in all tissues; (2) “Tissue enriched”—at least a
5-fold higher FPKM level in one tissue compared to all other tissues; (3)
“Group enriched”—5-fold higher average FPKM value in a group of 2–7
tissues compared to all other tissues; (4) “Expressed in all tissues”—
detected in all 32 tissues with FPKM >1; (5) “Tissue enhanced”—at least a
5-fold higher FPKM level in one tissue compared to the average value of all
32 tissues; (6) “Mixed”—the remaining genes detected in 1–31 tissues with
FPKM >1 and in none of the above categories. We used the GTEx data sets
as the main expression datasets in our analysis, which its measurements
are for 20344 genes across 32 human tissues. The GTEx data is based on
measurements for 1641 samples from 175 individuals representing 43 sites:
29 solid organ tissues, 11 brain sub-regions, whole blood, and two cell
lines: Epstein–Barr virus–transformed lymphocytes (LCL) and cultured
fibroblasts from the skin.13 The data from HPA5 were used in parallel to
analyze the consistency. Interactome data: For protein–protein interaction
data, we used the CCSB database for humans generated by Rolland et al.
(2014),38 which includes ∼14000 high-quality binary protein–protein
interactions. Protein complexes: Protein complex information retrieved
from a census of human soluble protein complex data generated by
Havugimana et al. (2012),39 which is a network of 13993 high-confidence
physical interactions among 3006 stably associated soluble human
proteins.

Data processing, correlation analysis and visualization
We used recurrently “plyr,” “tidyr,” and “dplyr” R (https://www.r-project.org/)
packages for all data processing steps and correlations analysis. The
“pheatmap” and “ggplot2” packages used for visualization of the clustering
results and plotting.

Detection of the extreme genes
To detect the extreme genes in each gene family we used the Grubbs
test21 using “outliers” package in R and GTEx as genes expression level
source. The core formula of the calculated G-statistic for Grubbs test for
each gene families is:

G ¼ max X� X
�
�

�
�

s
(1)

Where with X and s denotes the sample mean and standard deviation,
respectively. The Grubbs’ test statistic is the largest absolute deviation
from the sample mean in units of the sample standard deviation.40

The outliers (extreme genes) are collected for all the gene families across
tissues by filtering them based on an inbuilt two-sided test with calculated
p-values <0.05. The Grubbs test assumes the input data has a normal
distribution; however, the gene expression in the gene families violate this

assumption. To avoid the false positives in the detection, we repeated the
run by using HPA as independent expression resource. The output
converted to a binary matrix of tissues-extreme genes and visualized as a
network in Cytoscape.41

Defining human secretory pathway
To collect the core components of the human secretory pathway, using the
biomart package in R, first, we obtained the orthologs of 163 components
of our previously reconstructed secretory pathway model in yeast.16 Also,
the additional components were added up to 575, based on collecting
relevant components from a comprehensive literature survey and KEGG
secretion-related pathways including protein processing in the endoplasmic
reticulum (ko04141) and SNARE interactions in vesicular transport (ko04130)
(EV1). We defined 13 subsystems (Fig. 1a) based on the overlapping
functions of the components adopting from our previously work on yeast
secretory pathway genome-scale model.16 The Genes in each subsystem
further classified into 30 gene families based on their nomenclature. The
gene families consist of 347 genes and serve the core functional core of
each subsystem. The rest of the secretory pathway genes are spread in
different subsystem as functional units along with gene families (EV3, EV1).

Defining the human secretome
We parsed the human UniProt GFF file and extracted the selected seven
secretory features for the human proteome, including the following: Signal
Peptide, N-glycosylation sites, O-glycosylation sites, Disulfide bond, GPI-
anchored, Transmembrane domain, Localization. The obtained PTMs
information was used to build a protein-specific information matrix. Each
column of the matrix represents a specific PTMs type and each row
belongs to a specific secretory protein. To define the tissue-specific
enrichment of the different PTMs types, we integrated the constructed
PTMs information matrix with the correlation analysis of the expression
profiles from the genes encoding the secretome and membrane proteins.
Among analyzed proteins as secretory proteins, 1242 proteins were
without predicted signal peptide which 680 of them predicted to be
secreted by unconventional secretion (secretome P NN-score >0.6).
(Bendtsen et al. 2004 and Nickel & Seedorf, 2008) (EV2). We excluded
these proteins from the analysis. For the clustering and visualization of the
heatmaps corresponding to the secretome expression data (Fig. 6), we
used the ComplexHeatmap packages.42

Disulfide enrichment score
To be able to compare tissues for the enrichment of the disulfide sites in
their secretory load we defined a disulfide enrichment estimator DSe for
each tissue to be as:

DSe ¼ log10
Xn

i¼1

fpkmi � dsi

 !

(2)

Where i is the number of the genes that are secreted or membrane
proteins from 1to n, fpkmi is the FPKM expression value of gene i and dsi is
the number of the disulfide sites in corresponding coded protein.

Data availability
The HPA data used in the analysis is available from the original paper
supplementary files (DOI: 10.1126/science.1260419) (ref. 5) and their
download section in their database (http://www.proteinatlas.org/). The
GTEx data used in the analysis is available from the original paper
supplementary files (DOI: 10.1126/science.aaa0355) (ref. 13). The HPA and
GTEx comparison data is available at the published papers supplementary
files (DOI 10.15252/msb.20155865) (ref. 12). All the PTMs data for human
proteome are available at UniProt data base GFF file for human proteins
(http://www.uniprot.org/).43 All the codes for the data analysis and
visualization are available upon request.
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