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SUMMARY 

One important way to improve the energy efficiency of chemical process plants is to improve the 

heat integration within and between industrial processes. This is accomplished by recovering excess 

process heat at high temperatures and using it to replace primary heating at lower temperatures 

through a heat exchanger network. However, as a process becomes more heat integrated, process 

control may become more difficult. Poor control performance can, in turn, easily lead to increased 

costs that outweigh the predicted energy cost savings. It is therefore essential to model and analyze 

the effect of the process changes and address the identified potential control challenges. However, 

the majority of existing methods for controllability assessment of heat exchanger networks only 

consider steady-state properties, and not the dynamic aspects, which in reality can seriously affect 

process control characteristics. With better methods for controllability analysis alternative design 

options could be evaluated and compared more reliably at an earlier design stage. 

This report proposes the basic structure of a step-wise approach for integrating dynamic 

considerations into the design process for heat recovery improvements in process industry, and 

suggests suitable methods and tools to be used for the different steps of the proposed framework. 

As part of this, recent work that has been performed to evaluate and improve the methods used in 

controllability assessment is outlined. Additionally, a number of areas are identified in which 

significant further efforts are required before a complete controllability assessment framework can 

be specified and a toolbox for integrated design and controllability analysis can be developed. 

One central area requiring continued research and development is to define an adequate 

controllability index for use in heat exchanger network design. For example, it is relatively easy to 

argue that some of the commonly applied controllability measures are insufficient since they are 

based on steady-state system interactions only. However, as illustrated in the report, alternative 

measures of system interactions that take dynamics into account suffer from other drawbacks, of 

which one is scaling dependency. Nevertheless, these are interesting for further development of a 

new controllability assessment method, since the issues with scaling can possibly be dealt with 

using an approach evaluated in this project. Another area where further work is needed is to develop 

tools with some level of built-in support for formulation of dynamic models of heat exchanger 

networks. Model simplifications, or other means of handling the large model sizes typically 

resulting from dynamic modelling of heat exchanger networks may also be needed in order to 

overcome difficulties in model simulation and analysis. In addition to the development needs related 

to individual assessment steps, there is an apparent need for appropriate protocols for information 

transfer and conversion of models between different tools. 

This report gives an overview of insights revealed in recent research with respect to the 

controllability of heat exchanger networks. Through this research, the knowledge for continuing 

the effort to define a better controllability index for heat exchanger networks has been improved. 
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1 BACKGROUND 

Industry accounts for approximately one third of the global and about two fifths of the Swedish 

energy end use. Industrial firms are driven by strengthened climate and environmental policy 

goals and global competition to improve the efficiency of their energy use. One important way to 

improve the energy efficiency of chemical process plants is to improve the heat integration within 

and between industrial processes. This is accomplished by recovering excess process heat at high 

temperatures and using it to replace primary heating at lower temperatures in other parts of the 

process. This way, the use of primary energy utilities, such as steam and cooling fans, are reduced. 

The reduced demand for fuel and other utilities implies that heat integration can save money. The 

more energy prices rise, the more cost-effective are the investments in heat integration. In energy-

intensive process industries, the close relationship between energy use and production processes 

also provides incentives to improve energy efficiency, and thereby also production efficiencies. 

Another means of reducing CO2 emissions is to replace fossil raw materials by renewable bio-

based feedstock. To accomplish this, new processes that can be efficiently and safely integrated 

with existing process units are needed. 

However, implementation of heat integration projects can result in complex control problems. 

The purpose of any control system is to move the effect of a disturbance from where it is undesired 

to where it is unimportant. Utility systems, such as steam networks and cooling water circuits, 

provide a straightforward and often inexpensive method of absorbing disturbances. As a process 

becomes more heat-integrated, the utilities available to absorb control disturbances are reduced 

and control becomes more difficult. Poor control performance can easily lead to increased costs 

that outweigh the predicted energy cost savings, see e.g. (Slolely, 2006; 2009; 2010). Heat 

integration projects in different sites pose their own specific challenges. Nevertheless, as the use 

of utilities is reduced, control issues will generally appear. Consequently, it is essential to model 

and analyze the effect of the process changes and address the identified potential control 

challenges.  

In the project “Identification of operability challenges of strategic process integration measures”, 

existing methods for operability analysis of process integrated designs were surveyed and 

critically analyzed. The survey revealed that there are several reasons to increase the use of 

methods for flexibility and controllability analysis when evaluating strategic energy efficiency 

measures, not the least when evaluating the integration of processes based on new technology 

concepts such as different biorefinery processes (Svensson, et al., 2015). The project identified a 

variety of methods for flexibility and controllability analysis of heat exchanger networks, but it 

was also concluded that the majority of these had only been demonstrated for theoretical model 

examples, and only to a very small extent been applied in real industrial case studies. Moreover, 

the methods generally only considered steady-state properties, and not the dynamic aspects, which 

in reality can seriously affect process control characteristics. It is also important to consider that 

retrofit design of existing processes implies further complications compared to design of new 

processes (greenfield design) because the degrees of freedom that can be used for improving 

control performance are drastically reduced due to the limitations set by existing unit processes. 

There are certain characteristics of process integration designs that are likely to affect the 

operability of the process. Process integration is accomplished by recycles, which cause 
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interactions in the process, which can lead to amplification of disturbances. Moreover, heat 

recovery can be increased by allowing smaller temperature differences for heat exchange. This 

will be at the expense of higher capital investment costs, but at high operating costs for energy it 

might be motivated. However, it is likely that controllability becomes negatively affected if the 

temperature difference in a heat exchanger becomes too small. Some process integration designs 

involve splitting of streams, that is, to split a flow in two or several branches, with heat exchange 

in parallel lines. The stream splitting is sometimes a prerequisite for enabling effective utilization 

of the heat in these streams, but since it adds complexity and flexibility to the network, it is often 

assumed to require more of the control system, see e.g. (Kemp, 2006). With higher energy costs, 

the trade-off between operating costs for energy and capital costs for heat exchanger area will be 

steered towards lower temperature differences for heat exchange and more stream splits. It will 

then be motivated to consider operability aspects such as controllability in the choice between 

alternative process integration design solutions. With better methods for controllability analysis 

it would be possible to evaluate and compare the controllability of different design options. 

1.1 ABOUT MOVEDYNE 

This document is a result of work performed in the project MoveDynE. MoveDynE is carried out 

within the strategic innovation programme Process Industrial IT and Automation (PIIA), which 

is a joint initiative by Vinnova, Formas and the Swedish Energy Agency. The project is also 

supported by financing and active participation from Preem. 

The MoveDynE project aims at developing methods for dynamic assessments of heat integration 

design solutions. The methods are intended to be incorporated into tool packages for industrial 

heat recovery analysis and design that can thereby be used for industrial energy analysis 

considering both steady-state and dynamic aspects. A central part of the project is the study of 

controllability performance indicators. The vast majority of currently available methods for 

evaluation of controllability and sensor-actuator pairing for heat exchanger networks are based 

on steady-state descriptions of the processes. It is relatively easy to show that the dynamics can 

make the use of these indicators unreliable and sometimes misleading. Not the least for systems 

with dead times it is important to consider the dynamics, and dead times are unavoidable in 

systems with material and heat transport in flows. 

MoveDynE is founded on a process industry need for combining existing methods for design of 

energy efficient heat recovery systems with new methods for analyzing their controllability and 

designing their control systems. 

1.2 AIM OF THE REPORT 

The aim of this report is to propose the basic structure of a step-wise approach for integrating 

dynamic considerations into the design process for heat recovery improvements in the process 

industry, and to suggest suitable methods and tools to be used for the different steps of the 

proposed framework. The report will also highlight some difficulties in the procedure, and discuss 

further development needs. 
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2 THEORY AND DEFINITIONS 

2.1 THE INTEGRATION OF PROCESS DESIGN AND CONTROL 

A wide yet comprehensive discussion on the challenges involved when considering process 

design and process control is given in the book “The Integration of Process Design and Control” 

(Seferlis & Georgiadis, 2004). The different papers of the book provide literature reviews, 

theoretical definitions, descriptions of methods and frameworks as well as discussions on 

practical considerations together with relevant industrial examples. In the preface, the editors 

express their aim of bringing together the developments in a variety of topics related to the 

integrated design and control. 

Some of the statements from the textbook are central motivating drivers for the MoveDynE 

project, and captures well our views on why control system design and controllability assessment 

should be considered at an early stage of heat integration retrofit design. 

 

  

  

“It is quite obvious that the main research trends will 

be towards a higher degree of integration dictated by 

the need for increased competitiveness in a fast 

changing business environment. 

“Opportunities for further process integration and 

intensification in existing plants will be persistently 

sought. Greater interaction with planning and 

scheduling levels in the company is also expected 

[...].”  

“The integration of process design and control aims 

at identifying design decisions that would potentially 

generate and inherit possible trouble to the dynamic 

performance of the control system. Furthermore, it 

aims at exploiting the synergistic powers of a 

simultaneous approach to ensure the economical and 

smooth operation of the plant despite the influence of 

disturbances and the existence of uncertainty.” 

(Seferlis & Georgiadis, 2004) 

“In general, the success of an 

integrated design is measured 

based on the agreement with its 

ability to be controlled and 

operated safely and profitably. 

Therefore, a systematic procedure 

is required to evaluate the 

controllability issues of the 

integrated designed processes.” 

(Alhammadi & Romagnoli, 2004) 

“[...] controllability and control 

strategy design should not be 

simply an afterthought of the 

process design.” 

(Luyben, 2004) 
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2.2 HEAT INTEGRATION – PINCH ANALYSIS 

Pinch analysis (or pinch technology, pinch methodology) is a collection of methods and tools that 

can be used to analyze and improve the energy efficiency of industrial heat recovery systems. The 

pinch analysis framework provides tools and methods for quantifying the minimum heating and 

cooling demands for a process, for defining optimum temperature levels for external heating and 

cooling utilities, for designing heat exchanger networks, and for guiding thermal integration of 

energy intensive unit operations like distillation columns. There are methods for designing new 

heat exchanger networks (grassroot or greenfield design) as well as for analyzing and improving 

existing networks (retrofit design). 

2.2.1 Fundamental principles 

From the basics of thermodynamics, we know that heat that is removed from a process or stream 

at a high temperature can be used to heat another stream with a heating demand at lower 

temperature. The fundamental principle of pinch analysis is that the process is divided into two 

temperature regions, one with a deficit and one with a surplus of heat. Above a certain temperature 

level, called the pinch temperature, the process has a net demand of heat, while below the pinch 

temperature, the process has a net surplus of heat. Based on this knowledge, the three golden rules 

of pinch analysis can be formulated: 

 

 

 

• Do not transfer heat across the 

pinch 

• Do not cool above the pinch 

• Do not heat below the pinch 

 

 

 

 

 

 

To break one of these rules is termed a pinch violation, which leads to greater than minimum 

energy use. Pinch violations in existing heat exchanger networks can be seen as inefficiencies, by 

which high temperature levels are not utilized optimally for heating of cold process streams (or 

vice versa – low temperatures are not utilized optimally for cooling of hot process streams). 

Consequently, measures that reduce or eliminate pinch violations, will lead to energy savings. 
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In retrofit situations, i.e. when existing processes are analyzed for identification of improvement 

measures, the following steps should be completed: 

• Definition of the system: The aims and constraints strongly influence the way data is 

extracted and also at the same time give guidelines to the stream data extraction. 

• Collection of stream data from, e.g. process computers: Start and target temperatures and 

heating/cooling demands for each heat source and heat sink. 

• Choice of the minimum allowed temperature difference for heat exchange, ΔTmin. 

• Pinch calculations: Minimum process heating and cooling demands, maximum potential 

for heat recovery and pinch temperature. 

• Identification of current use of heating and cooling utility from available process data. 

• Identification of pinch violations in the existing heat exchanger network. 

• Proposals for new designs of the heat exchanger networks to eliminate pinch violations. 

2.2.2 Composite curves 

A common graphical tool in pinch analysis is the composite curves, see Figure 1. The cold 

composite curve is constructed by combining temperature and load characteristics for all heat 

sinks, i.e. for all streams that need to be heated (cold streams). This implies that the cold composite 

curve shows the net heating demand for the process as a function of temperature. The hot 

composite curve is constructed correspondingly. Both composite curves are plotted together in a 

temperature/heat load diagram. The region where the two curves overlap shows the potential for 

heat recovery. The diagram also shows the minimum hot and cold utility demand (QH,min and 

QC,min) for a given ΔTmin. The pinch is the point on the temperature axis where the distance 

between the curves is equal to ΔTmin.  

 

Figure 1. Composite curves, which show the minimum temperature difference approach at 

the pinch, the minimum heating and cooling demands, and the maximum potential for heat 

recovery. 
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A greater value of ΔTmin implies larger temperature differences for heat exchange and 

consequently lower demands for heat transfer area and lower capital costs. On the other hand, the 

potential for heat recovery is reduced (the curves cannot be shifted as close together), which leads 

to higher energy demand and higher operating costs for energy. 

2.2.3 Retrofit of existing heat exchanger networks 

Rebuild or revamp of existing heat exchanger networks is usually referred to as heat exchanger 

network retrofit. Possible retrofit options include addition of heat transfer area, use of heat-

transfer enhancements, installing new exchangers, and/or relocating existing heat exchangers to 

reduce the hot and cold utilities required.  

Methods for energy analysis of existing heat exchanger networks involve the identification and 

evaluation of inefficiencies in the current network, heat-saving modifications to reduce these 

inefficiencies, and the selection of the most promising modifications, i.e., the most profitable ones 

with acceptable operability. Methods for heat exchanger network retrofit can be broadly 

categorized into optimization-based approaches and insight-based approaches. The optimization-

based methods are highly complex, and evaluation of the quality of solution may be difficult in 

practice considering possible trapping in local optimum and inevitable model and parameter 

uncertainties. Therefore, in practice, the insight-based approaches such as pinch analysis are still 

the most widely used for industrial applications – also for retrofit; see (Li & Chang, 2017) for a 

recent example. In pinch analysis, the insights from graphical tools such as composite curves are 

used to calculate energy targets. Heuristics are then applied for network design to achieve these 

targets. 

The main advantages of insight-based methods such as pinch analysis are their simplicity, their 

graphical representation, and the possibility of the design engineer to interact and influence the 

solution process. However, difficulties in data extraction, practical targeting and redesign of the 

network are still encountered using pinch analysis, not the least in retrofit situations. 

In retrofitting, the existing equipment constrains the opportunities for cost-efficient integration. 

Consequently, information about the existing heat exchanger network should be included in the 

analysis. The advanced composite curves (Nordman & Berntsson, 2009) which are based on the 

classical pinch curves, include information about the actual placement of heaters and coolers in 

the existing heat exchanger network. A new insight-based method that has the advantages of pinch 

analysis in terms of user interaction and graphical visualization tools, and also overcomes some 

of the problems with data extraction and representation of the existing network has recently been 

proposed (Bonhivers, et al., 2016). 

Nevertheless, approaches based on pinch analysis are still the most widely used in industry. The 

basic method for heat exchanger network retrofit involves identification and reduction of pinch 

violations. When the potential for energy savings has been determined (current energy demand 

minus theoretical minimum energy demand) and the pinch temperature has been identified, it is 

possible to identify which existing heat exchangers that violate the pinch rules, or in other words, 

where the inefficiencies in the heat exchanger network are. In the next step, proposals for how to 

eliminate the pinch violations are sought, for example, by installing new heat exchangers or by 

enlarging the heat transfer area in existing units. This last step typically requires experience and 

is guided mainly by thermodynamic principles and heuristic rules. 
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2.2.4 Further reading about pinch analysis 

For more information about pinch analysis, we refer to the easily accessible and pedagogic 

material that has been developed by Natural Resources Canada. Their reports describe the basics 

of the methods and provide examples of successful applications in the oil refining industry and 

other sectors. The following link is a good entrance: 

http://www.nrcan.gc.ca/energy/efficiency/industry/processes/systems-optimization/process-

integration/pinch-analysis/5525 

2.3 CONTROLLABILITY OF HEAT EXCHANGER NETWORKS 

2.3.1 Optimal operation and control of heat exchanger networks 

Operation of heat exchanger network has several objectives: to satisfy the target temperatures of 

the streams, to minimize the utility cost, and to achieve a satisfactory dynamic behavior, i.e. stable 

operation and smooth transitions (Glemmestad, 1997). Generally, the most important control 

objective is to keep the target temperatures at their specified setpoints, or within specified 

boundaries. This is required to guarantee proper downstream operation. The most important 

disturbances are typically, variations in flow rates and supply temperatures. 

In the heat exchanger network, a number of inputs that can be manipulated are needed to add 

enough degrees of freedom for regulatory control and optimization. The most common types of 

manipulated inputs are illustrated in Figure 2 and consist of: 

1. Utility Flowrates 

2. Bypass fraction 

3. Split fraction 

4. Process Streams flowrates 

5. Exchanger area (e.g. flooded condenser) 

6. Recycle (e.g. if exchanger fouling is reduced by increased flowrates). 

 

Figure 2. Possible manipulated inputs in heat exchanger networks (Escobar, et al., 2013). 

http://www.nrcan.gc.ca/energy/efficiency/industry/processes/systems-optimization/process-integration/pinch-analysis/5525
http://www.nrcan.gc.ca/energy/efficiency/industry/processes/systems-optimization/process-integration/pinch-analysis/5525
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The first two options are the most generally used for regulatory control. The duty of a utility heat 

exchanger, e.g. a heater or cooler, that is placed as the last heat exchangers on a process stream 

can be manipulated to control the outlet temperature of the stream with a fast and direct effect, 

and with no interaction with other control loops. However, in a well heat-integrated system, not 

all streams have a utility exchanger. Consequently, bypasses are also required in the control 

structure. 

A heat exchanger system is a typical example of a so-called multiple input multiple output 

(MIMO) system, where the same manipulated input (e.g. a bypass valve) may affect multiple 

outputs (e.g. target temperatures) or conversely the same output is affected by multiple inputs. 

Potentially, these interactions may be quite strong, something that is a common issue in industrial 

process systems. The control of multivariable systems requires more complex analysis than 

single-variable systems. However, the concept of a decentralized feedback control system in 

which each input is used to control one output only, is the simplest approach to multivariable 

control design. There are three major advantages to using a decentralized feedback control 

system: flexible operation, simple design, and failure tolerance (Tellez, et al., 2006). 

Decentralized control systems are dominating in the application of heat exchanger networks, and 

here we also assume that the heat exchanger networks will be controlled this way. 

The selection of suitable input-output pairings of bypasses, utility heat exchangers and target 

temperatures is a challenging problem because of its combinatorial nature. The controllability is 

strongly dependent on both the network configuration and control structure selection. 

2.3.2 Controllability index based on interaction measures for input-output pairing 

From the heat exchanger network design perspective, a controllability index is desired for 

comparison of different heat exchanger network designs at an early conceptual design stage. 

Consequently, such a controllability index should be easy to calculate and, ideally, it should be a 

function of the network’s topology primarily and not depend on a particular control strategy or 

set of manipulated variables. 

Measures of controllability (or more specifically output controllability) can describe different 

aspects of the control performance of a process, for example, interaction between control loops 

or disturbance rejection, see e.g. (Mathisen, et al., 1991) (Wolff, et al., 1992). Interaction 

measures are commonly used for input-output pairing, that is, for selecting which manipulated 

variables should be used to control which controlled variable. Good pairings provide a fast and 

direct effect between the manipulated and controlled variable, with no interaction with other 

control loops. The interaction measure consequently also provides one view of the controllability 

of the system. 

The relative gain array (RGA) is a tool that is commonly used both as an interaction measure for 

input-output pairing, and as a basis for controllability assessment of heat exchanger networks. 

The RGA is a matrix in which each value represents one possible pairing of manipulated and 

controlled variables. For an input 𝑢𝑖 and an output 𝑦𝑗, the effect on 𝑦𝑗 of changing 𝑢𝑖, i.e. 𝜕𝑦𝑗/𝜕𝑢𝑖 

is denoted as the gain. For a system with interactions with other control loops, the steady-state 

gain will change depending on whether the other loops are open (i.e., their manipulated variables 

are constant and the control valve openings fixed) or the other loops are closed with perfect 

control (i.e., the controlled variables are constant and the controllers are in automatic mode and 



  PROJECT REPORT 

2018-08-28 9 (32) CIT Industriell Energi AB 

on setpoint). The values of the RGA matrix are calculated as the ratio of the steady-state gain with 

the other loops open, and the steady state gain with the other loops closed, hence, the relative 

gain. This means that a value of one represents a case where closing the other control loops does 

not affect the gain between the particular input and output variables, or in other words, there are 

no interactions between this control loop and the others and the pairing should be preferred. 

Values of the relative gain that are far from one means there are large interactions in the system. 

Especially, pairings for which the relative gain becomes negative should be avoided.  

The condition number, which is calculated from the RGA has been used as a measure of 

controllability of heat exchanger networks. However, the condition number, like any interaction 

measure, by definition, depends on the available manipulated inputs, that is, it depends essentially 

on the choice of which heat exchangers should be equipped with by-pass valves, and which of 

these should be used for regulatory control. The condition number is therefore not a measure of 

the controllability of the heat exchanger network itself, but rather of the heat exchanger network 

and a given set of control equipment (the latter essentially referring to the by-pass valves since 

utility heaters and coolers and stream splits are given by the network design). From a conceptual 

design point of view, each new heat exchanger network should be designed using the best set of 

manipulated variables. Hence, a controllability index for a heat exchanger network can be defined 

as the best value of the chosen controllability measure obtained for all possible combinations of 

manipulated variables. (Westphalen, et al., 2003). 

Another important issue in the controllability analysis of heat exchanger networks is the 

identification of subnetworks. A subnetwork is defined as an independent set of streams that are 

heat-integrated. Because the heat exchangers of one particular subnetwork can never be selected 

to pair with an outlet temperature of a stream located in a different subnetwork, interactions 

should be evaluated for each subnetwork separately. If, in a given network, all but one subnetwork 

show good controllability, the subnetwork with poor controllability impacts the control 

performance of the whole heat exchanger network, and therefore, the controllability index of the 

whole network should relate to the worst value of the controllability indices obtained for all 

subnetworks. (Westphalen, et al., 2003). 

For heat exchanger network controllability analysis, measures based on the RGA, or 

modifications of it, have been the most common. However, the RGA has several shortcomings, 

and other interaction measures have been proposed that overcome some of the problems with 

RGA. There are, consequently, reasons to consider using other interaction measures as a basis for 

controllability assessment of heat exchanger networks. 

2.3.3 Interaction measures 

While the RGA is relatively simple to use, it relies on steady-state properties and can therefore 

be inappropriate for evaluating dynamic systems, for example, related to delays due to long piping 

distances. Relatively recently a new group of input-output pairing methods that accounts for 

system dynamics have been introduced, namely the gramian based methods. This group includes 

the Σ2  method (Birk & Medvedev, 2003), the participation matrix (PM) (Conley & Salgado, 2000) 

and the Hankel interaction index array (HIIA) (Wittenmark & Salgado, 2002). The result from 

applying one of these methods is an interaction matrix with numbers representing how much each 

input affects each output.  
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However, the gramian based methods differ from the RGA and its variants in that they suffer from 

issues of scaling. In other words, the results of the methods vary depending on how inputs and 

outputs are scaled. Generally, all inputs and outputs are scaled to have equal range. In this project, 

however, it has been shown that this can lead to incorrect pairing (see Example 2 in Section 3). 

Instead, alternative scaling methods utilizing the row and/or column sums of the original 

interaction matrices have been applied and tested in a statistical assessment. In this project it has 

been demonstrated that especially the so-called Sinkhorn-Knopp scaling algorithm ranked higher 

compared to other methods (Bengtsson, et al., 2018). 
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3 EXAMPLES 

In this section, two examples are presented that illustrate some of the shortcomings of commonly 

applied methods for heat integration and controllability assessment for heat exchanger networks.  

In the first example, some difficulties associated with using the pinch representation of the heat 

exchanger network as a starting point for the dynamic analysis are illustrated. 

The second example demonstrates a case when the recommended pairing of controlled and 

manipulated variables (more specifically the pairing of bypass valves and target temperatures) in 

a heat exchanger network differs depending on which interaction measure, and which input-

output scaling the analysis is based on. It also discusses why, as a consequence, it is problematic 

to base a controllability measure on just one such interaction measure without knowing whether 

this is the most appropriate one for the application. 

Example 1 

Challenges of using pinch analysis models for controllability assessment 

The example is taken from the Preem case study (see e.g. (Åsblad, et al., 2014)). One of the 

process units studied was the ICR (isocracker). The pinch analysis was carried out using Aspen 

Energy Analyzer, which provides a first check of what is referred to as ‘controllability status’ 

of the network design. This controllability status is simply based on a degrees of freedom 

(DOF) analysis of the system, but already here, the analysis fails. 

For the ICR, the pinch network representation of the existing network results in a 

controllability status: “The network cannot be controlled”. A closer look on the degrees of 

freedom analysis reveals that one of the sub-networks of the process consists of 1 unit (heat 

exchanger), 2 streams, 0 loops and hence -1 degree of freedom. Considering that the model is 

supposed to represent a real heat exchanger network, which is known to operate without any 

controllability problems, we can assume that there are problems with the representation of the 

real system. 

Two of the subsystems from the ICR are shown in their pinch representations in Figure E1-1. 

Two streams are heat exchanged in a so-called “perfect match”. Obviously, we cannot control 

the target temperatures of both the hot and the cold streams involved in the heat exchange. 

 

Figure E1-1. Pinch representation of two small subsystems of the ICR heat exchanger 

network. 
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A closer look at the process around these subsystems reveals that the hot stream is the overhead 

from a flash separation vessel (see Figure E1-2). This stream is first mixed with water, before 

it is further cooled by air coolers in which the target temperature can be controlled.  In pinch 

analysis, heat capacity flow rates are assumed to be constant. Changing heat capacity flow 

rates need to be handled through linearization. Because the flow of the hot stream in this 

example is changed due to the mixing with water, it had to be represented as two separate 

streams in the pinch analysis. However, there is no need for target temperature control of the 

first stream. 

The cold stream is compressed recycle gas. Also this stream will be mixed with another stream 

(make-up H2-gas), before it is further heated in a series of heat exchangers and finally a 

furnace. Consequently, there is no need to control the target temperature of this stream out 

from the heat exchanger either. 

The example shows the necessity of having a more extended representation of the process 

when analyzing controllability than what is suitable for the pinch analysis. Looking only at the 

pinch representation of the heat exchanger network will imply that important information for 

the controllability assessment is lost. By going back to a more complete process model, it is 

possible to see, for example, whether several pinch streams are directly connected, and it is 

possible to see which temperatures that need to be controlled. 

 

 

 

 

Figure E1-2. Process flowsheet diagram showing the pinch streams from Figure E1-1. 

and their connections to the surrounding process. 
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Example 2 

Differences in input-output pairing using different interaction measures 

This example illustrates a case where the RGA suggests a different recommended paring of 

controlled and manipulated variables in a heat exchanger network compared to the results 

obtained using other interaction measures (IMs) (see Section 2.3.3 for more background on 

IMs). Since the choice of IM may affect the recommended input-output pairing it becomes 

problematic to base a controllability measure on one such IM without knowing if it yields the 

best control configuration. So for example, it may be problematic to use the commonly applied 

RGA-based controllability index (see Section 2.3.2) if the RGA does not yield the best pairing. 

While the gramian based IMs are promising alternatives to the RGA, not the least because 

they account for dynamics in the system, these suffer from issues with scaling, which is also 

illustrated in the example.  

The example heat exchanger network can be seen in Figure E2-1. The goal is to control the 

output temperatures T1 to T4 using bypasses on the hot side of the heat exchangers U1 to U4. 

T5 is assumed to be controlled further downstream so it does not need to be controlled here. 

 

Figure E2-1. The heat exchanger network analyzed in the example. 

 

Comment regarding the pinch model: 

The handling of the hot superheated stream as two streams in the pinch analysis is not ideal 

for the steady-state analysis either. There are no process requirements to mix the water at 

exactly 164°C. By setting the existing outlet temperature from the heat exchanger as the target 

temperature of the stream, the design is to some extent locked in to the existing design. To 

really be able to optimize the network, the target temperature should be regarded as a soft 

target, which in turn affects the start temperature for the next stream. There are no direct ways 

of representing this for the pinch analysis, but some form of iterative approach should be 

possible. In this specific case, it is probably not of interest to change the existing heat 

exchanger, since it transfers a large amount of heat without violating the pinch rules, and it 

efficiently utilizes the temperature of the hot stream (the temperature difference on the hot side 

of the heat exchanger is about 23°C, which should be considered quite low). 
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The heat exchangers were modelled as series of mixing tanks, as described in Section 4.5.  

The complete system model was implemented in Matlab/Simulink and linearized with the 

bypasses on U1 to U4 as inputs and the temperatures T1 to T4 as outputs. More details about 

the model parameters and assumptions can be found in (Bengtsson, et al., 2018). 

On the linearized model, different input-output pairing algorithms were applied. The three 

gramian based methods mentioned in Section 2.3.3, i.e., PM, HIIA and Σ2, as well as the 

classical RGA and the more recent ILQIA (Halvarsson, 2010), which is based on LQG control 

with integral action, were used to derive decentralized control schemes. The recommended 

pairing for each method is shown in Table E2-1, which shows that the three gramian based 

methods all suggest the same pairing. 

 

Table E2-1. The results for the pairing suggestions for the heat exchanger network. 

 RGA PM HIIA Σ2 ILQIA 

T1 U3 U1 U1 U1 U1 

T2 U4 U4 U4 U4 U4 

T3 U1 U2 U2 U2 U3 

T4 U2 U3 U3 U3 U2 

 

It is also evident that the gramian based methods give a result different from that of ILQIA 

and RGA. To compare the methods, decentralized PI control schemes were implemented and 

the controllers were automatically tuned on the open loop subsystems using different values 

for the tuning parameters (for more details, see (Bengtsson, et al., 2018)). Each of the control 

configurations was then simulated, with a reference step of two degrees on the desired output 

temperature of streams H1, H2, C1 and C2, and with a step disturbance of negative two 

degrees on the input temperatures of the streams H1, H2, C1 and C2. Flow rate disturbances 

were also evaluated. For assessment the quadratic mean deviation from the reference was 

devised as a cost, allowing comparison of the different pairing schemes. The results are 

presented in Table E2-2. 

A few conclusions can be drawn from the results. Firstly, it can be seen that for aggressive 

control schemes (represented by low values of the tuning parameter η), all controller schemes 

fail, resulting in an undamped oscillatory system. This is not unexpected as there are clear 

limits on the actuators (they cannot bypass more than 100% of the stream or less than 0%), 

and therefore the controllers need to be somewhat cautious. However, the control 

configuration suggested by the gramian based methods yields a worse control for the best 

tuning (marked by bold and blue in the table) than the ones recommended by the RGA or 

ILQIA, with a minimum cost of 3 235 as opposed to 1 788 or 990. 
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Table E2-2. Costs for different controller tuning parameters η. 

η RGA Gramian 

based 

methods 

ILQIA 

1 235 065 342 149 263 431 

2 136 606 210 002 204 696 

3 95 950 126 502 156 832 

3,5 61 002 83 096 120 940 

4 28 570 63 220 101 968 

4,5 16 528 41 376 85 213 

5 7 595 16 443 69 522 

5,5 1 788 4 771 53 765 

6 1 966 3 533 35 830 

6,5 2 154 3 282 21 232 

7 2 344 3 235 9 054 

7,5 2 537 3 274 1 570 

8 2 732 3 358 990 

10 3 526 3 897 1 064 

15 5 568 5 706 1 687 

 

To examine why, we look closely at the interaction matrices from the gramian based methods. 

In these matrices the rows correspond to the target temperatures T1-T4, and the column to the 

input bypasses U1-U4. Consequently, a number in the matrix represents some kind of measure 

of how strongly the manipulated input variable of that column affects the target temperature 

of that row.   

 

𝑃𝑀 = [

0.15 0.00046 0.56 0.13
0 0.000014 0.0023 0.55

0.058 0.00084 0.00052 0.017
0 0.0091 0.026 0

] 

𝐻𝐼𝐼𝐴 = [

0.16 0.0084 0.097 0.15
0 0.0015 0.018 0.29
0.1 0.011 0.009 0.054
0 0.032 0.063 0

] 

Σ2 = [

0.17 0.000035 0.0054 0.0038
0 0.0000039 0.00081 0.81

0.0051 0.00003 0.0000072 0.00022
0 0.00036 0.0086 0

] 
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As can be seen, all the values in the second columns are small compared to the largest values 

in the other columns. This means that when choosing elements from the matrix little 

importance is given to the second column. In other words, little importance is given to which 

temperature should be controlled by U2. The reason for this is that U2 is not particularly well 

suited for control compared to the other inputs, and therefore the values in its column are 

lower. However, one can still clearly see that the IMs suggest that U2 is much better suited 

for controlling T4 than T3, but as can be seen in Table E2-1, none of the gramian based 

measures recommend this pairing, while both non-gramian based methods do. Similarly, we 

see that the third and fourth rows contain considerably less interaction than the other rows. 

Hence less emphasis is placed on selecting a good actuator for T3 and T4. 

It can be argued that this is a matter of scaling. However, all the inputs, being bypass 

percentages, are scaled from 0 to 1 as is the general convention to resolve the issue of input 

scaling for the gramian based methods (Salgado & Conley, 2004). Moreover, all the outputs 

are tested with identically sized reference steps, hence can be seen to be properly scaled. 

However, in this case this scaling scheme appears to be insufficient. In (Castano Arranz & 

Birk, 2009) a scaling for the Σ2 method is suggested, where each element in the IM is divided 

by the sum of all the elements in either its column or row. This seems an attractive proposition 

to resolve this issue as it ensures that either each input or each output is given equal weight. 

If we scale the PM, Σ2 and HIIA interaction measures with these methods, we get the 

configurations shown in Table 3. 

 

Table E2-3. The results for the pairing suggested by different methods using column or 

row scaling. 

 RGA & PM 

and HIIA with 

column scaling 

& all gramian 

based methods 

with Sinkhorn-

Knopp scaling 

Σ2 with column 

scaling & 

ILQIA 

PM and HIIA 

with row 

scaling 

Σ2 with row 

scaling 

T1 U3 U1 U2 U1 

T2 U4 U4 U4 U4 

T3 U1 U3 U1 U2 

T4 U2 U2 U3 U3 

 

As can be seen in Table E2-3, when column scaling is applied we get the same control 

configurations as recommended by either the RGA or the ILQIA and consequently a lowered 

cost according to the assessment. However, with row scaling we get a new configuration for 

the HIIA and PM. Testing with this configuration yields worse results than the other 

configurations. 

 



  PROJECT REPORT 

2018-08-28 17 (32) CIT Industriell Energi AB 

 

A third option tested in this project is to ensure that the IMs rows and columns all sum up to 

the same value, and hence all inputs and outputs are given equal weight. This is done by 

alternatively scaling the elements by row and column sum, which is known as the Sinkhorn-

Knopp algorithm (Sinkhorn & Knopp, 1967). In this case, it turns out that this new scaling 

method gives the same configuration as the RGA (see Table E2-3), which, while not being 

the configuration with the lowest cost, still yielded a considerably better result than the 

configuration recommended by the unscaled gramian based measures. This is the same 

configuration obtained when scaling the PMs’ or HIIAs’ IM by column. However, for the Σ2 

method, column scaling yielded a configuration with a lower cost. 

This example illustrates how different IMs and different scaling methods can yield different 

recommendations for the control structure of a heat exchanger network, which in turn will 

affect the attainable control performance of the design. This, in turn, makes it problematic to 

base a controllability measure on one of these interaction measures without knowing that the 

proposed input-output pairing also yields the best controllability of the system. 

In order to find a more general conclusion and recommendation regarding the scaling of the 

gramian based methods, a statistical assessment of a large number of randomly generated 

MIMO models was performed in the project. This assessment showed clearly that the 

approach based on the Sinkhorn-Knopp consistently ranked better than the others and 

therefore seems promising for further developments (Bengtsson, et al., 2018). 
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4 PROPOSED APPROACH FOR DESIGN AND CONTROLLABILITY 

ASSESSMENT OF HEAT EXCHANGER NETWORK RETROFITS 

The approach for design and controllability assessment of heat exchanger network retrofits that 

is proposed in this report is based on the idea of using existing methods and tools for heat 

integration and dynamic analysis, and combine them with new methods developed within the 

project for interaction/controllability analysis. 

For most of the steps suggested there are existing methods and tools that can be used. For some 

steps, in particular for the controllability analysis, there is still a need for further method and tool 

development. Before a complete assessment framework can be presented, there is also a need to 

develop information protocols for knowledge transfer between the steps. 

Below, an overview of the step-wise approach is presented. More detailed descriptions and advice 

on the individual steps are provided in the following sections. Existing tools that can be used for 

modelling, analysis and design are suggested and discussed in Section 5. 

 

Note that before the analysis starts with Step 1, the aim and constraints for the assessment need 

to be carefully defined, since these will determine appropriate system boundaries for the process, 

and thereby the requirements on the data extraction. The aim and constraints might also influence 

the retrofit design as well as the control objectives. 

1. Process description 

Collect information from, for example, process flowsheet diagrams 

and process and instrumentation diagrams regarding flows that need 

heating or cooling, existing heat exchangers, furnaces, steam heaters, 

water and air coolers, placements of measurements and control valves 

2. Data extraction 

a. Definition of the system based on the aims and constraints 

b. Collection of data for the pinch analysis 

c. Adjustment of the pinch representation for the dynamic 

assessment 

3. Pinch analysis 

Determine targets for minimum energy demand and identify 

inefficiencies in the network using pinch analysis 

4. Retrofit design 

Design retrofit proposals for energy savings 

5. Dynamic modelling 

Construct dynamic models of the heat exchanger network retrofit 

designs 

6. Controllability analysis 

Assess interactions/controllability of the alternative design proposals 
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4.1 PROCESS DESCRIPTION 

It is necessary to realize that although the focus of the design and assessment is a heat exchanger 

network, information about the process should be collected with widened system boundaries in 

mind. The role of the hot and cold process streams in the overall process, and their connections 

to reactors, separations units or storage tanks are crucial to understand the control objectives for 

the system and the sources of disturbances. Well-defined aims and constraints for the assessment 

are a key for describing the process in an appropriate way. 

4.2 DATA EXTRACTION 

4.2.1 Collection of data for the pinch analysis 

The primary step in a heat integration study is to produce heat and mass balances for the plant. In 

a real process plant this can be a significant challenge. The amount of information available from 

plant measurements, data acquisition systems and simulation models of a process can be very 

large, at the same time as other important information remains unavailable and needs to be 

estimated or assumed. Much of the data available is likely to be irrelevant for the analysis, which 

makes it necessary to identify and extract only the information that is actually needed.  

Furthermore, because data sometimes need to be obtained from poor estimates or design 

specifications that are not met in actual operation, or due to measurement errors, inaccuracies and 

simplified models of the real process, usually heat and mass flow data simply do not balance. To 

avoid serious inconsistencies and achieve a reliable data set, data reconciliation techniques are 

often clearly needed. Such techniques have been applied and tested for the Preem refinery (Murcia 

Mayo, 2015), which showed that despite the use of such computational tools a number of 

difficulties are still likely to remain. Experience from process integration studies shows that data 

collection can be a major part of the work (Natural Resources Canada, 2003). 

4.2.2 Adjustment of the pinch representation for the dynamic assessment 

It is reasonable to assume that data collection is and should be a major time-consuming part of 

any project involving process modelling, and this needs to be considered regardless of what type 

of analysis – steady-state or dynamic – is intended. In the report “Good advice for integrated 

design in the process industry” (in Swedish) from the project INPROASIT (Björk, et al., 2016) 

about integrated design in the process industry, it is argued that the work of modelling a process 

based on historical data consists of up to 80% of data cleansing such as validation and filtration 

of data. The report even states that if less time is used for this kind of work, there is reason to be 

suspicious. Another thing that is stressed in the report from INPROASIT is that automation, 

computing and control competency should be included in the project work from day one, which 

is a statement that is strongly supported in this work. 

As shown by the example in Section 3, it is difficult to base the dynamic modelling and analysis 

directly on information from the pinch analysis only. Not only will additional data be needed for 

the dynamic analysis, but there is also a demand for changing the system boundaries, and handle 

non-linearities in different ways. The following list presents some major additions needed for the 

dynamic analysis compared to the pinch analysis: 

Additional data for single heat exchangers 

Time constants or parameters used to calculate or estimate time constants such as heat 
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exchanger volumes and fluid densities. 

Note that for existing heat exchangers, geometrical parameters such as the volume for each 

fluid, are known. During conceptual design, these need to be computed from assumptions of 

standard types of heat exchangers. 

Data for the piping between heat exchangers 

The apparent dead-time in the pipes is essential for the dynamic controllability assessment. Pipe 

residence time and pipe model order determines the apparent dead-time in the pipes.  

Widened system boundaries to include the control system. 

Placement, size and dynamic characteristics of by-pass and other valves. Placement and 

dynamic characteristics of sensors. 

Widened system boundaries to capture the interconnections between streams 

The dynamic model need to consider if and how individual streams from the pinch analysis are 

connected to each other and to other type of process equipment. Several pinch streams might be 

better represented as one connected stream in the dynamic model. A common reason is that the 

pinch analysis requires a piece-wise linearization of streams with non-constant heat capacity 

flow rate. The connection to other parts of the process are required to understand and determine 

the control objectives.  

Two alternative ways of handling the information transfer, regarding process interconnections 

from the pinch analysis results to the dynamic analysis, are suggested: 

A. Build the dynamic model directly from the original process description and modify 

it according to the retrofit suggestions generated in the pinch analysis and design. 

B. Build the dynamic model from the pinch representation, but add the basic 

connections between streams, such as direct connections (one stream in reality that 

has been modelled as two or more streams in the pinch analysis due to non-constant 

heat capacity flow rates) or non-isothermal mixing, and include these in the 

dynamic model. 

In both cases, additional data is needed to describe the dynamic characteristics of the individual 

units in the network. 

4.3 PINCH ANALYSIS 

For the pinch analysis, see Section 2.2. 

4.4 RETROFIT DESIGN 

There are normally several alternative retrofit design solutions for a given heat exchanger network 

retrofit problem. Usually, the larger the industrial problem is, the more alternatives exist. In 

theory, the optimum design is the one with lowest total annualized cost; the main components of 

this cost are the cost of new heat exchangers, additional area in existing heat exchangers, piping 

and hot and cold utility. In practice, these costs cannot be accurately calculated during the 

conceptual design phase, and various assumptions and estimations have to be made. At the same 

time, it is common that there exist several alternative designs with only marginal differences in 

total annualized cost. Realizing the usually large uncertainties in the cost estimates and the small 

differences in cost between alternative designs, there are strong reasons to base the design choices 

on other criteria such as operability and controllability. 
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Consequently, it is desirable to use a retrofit design method that generates, not only one 

theoretically optimal design, but a number of near-optimal alternative solutions that can be further 

evaluated with respect to, for example, controllability.  

4.5 DYNAMIC MODELLING 

In order to assess the controllability of a heat exchanger network, for example, using methods 

based on interaction measures as described in Section 2.3.2, a dynamic model of the heat 

exchanger network is needed. In the model of the complete network, dynamic models of the heat 

exchanger units are essential building blocks. 

The dynamic characteristics for the individual heat exchangers are determined by flow 

configuration and time constants related to holdups of energy on the hot side, cold side and in the 

heat exchanger walls. Heat exchangers are usually modelled such that each fluid is modelled as a 

series of ideally mixed tanks (see Figure 3). These lumped models offer mathematical simplicity, 

but also have physical resemblance to shell-and-tube heat exchangers with baffles, see also 

(Mathisen, et al., 1994). 

 

 

Figure 3. Multi-cell model of one heat exchanger. Based on (Mathisen, et al., 1994). 

The differential equations for heat exchangers along with their derivations can be found in 

(Mathisen, et al., 1994). The cited paper assesses different model features and provides modelling 

recommendations and examples of typical values for critical parameters. Among other things the 

appropriate number of mixing cells (model order) is discussed and recommendations are given 

for minimum and maximum number of cells. A typical number of cells that is mentioned is N=6. 

The main components in a model of the complete heat exchanger networks are the heat 

exchangers, bypasses and pipes. The pipes, like the heat exchangers, are modelled as ideally 

mixed tanks in series and by time delays.  Pipe residence times should be included to predict the 

apparent dead-time; the pipe dead-time may well exceed the dead-time in the heat exchangers. 

The model of the heat exchanger networks should also include the dynamics of sensors and 

actuators. Time constants for control valves and thermocouples are often between 2 and 10 

seconds, which can be compared with typical values for heat exchanger between 0.1 and 60 

seconds. 

A challenge when modelling heat exchanger networks is that the state-space models easily tend 

to become very large since each multi-cell heat exchanger is represented by N states for each fluid 

plus one for the bypass, and a complete industrial network can contain a large number of heat 

exchangers.  
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4.6 CONTROLLABILITY ANALYSIS 

As illustrated in Example 1, it is not always straight-forward to simply take a pinch model of a 

heat exchanger network to analyze it from a controllability perspective. Without information 

about how the streams are connected to each other and to the rest of the process, control objectives 

and disturbance sources are difficult or even impossible to determine. Furthermore, knowledge 

about the placement of existing and potential new bypasses are essential for the controllability 

assessment, but not included in the pinch representation. The establishment of a good process 

description of the heat exchanger network with these aspects included (Step 1), dramatically 

improves the transition from the retrofit design solutions (Step 4) to the dynamic modelling and 

controllability assessment (Steps 5 and 6).  If the process description is adequate, it is likely to 

provide sufficient information to “translate” pinch solutions into appropriate dynamic models. 

As discussed in Section 2.3.2 and illustrated in Example 2 of Section 3, there are many challenges 

involved in defining a reliable controllability measure. More work is needed before a heat 

exchanger network controllability index or similar can be suggested. However, the methodology 

described by (Westphalen, et al., 2003) (see Section 2.3.2) seems to provide a good framework 

that could be used once one or more appropriate controllability measures have been defined. 

 

Another approach for controllability analysis could be to visualize the interactions in the heat 

exchanger network. This could, for example, be achieved by using the software ProMoVis (Birk, 

et al., 2014), in which the interactions can be visualized with weighted graphs that shows the 

significance of the connections between manipulated and controlled variables by the thickness of 

the edges (Castaño Arranz & Birk, 2012). This gives an enhanced visual understanding of the 

process. Systems that might be difficult to control could, for example, have no or very weak 

connections (thin edges) from all manipulated variables to one or more controlled variable, or 

some manipulated variables could have very strong connections (thick edges) to several 

controlled variables, meaning that they could be difficult to control independently. 

For a defined heat exchanger network design (stream data, 

utility data, and topology): 

1. Identify all subnetworks 

2. For each subnetwork 

2.1. Identify all combinations of manipulated variables. 

2.2. Apply a selected interaction measure to define the best 

combination of controlled and manipulated variables.  

2.3. Calculate the controllability index of the subnetwork 

based on the selected interaction measure for the best 

combination of manipulated variables. 

(Further research needed here) 

3. Define the controllability index of the network as the 

worst value of the controllability index obtained for all 

subnetworks. 
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5 EXISTING TOOLS 

This section presents examples of tools that are currently available to complete the central steps 

of the proposed methodology. In some of the mature areas, a variety of tools exist, in which case 

a selection has been made. 

Considering that different tools are needed for the various steps of the methodology, appropriate 

interfaces are needed for model and data transfer. Excel and/or Matlab could serve as these 

communication interfaces, and would also allow for data manipulation, analysis and visualization 

of intermediate and final results. Consequently, tools and software used for pinch analysis, heat 

exchanger network design, dynamic modelling and controllability assessment should preferably 

allow for integration either directly or via Excel, Matlab or other established standards.  

For the process description and extraction of process data, i.e., the first steps of the proposed 

methodology, a combination of information sources and tools are usually needed. Process 

flowcharts and data logs from process control systems are essential resources that need to be 

complemented by qualified assumptions and estimations from process operators and process 

engineers, additional measurements and subsequent error detection and data reconciliation 

techniques. The control and data management systems used in the industrial plant determines 

which software to use, but typically the results can be exported to spreadsheet format (e.g. Excel), 

which provides further arguments for other software to be used to be compatible with data 

import/export in this format. 

5.1 TOOLS FOR PINCH ANALYSIS AND RETROFIT DESIGN 

With the long history of pinch analysis, a number of tools have been developed over the years. 

Many of these are simple tools, mainly built for educational purposes. Several tools for basic 

energy targeting are available as Excel calculations spreadsheets or Excel VBA applications, 

online calculations tools, Matlab programs, or stand-alone software. More advanced and 

extensive software also include heat exchanger network design and optimization, and most of 

these are commercial. Table 1 presents a non-exhaustive guide to some of the software: 

Advanced pinch software has also been developed by CanmetENERGY (Integration) and Process 

Integration Ltd (PINCH-int and i-Heat). However, licenses are only available for limited groups. 

It can be concluded that software for retrofit design of heat exchanger networks based on 

systematic and reliable approaches are few. A variety of systematic and semi-automated methods 

for heat exchanger network retrofit have been suggested, see (Sreepathi & Rangaiah, 2014) for a 

review. However, these are yet to be implemented in well-tested software packages.  

One of the partners in this project, CIT Industriell Energi, has developed their own Excel add-in 

for pinch calculations, Pro-pi. The main functionalities include energy targeting, generation of 

pinch curves and manual heat exchanger network design. Although a non-sophisticated tool, the 

advantage of being an in-house development allows for further development, customization and 

provides a possibility to test the implementation of controllability assessment techniques in a 

pinch analysis tool.  
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Table 1. Software for pinch analysis. 

Software Company Type Free Network 

design 

Retrofit 

Heatit Pinchco Excel add-in Yes No No 

Kemp book 

spreadsheet 

Elsevier Excel spreadsheet Included in 

(Kemp, 

2006) 

No No 

Aspen 

Energy 

Analyzer 

AspenTech Stand-alone 

program in the 

AspenOne 

product portfolio 

No Manual and 

automatic 

Manual and 

automatic 

PinCH * Stand-alone No Manual Manual 

Simulis 

Pinch 

ProSim Excel add-in No Automatic Automatic 

Einstein 

Energy 

* Stand-alone Base version 

– Yes 

Plus version 

– No 

Manual and 

automatic 

Manual 

Pro-pi CIT 

Industriell 

Energi 

Excel add-in Yes Manual Manual 

* The Lucerne University of Applied Sciences and Arts - Engineering and Architecture, with the support of the Swiss 

Federal Office of Energy (SFOE) and the “Energie-Agentur der Wirtschaft” (EnAW) 

** EINSTEIN has been developed since 2007 in a collaboration of more than 20 institutes and companies in the 

Framework of the European projects EINSTEIN (2007-2009) and EINSTEIN-II (2010-2012) and several national and 

regional projects in Spain, Catalonia and Austria. 

 

5.2 TOOLS FOR DYNAMIC MODELLING 

Various tools can be used to implement the dynamic model of a heat exchanger network as 

outlined in Section 4.5. Examples of such modelling tools are Simulink, Modelica and Aspen. 

Simulink, developed by MathWorks, is a graphical programming environment for modeling, 

simulating and analyzing dynamic systems. Its primary interface is a graphical block 

diagramming tool and a customizable set of block libraries. Its tight integration with the rest of 

the MATLAB environment is a clear advantage when integrating the dynamic modelling into the 

step-wise heat exchanger network controllability framework. 

There are a number of open-source as well as commercial modeling and simulation environments 

based on the free Modelica modeling language, such as OpenModelica, JModelica and Dymola. 

The open Modelica language allows for integration with other analysis tools, but efficient 

modelling usually requires access to good model libraries, which are typically owned by 

commercial companies.    

Within the AspenONE Product Portfolio, there are also possibilities for dynamic modelling. This 

would allow for an easy integration with models built with some of the products within the Aspen 

suite, and usually easy import and export of input data and results. The drawback is, depending 

on the particular Aspen product, that model import/export is not straightforward, and the 

opportunities to customize models and analysis tools are limited. 
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5.3 TOOLS FOR CONTROLLABILITY ANALYSIS 

This report has described how interaction measures may be used as a basis for defining a measure 

of controllability (see Section 2.3.2) – or at least of certain aspects of controllability – of a system 

such as a heat exchanger network. More work is needed in this area, and consequently, no tools 

exist that are ready to use for direct assessment of the controllability of a heat exchanger network.  

However, a promising tool for analysis of process interactions has been developed that could have 

a potential also for the analysis of heat exchanger networks. ProMoVis (Birk, et al., 2014) is a 

software environment which can visualize an interconnected process system and analyze it using 

control structure selection methods based on various interaction measures. ProMoVis is also able 

to visualize analysis results together with the process using a graphical representation (Castaño 

Arranz & Birk, 2012). ProMoVis is implemented as either a standalone software or as a version 

which can run within Matlab. For the re-use of existing models a Modelica interface is under 

development. 

So far, ProMoVis has not been used to analyze a heat exchanger network, but it has been applied 

to similar types of processes, see (Castaño Arranz, et al., 2015). The main challenge is the large 

model size, which has made it difficult to import the model. If this problem can be overcome, 

ProMoVis seems to be a promising tool for controllability assessment of heat exchanger networks. 

Example 3 

ProMoVis Application 

ProMoVis has been used for analysis of the secondary heating system of a pulp and paper mill 

(Castaño Arranz, et al., 2015). This application lies close to the application of heat exchanger 

networks, which is discussed in this report and is therefore thought to serve as a good 

illustration of the potential for using ProMoVis for this type of system. 

Like heat exchanger networks, the secondary heating systems are heat recovery systems that 

include a large number of heat exchangers. In terms of steady-state energy efficiency 

improvements, the secondary heating systems are also commonly modelled as a heat 

exchanger networks and analyzed using heat integration tools such as pinch analysis, see e.g. 

(Persson & Berntsson, 2010), (Nordman & Berntsson, 2006). In addition to the heat 

exchangers, however, secondary heating systems also include water tanks which are central 

for the operational control of the system. From a controllability perspective there are, 

consequently, a few important differences compared to a heat exchanger network. In addition 

to target temperatures, the water levels in the tanks are also controlled variables. Furthermore, 

the actuators are not bypass valves over heat exchangers, but valves controlling the flows into 

and out from the water tanks. 

Figure E3-1 shows the ProMoVis screenshot of a simplified model of the secondary heating 

system of a pulp and paper mill, with the corresponding notation summarized in Table E3-1.  
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Figure E3-1. ProMoVis screenshot for the Secondary Heating System. Red variables 

represent control actions on actuators, green variables represent sensor measurements, 

and blue variables represent selected setpoints for the sensor measurements. The 

controller blocks receive a sensor measurement (MV) and a desired setpoint (SP), and 

send a control action to an actuator (OUT). 

 

Before the analysis of the control system, this process was controlled with the set of controllers 

and input-output pairings illustrated in the figure: u1 − LSC, u2 − TWT, u3 − LWT, u4 − THT, 

u5 − LHT. However, this control structure presented severe problems during operation. 

 

Table E3-1. Description of control system variables. 

Name Description 

u1, u2, u3, u4, u5 Valve control actions 

LWT Level of Warm Tank 

LSC Level of the scrubber 

LHT Level of Hot tank 

TWT Temperature at the exit of Warm Tank 

THT Temperature inside Hot Tank 

rLWT Reference for LWT 

rLSC Reference for LSC 

rLHT Reference for LHT 

rTWT Reference for TWT 

rTHT Reference for THT 
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The analysis of interactions in this process is visualized using weighted graphs in Figure E3-2. 

The control configurations (input-output pairings) suggested by the analysis methods applied 

in ProMoVis can be compared with the existing control configuration illustrated in Figure 

E3-1. Some important conclusions from the graphical results in Figure E3-2 can be drawn. 

• Existing input-output pairings: 

o u2-TWT: The effect of u2 on TWT is very low (thin edge).  

o u3-LWT: The effect of u3 on LWT is insignificant (no edge was depicted). 

• Interactions between non-paired variables: 

o u4-LWT: The control action u4 has a strong impact on LWT. 

o u5-THT: The control action u5 has a strong impact THT. 

 

 

Figure E3-2. Graphical analysis of the Secondary Heating System using weighted graphs. 

A threshold of 0.1 was placed such that the insignificant edges are neglected in the 

representation. ProMoVis screenshot. 

The combined use of different interaction measures indicates that using u3 to control LWT 

and using u2 to control TWT will result in very poor performance, since there is very low 

impact of these actuators on their corresponding measurement, and there are additional 

perturbations from other control loops. The results from the analysis indicates that instead it 

would be appropriate to use u2 to control LWT and use u3 to control TWT, which is 

completely in contrast to the existing configuration.  
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6 FURTHER DEVELOPMENT NEEDS 

This report describes the major steps needed in a structured and systematic approach for 

evaluation of controllability of heat exchanger networks in the design stage. In the research project 

MoveDynE, work has been done to identify, evaluate and to some extent improve the basic 

methods needed for controllability analysis of heat exchanger networks. Nevertheless, further 

efforts are needed in a number of important areas before a complete controllability assessment 

framework can be achieved, and in the long term, before a toolbox with integrated design and 

analysis tools can be developed. 

6.1 DEFINING A CONTROLLABILITY INDEX FOR HEAT EXCHANGER NETWORKS 

As been discussed in this report, it is not obvious how to define controllability. A controllability 

index can be based on an interaction measure. This would be in line with the controllability 

assessment methods based on RGA that are the most commonly applied today. However, even if 

one chooses to limit controllability to be a measure of the interactions in the system, there are 

many alternative interaction measures that could be applied, and each one has strengths and 

weaknesses. There remains a need to evaluate which interaction measure could be best suited for 

heat exchanger networks, and which, at least in relation to other measures, gives the most reliable 

and relevant result. Moreover, the interaction measure, which is in the form of a matrix, needs to 

be evaluated through some mathematical operation in order to arrive at a single, scalar 

controllability index. How to do this is also a question for further research. Consequently, an 

adequate controllability index for use in heat exchanger network design still remains to be defined. 

More work is also needed on how to evaluate the usefulness, appropriateness, and accuracy of 

such a controllability index. 

However, in this project, work in this direction has begun. Drawbacks of using the traditionally 

applied controllability index based on RGA have been identified, and alternatives to the RGA 

have been evaluated. Insights about the strengths and weaknesses of different interaction 

measures have been presented, and the knowledge for continuing the effort to define a better 

controllability index for heat exchanger networks has been improved. 

6.2 GENERIC DYNAMIC MODELS FOR HEAT EXCHANGER NETWORKS 

For an integrated design and controllability assessment tool to be useful, some level of built-in 

support would be needed to formulate dynamic models representing alternative heat exchanger 

network designs. Steady-state pinch models are easily modelled in existing tools for pinch design. 

Pre-defined Simulink model blocks for heat exchangers and relevant components, templates for 

creation of complete networks, and/or some kind of automatic model generation based on user 

input about the heat exchanger network design could be used to aid the modelling, thereby 

avoiding that the user is required to formulate the dynamic models from scratch. 

As discussed in Section 4.5, the dynamic models, and the development of a model library with 

model templates and unit building blocks, also need to be extended to include important dynamic 

characteristics of the system in the form of pipe apparent deadtimes, actuator and sensor 

dynamics, and possibly also wall capacitance.  
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6.3 HEAT EXCHANGER NETWORK MODEL IN PROMOVIS 

As discussed in Section 5.3, the tool ProMoVis should be a valuable tool for visualization of 

results from the analysis of interactions in a heat exchanger network, and thereby provide one 

perspective on the controllability of a design in a graphical illustration. Currently, however, it has 

not been possible to import the model of the heat exchanger network into ProMoVis due to the 

model size. Despite the rather small heat exchanger network that has been modelled, the many 

states used for each single heat exchanger results in an extensive number of states for the model 

as a whole. 

Model simplifications, or new possibilities for model import to ProMoVis in the future may be 

needed to overcome these difficulties. 

6.4 INTEGRATED TOOLBOX 

Undoubtedly, major efforts are required, and significant gaps remain to be filled, to be able to 

integrate the complete proposed approach for design and controllability analysis of heat 

exchanger networks into a unified framework and toolbox. 

In addition to the development needs related to individual assessment steps, there is an apparent 

need for appropriate protocols for information transfer and conversion of models between the 

different tools. The challenge in information flow handling is likely to be the difference in relevant 

system boundaries for the various models and methods. The protocols, routines and templates 

used for information flow should ensure that information that is needed for the dynamic 

assessment in the later steps of the methodology is not lost during the first design steps. As shown 

in Example 1, taking the pinch model directly as an input for the dynamic model and 

controllability assessment is likely to be misleading.  
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