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Abstract

Burning of fossil fuels leads to excess CO2 in the atmosphere, causing global warming,
threatening civilisation and ecosystems worldwide. As a step in making the society
fossil-independent, we need to replace oil, coal, and gas in the transportation sector with
fuels originating from sustainable energy. Biodiesel is one such option, from which we
get glycerol as a byproduct. With the help of electrooxidation, we can use glycerol as
a feedstock to extract hydrogen gas, which may be for upgrading biofuels or used in
proton exchange membrane (PEM) fuel cells. Methanol is another possible fuel in so
called direct methanol fuel cells (DMFC), which raises the interest for studying methanol
electrooxidation.

In this work, we study glycerol and methanol electrooxidation on gold. We use density
functional theory, and verification by cyclic voltammetry, to study thermodynamics of
reaction conditions and mechanisms for the electrooxidation mechanisms. Long range
dispersion (van der Waals), which have been neglected in computations until recently, is
investigated by assessing density van der Waals functionals. Furthermore, microsolvent
effects are investigated by inclusion of explicit water molecules.
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Chapter 1

Introduction
While what we now call catalysis has been used throughout history, e.g. in fermentation
of sugar to alcohol, there has not been any recorded attempts to characterise and explain
the phenomenon until around 1800.[1] In 1798, the Scottish chemist Elizabeth Fulhame
describes how water facilitates oxidation and reduction reactions. She explains that the
reactions are dependent on the presence of water, that water is directly involved in the
chemical process and that the amount of water remains the same at the start and the
end of the reaction.[2] This property of the water, that it enables or facilitates a reaction
without being consumed itself, makes it a catalyst. This term is derived from catalysis
(from Greek: κατα, ‘down’, and λυειν, ‘loosen’),[3] coined by the Swedish chemist Jöns
Jacob Berzelius 40 years later.[4] Catalysis has since then grown to an important chemical
field. An important point in history was the invention of the Haber–Bosch process –
synthesis of ammonia (NH3) from hydrogen and nitrogen with an iron catalyst – in the
beginning of the 20th century.[5–7] The new, effective method of producing artificial
fertiliser revolutionalised global agriculture, allowing for a population growth from 1.6
billion in 1900 to 7 billion today. Catalysis has proven useful for a number of other
processes in the chemical industry; crude oil is catalytically cracked to shorter carbon
chains, e.g. gasoline, with the help of zeolites.[8]; selective oxidation of ethylene to ethylene
epoxide is carried out directly using a silver catalyst, instead of an earlier multi-step
process requiring chlorine gas.[9] As concerns for health and environment have increased
towards the later part of the 20th century, catalytic processes for exhaust treatment have
been developed. Examples of these are NOx reduction[10] and CO oxidation[11, 12] in
combustion engines.

Another modern application is energy conversion and storage, such as batteries
and fuel cells, which belong to a certain class of catalysis involving electrochemistry.
Electrochemistry is the relationship between chemical and electrical energy, which can be
understood by describing the electrochemical cell (Figure 1.1).[13] This consists typically
of two solid electrodes, the anode and the cathode, connected to each other via a power
source or load and an electrolyte. The electrolyte is normally liquid and its purpose is to
conduct ions between the electrode. The electrons, on the other hand, pass through the
wire from the anode to the cathode giving rise to or being driven by a potential. The
reaction, including charge transfer, takes place at the surface of the electrode. As long
as the electrode is not consumed, it is a catalyst by definition. To stress the catalytic
nature of the process, the term electrocatalysis was used by Kobozev and Monblanova
in the 1930s when studying the kinetics of the hydrogen evolution reaction (HER)[14]1,
where protons and electrons combine to form hydrogen gas,

2 H+ + 2 e− −−→ H2, (1.1)

1To the best of my knowledge, the term is coined in this paper.
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Figure 1.1: Sketch of a simple electrochemical cell. The electrons travel from the anode
to the cathode in via a voltage source (electrolytic cell) or a load (galvanic cell). Charged
ions are moving through the electrolyte to charge compensate. The reactions occur on
the electrode surfaces, which acts as catalysts in the sense that they can be more or less
effective at facilitating the electrochemical reactions.
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on different metals. It should be pointed out that electrocatalysis is not really a subcategory
of electrochemistry; there is no zero-activity electrode, and thus no non-catalysed reaction.
Electrocatalysis refers to relative catalytic properties of possible electrode materials.[13]

1.1 Motivation

Today, most of the fuel needs in the world are met with fossil sources.[15, 16] The use of
fossil fuels leads to emission of CO2 in the atmosphere, which have been shown to cause
global warming.[17, 18] The climate change, being rapid in a geological perspective, is
devastating to slowly-adapting ecosystems[19] and to human civilisation.[20, 21] In order
to decrease CO2 emissions, we need to replace oil, coal, and gas with sustainable sources
of energy. Alternative fuel solutions are fuel cells and batteries, as mentioned above,
to which biodiesel can be added. Biodiesel is produced via esterification of fatty acids
from vegetable oils and animal fats. Millions of metric tonnes of glycerol is produced
annually as a byproduct in this process. Glycerol is not particularly useful as it is, but it
can be converted to more valuable products. Using electrooxidation, we can produce H2

and derivatives such as dihydroxyacetone, glyceraldehyde, glyceric acid. We could also
imagining go all the way to CO and then use water-gas shift, CO+H2O −−→ H2 +CO2, to
produce even more H2. H2 has a wide range of applications, such as fuel cells, upgrading
biofuels via hydrogenation of unsaturated fatty methyl esters,[22] or steel production,
which is tested in Sweden.[23] The other derivatives are somewhat interesting, but not in
the same scale.

Methanol electrooxidation can be seen as a prototypical reaction, used for benchmarking
and as a model system for glycerol. In addition, methanol can be used in direct methanol
fuel cells to generate electricity, which has grown in interest recently.[24]

1.2 Scope

The aim of this thesis is to use electronic structure calculations, supported by experimental
verification, to study reaction conditions and mechanisms for glycerol and methanol
electrooxidation on gold. The calculations, performed with density functional theory,
is used to determine adsorption energies, reaction intermediates and paths, vibration
energies, potential-dependent surface conditions, and theoretical onset potentials. We
investigate the impact of microsolvation and long range dispersion. The work is restricted
to thermodynamics, excluding calculations on kinetics and transport processes.

To do this, we start by discussing the theory of electrocatalysis in Chapter 2, leading
up to understanding how to construct a suitable computational model. Chapter 3 outlines
density functional theory, an application of quantum mechanics to calculate energies of
atomic systems. In order to use these energies to calculate measurable properties such as
vibration frequencies and reaction free energies, we discuss e.g. vibrational analysis and
semi-classical thermodynamics in Chapter 4. A summary of the important results of the
papers, followed by discussion and outlook, is given in Chapter 5.
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Chapter 2

Electrocatalysis

“ Let us now analyse the situation for natural forms of diffusion, occlusion
and catalysis, where the first step is always the ‘natural’ adsorption of the
component, and their ‘forced’ form, e.g. electroocclusion, electrodiffusion or
electrocatalysis, where H atoms are forcibly formed in the final state at the
membrane by the electrical current.

– Nikolai Ivanovich Kobozev and Valentina Viktorovna Monblanova [14]

As we have seen from the historical overview, electrocatalysis has emerged as a cross-
disciplinary field between electrochemistry and catalysis. To introduce this field, we
discuss catalysis and electrochemistry separately.

2.1 Catalysis

Let us assume that we have an non-catalysed reaction in gas phase with reactants A and
B and the product P,[9]

A + B −−→ P. (2.1)

We assume that the reaction occurs in one step, which is justified at the timescales we
are interested in. A prerequisite for the reaction is that the reactants are in contact. This
means that we can expect the rate r to be proportional to the partial pressures pi,

r+ = pApBk+ (2.2)

where k+ is the rate constant, and the plus denotes the forward reaction (from left to
right in Equation 2.1). The reactants need to overcome an energy barrier, corresponding
to breaking and forming chemical bonds. The energy required to overcome the barrier is
called activation energy, EA, and must in this case come from the kinetic energy of the
molecules. At any given temperature, T , there is a distribution of kinetic energy among
the molecules such that a portion of them can overcome EA. As the average kinetic energy
increases linearly with temperature, it can be argued that the rate constant should be

k+ = A+e
−βEA , (2.3)

where A+ the concentration-dependent preexponential and β = 1
kBT

, where kB is the
Boltzmann constant. Svante Arrhenius proposed this equation in 1889,[25, 26] and a
similar result was derived from collision theory 27 years later.[27] The Arrhenius equation
governs the kinetics of the reaction, i.e. the rate over reaction barriers. This is in contrast
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Figure 2.1: The effect of a catalyst in terms of energy barriers. The uncatalysed reaction
(black) has fewer intermediate steps and can often be modelled as a single reaction
associated with a single energy barrier. The catalyst introduces more intermediates with
lower barriers (red), giving a lower effective barrier for the reaction. The figure adapted
from Wikimedia Commons.[28]

with the macroscopic reaction rate, the activity (not to be confused with thermodynamic
activity), which might be influenced by e.g. transport limitations.[9]

In the presence of a catalyst, reactants will form bonds to it via its active site, while
loosening their own intramolecular bonds. In addition to an easier bond breaking, the
catalyst allows the formation of intermediates. This means that the catalysed reaction
can have several steps, each associated with a smaller reaction barrier compared to the
fewer ones (possibly a single one) in gas-phase (Figure 2.1).[9]

A catalyst can not alter the thermodynamics of the total reaction, just introduce
stepping stones. However, it is possible that the formation of another product, Q, is
thermodynamically favourable, but the kinetics of this reaction is inferior to formation of
P. By choice of a suitable catalyst, it is possible to make the new kinetics favour Q to P.
This property, shown in Figure 2.2, is called selectivity.[9]

In order for a catalytic reaction to occur, the reactants, intermediates and products
must not bind too strongly nor too weakly to the catalyst. If they adsorb too weakly,
they will not be able to adsorb or react on the surface. If they bind to strong, they will
break the catalytic cycle and physically block new reactants from reaching the surface
(poisoning the surface). This is called the Sabatier principle.[29] Assuming that adsorption
and desorption are governing the reaction rate, the catalytic rate can be plotted as a
function of bond strength limited by two linear equations, corresponding to adsorption
and desorption limitation, respectively. To these two, constraints related to reaction
thermodynamics and kinetics can be added. Such a plot, as seen in Figure 2.3, may often
be referred to as a volcano plot because of this shape.[9]

Since a catalyst is not consumed, by definition, it should have infinite lifetime. In
practice, catalysts deactivate over time for a number of reasons.[30] These can be more
related to the reaction, such as poisoning the active sites by intermediates or byproducts, or

6
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Figure 2.3: The Sabatier principle as a volcano plot. The catalytic activity is limited
by bond strength to reactants and products. The highest activity is obtained with a
catalyst that neither binds to strongly or to weakly to the adsorbents. There are other
thermodynamic and kinetic limitations, which can have impact when the optimal bond
strength is achieved.
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physically blocking the surface (fouling). Processes can also decrease the surface area, e.g.
by changing the surface composition, or coalescing smaller particles to larger (sintering).
It is also possible for the surface to suffer mass loss. Thus, the stability is an important
property for a real catalyst.[9] Stability in electrocatalysis differs from other branches of
catalysis, since it is the potential that makes the system reactive, while temperature and
pressure are relatively low (limited by the normally aquatic environment).

There are three large classes of catalysis – biocatalysis, homogeneous catalysis and
heterogeneous catalysis.[9] Biocatalysts, i.e. enzymes protein synthesis, uses its geometric
structure to facilitate a reaction. Homogeneous and heterogeneous catalysts typically
have a more specific active site, consisting of few or single atoms; the difference them lies
in the phases of the catalyst and the reactants. In homogeneous catalysis, they are in the
same phase, typically liquid phase. In heterogeneous catalysis, the catalyst is in one phase
(typically solid) and reactant are in a different phase (gas or liquid). Electrocatalysis falls
within the latter category, since the reactants are dissolved in the electrolyte and the
catalytically active electrodes are solid.

2.2 Electrochemistry

Electrochemical reactions are chemical processes that involve charge transfer across an
interface between a solid and a liquid phase.[13] Electric potential can be used to drive
the reaction, which is called electrolysis, e.g. splitting of water to hydrogen and oxygen
and glycerol and methanol electrooxidation. Alternatively, electric power can also be
generated by the reaction, which is the case in a galvanic cell, e.g. batteries, and metal
corrosion.

The electrochemical cell, as described in the introduction and shown in Figure 1.1, has
two electrodes connected with wires conducting electrons and an electrolyte conducting
ions – the anode and the cathode. Reduction reactions (where electrons are gained) occur
at the cathode, and oxidation reactions (where electrons are lost) occur at the anode1.
The pair of reactions are called half reactions, since they must occur simultaneously due
to charge conservation. As an example, we have water splitting, where the cathodic half
reaction is HER,

2 H+ + 2 e− −−→ H2 (2.4)

and the anodic reaction reaction is the oxygen evolution reaction (OER)

H2O −−→ 2 H+ + 2 e− +
1

2
O2 (2.5)

with the total reaction
2 H2O −−→ 2 H2 + O2. (2.6)

The anode and cathode half reactions can in many respects be treated separately. For
example, the products from water splitting, H2 and O2, can be collected without mixing

1There is a misconception that the anode is always at a higher potential than the cathode. This is
true for an electrolytic cell, but it is the opposite in a galvanic cell. In both cases, the electrons flow from
the anode to the cathode, but in the galvanic case spontaneously (towards the positive cathode) and in
the electrolytic case forcibly.

8



at the cathode and anode respectively. This is a general and practical feature for
electrochemical reactions.

2.2.1 Nernst equation

We consider the total electrochemical reaction to occur in an isothermal-isobaric ensemble
with constant temperature T , pressure p and number of particles N . The thermodynamical
potential in this ensemble is the Gibbs free energy, G, with differential

dG = V dp− S dT − dWel (2.7)

where V is the volume, S the entropy and Wel the electric work.[31] Since the pressure
and temperature are constant, we see that the difference in Gibbs free energy equals the
electric work. The work can be simply derived as the energy gained or lost by moving ne
electrons with charge e over the electric potential U measured vs. a Uref ,[13] meaning
that

∆G = −neeU. (2.8)

The Gibbs free energy for species i in a mixture is dependent on the thermodynamic
activity a

Gi = G0
i + kBT ln ai (2.9)

where the superscript 0 denotes a standard state.[13] The activity can be seen as an ‘effec-
tive concentration’; in the dilute limit, they are equal, but with increasing concentration,
the interactions between the particles lowers their ability to be chemically active. In
practical calculations, the activity is commonly approximated by properly normalised
concentrations.

Inserting Equation 2.8 in Equation 2.9 gives

Ui = U0
i +

kBT

nee
ln ai (2.10)

which is known as the Nernst equation.[32] In principle, Ui can be defined anywhere in
the cell, but it turns out that it is only possible to measure the potentials of the metal
electrodes, and only relative to a standard electrode.

2.2.2 The double layer

Naively, one might think that the potential drops linearly through the electrolyte. However,
it turns out that almost the entire potential drop occurs close to the electrodes in the
thin double layer.[13] The name refers to the fact that there is one charged layer in the
electrode surface and an opposite charge layer in the adjacent electrolyte, which effectively
screens the rest of the cell (Figure 2.4). As the thickness of the layer in the electrolyte
is in the order of magnitude of the size of hydrated ions, the local electric field is large.
From a modelling perspective, this means that the local properties of the double layer,
e.g. the electric constant of water,[33] are hard to determine and can not be expected to
be similar to the ones in the bulk solution.

9
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Figure 2.4: The potential difference between the electrode and the electrolyte forms a
layer of opposite charges, the double layer, in each medium at the interface. This screens
the electric potential effectively, so that almost the entire potential drop takes place
there.The figure adapted from Wikimedia Commons.[34]

On a more macroscopic level, the double layer can be seen as a plate capacitor with a
differential capacitance

Cd =
dQ

dU
(2.11)

where Q is the charge in either of the layers and U is the potential between the electrode
and the electrolyte.[13] In an experiment where the potential is varied, (i.e. cyclic
voltammetry, section 2.3), a current is generated from the charging and discharging of
the double layer.

2.2.3 Reference electrodes

Experimentally, it is desirable to keep track of the electric potential. It is impossible
to measure the potential difference between an electrode and the electrolyte, since the
insertion of a conducting device would introduce a new phase barrier and a new double
layer.[13] However, it is possible to measure the relative potential between electrodes. By
using a known equilibrium equation, it is possible to construct a reference electrode. All
reactions can then be defined relative to the reference.

10



Historically, the normal hydrogen electrode (NHE) have been used as a reference
potential, defined as the equilibrium for hydrogen gas and free protons and electrons

H2 ←−→ 2 H+ + 2 e−, (2.12)

on platinum in a 1 N acid solution (i.e. 1 M H+ or pH 0) at 1 atm and 298 K.[35] The
reason for this definition is that it is easy to construct such an electrode in practice. Later,
it has been viewed as more suitable to have a reference where the thermodynamic activity
of the hydrogen ions is 1 (i.e. they do not interact with other ions). The latter is known
as the standard hydrogen electrode (SHE).2 Such an electrode can not be constructed,
but it can be used as basis for tables on electrodes.

When hydrogen evolution or oxidation half reactions (Equation 2.12) are involved in
the total reaction, the electrode potential depends on pH, since hydrogen concentration is
included in the Nernst equation. The potential shift,

∆U = −kBT
e

ln[H+] = +
kBT

e ln 10
pH (2.13)

may be included in the potential itself,3 which defines the reversible hydrogen electrode
(RHE),[36]

URHE = USHE +
kBT

e ln 10
pH. (2.14)

2.2.4 Kinetics

Consider the Arrhenius equation for the backward and forward rates of an equation with
only one step,[13, 37]

r = r+ − r− = A+creac.e
−βGA,+ −A−cprod.e−βGA,− . (2.15)

The current i, as well as the forward and backward currents i+ and i−, are proportional to
the rates with a factor nee. At the equilibrium potential, U0, the forward and backward
currents are equal. The exchange current density, i0 is defined as this current,

i0 = i+(U0) = i−(U0). (2.16)

At other potentials there will be a net current in either direction. We define the overpo-
tential4

η = U − U0. (2.17)

Remember that the thermodynamics of the initial and final states of the reaction changes
linearly with the electric potential. This change, ∆G = −neeη, is added to the difference
between the reaction barriers, see Figure 2.5. We introduce a transfer coefficient, 0 ≤ α ≤ 1

2SHE also differs from NHE that the former is defined at 1 bar = 105 Pa, slighly lower than 1 atm, but
this is generally negligible.

3At room temperature, this shift is 0.059 V per pH.
4The term overpotential is sometimes colloquially used for the limiting potential relative to the

equilibrium potential, see below.
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Figure 2.5: Energy landscape of a reaction at the equilibrium potential (black) and a
more oxidative potential (red). The change in Gibbs free energy, ∆G, is equal to the
barrier difference, ∆G+ −∆G−.

such that
∆G+ = ∆G+,0 − αneeη (2.18)

and
∆G− = ∆G−,0 + (1− α)neeη. (2.19)

Thus we have an expression for the total current,

i = i0
(
eαβneeη − e−(1−α)βneeη

)
(2.20)

which is known as the the Butler-Volmer equation. When going to overpotentials far from
0, and as long as the reaction is not limited by transport processes, one of the terms can
be neglected, which gives a linear relationship with the logarithm of the current,

η = b(ln i− ln i0) (2.21)

where
b = (αβnee)

−1 (2.22)

is called the Tafel slope.
We see that the thermodynamic landscape – both the product/reactant energies and

the barriers – depend strongly on the potential. This is a difference vis-à-vis kinetics in
standard catalysis, where we normally treat the barriers as independent of the temperature.
A potential is a far superior driving ‘force’ compared to temperature – a potential of
0.5 eV corresponds to the thermal energy at 6000 K.

Multi-step reactions

Consider an electrochemical reaction with several steps and let us say that it is an
oxidation. At the equilibrium potential between the reactants and the products, U0,
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Figure 2.6: Energy landscape of a reaction with four elementary one-electron transfer
steps (corresponding to three intermediates). At the reference potential, Uref , some of
these steps are uphill and the reaction is not thermodynamically favourable. The largest of
these is identified as the PDS. At the product-reactant equilibrium potential Up.r.eq, there
are typically still uphill steps, including the PDS. At the theoretical limiting potential,
Ulim, the PDS is at equilibrium and the reaction is spontaneous. We have ∆GPDS = eUlim.

there are generally intermediates with lower and higher energy. If we want the forward
reaction to be spontaneous, we need to increase the potential until the highest step is
energetically ‘levelled out’, see Figure 2.6. This step is called the potential determining step
(PDS)[38] and we refer to the associated potential as the theoretical limiting potential,5

Uonset.[39] A reaction with several steps has coupled Butler-Volmer equations for every
step. Above the theoretical limiting potential, the current is expected to increase more
or less exponentially in the kinetic regime. If the PDS is significantly higher than other
steps, it can be considered rate-determining, and then the Tafel slope could be associated
with it. Regardless, it is not straightforward to find a precise onset potential.

There are three common ways of defining an experimental onset potential,[40] as
illustrated in Figure 2.7:

a) The potential at which the current exceeds a critical value, icrit.

b) The potential at which the slope, dj/ dU exceeds a critical value.

c) The potential at which the tangent to the curve at the maximum slope of i(U)
intersects i = 0.

None of them rests rigorously on theoretical foundations. In this project, we are trying to
verify calculated limiting potentials, so the important concern is to choose a definition that
corresponds to potential where thermodynamics becomes favourable, i.e. the definition of
the theoretical limiting potential shown in Figure 2.6. Still, we should keep in mind that
an experimental onset potential is not an exact value.

5We refer to it as theoretical onset potential in Paper II.
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Figure 2.7: Three ways of defining experimental onset potential. a) Critical current.
b) Critical slope. c) Tangent intersection. The choice of critical current and critical slope
are in principle arbitrary, as long as chosen within reason.

Since the focus of this thesis is thermodynamics, only currents near the onset potential
are of interest. Thus we can neglect transport processes from this discussion.

2.3 Cyclic voltammetry

Cyclic voltammetry (CV) is a measurement technique, where the potential in an elec-
trochemical cell is varied forward and back between two potentials, and the current is
measured as output.[13, 41] Figure 2.8 shows a schematic CV setup with three electrodes
– a working electrode (WE), a counter electrode (CE) and a reference electrode (RE)6 –
connected to a potentiostat, operating as an adjustable power source, a voltmeter, and an
ammeter. The source potential, Us, is applied between the WE and CE. The potential
between the WE and the RE, Um, is measured with the voltmeter, and is kept at the
desired potential variation by adjusting Us. The current between the WE and the CE is
measured with the ammeter. The setup allows the study of the WE only, since the circuit
with the RE and the CE makes sure that Us is large enough, regardless of the choice of
CE. In order to study oxidation reactions on gold, a polycrystalline gold WE was used.
The cell setup, including a graphite CE and a Ag/AgCl RE, can be seen in Figure 2.9.

We are interested in converting the measured electrode potential to a standard electrode.
Since the studied reactions in this work are pH dependent, we choose RHE. The conversion
is carried out with the help of the Nernst equation,

VRHE = VAgCl,0 +
kBT

e

(
ln cKClcreac. +

pH

ln 10

)
(2.23)

6The reason for terminology is that the working and counter electrodes typically alternate between
being anode and cathode, as the potential is changing.
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Figure 2.8: Circuit diagram for basic cyclic voltammetry. Adapted from SJ Electron-
ics.[41]
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Figure 2.9: Setup of electrochemical cell for cyclic voltammetry. The working electrode
(WE) is a polycrystalline gold wire, the counter electrode (CE) a graphite rod, and the
reference electrode (RE) Ag/AgCl.
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where cKCl is the concentration of KCl in the reference electrode and creac. the concentra-
tion of (oxidative) reactant, such as glycerol or methanol.

The accuracy of the potentiostat is generally high, in terms of control and sensitivity.
However, CV provides no direct information about the cause of the currents. In order to
interpret a voltammogram, one must be able to recognise features that are not directly
related to the studied reaction. Hydrogen evolution starts when going to low (cathodic)
potentials and oxygen evolution (OER) starts when going to high (anodic) ones; on gold,
HER starts around the equilibrium potential 0 V vs. RHE[42] while OER requires around
0.7 V of overpotential above the equilibrium potential of 1.23 V vs. RHE.[43] Dissolved
atmospheric oxygen is reduced below 1.23 V, according to the oxygen reduction reaction
(ORR, the backward reaction in equation 2.5), which can be prevented by purging the cell
with nitrogen or argon. There will be a latent current, positive on the anodic scan and
negative on the cathodic scan, corresponding to the capacitive properties of the double
layer. Surface oxidation/reduction can also be seen.

In order to try to single out the desired reaction, two runs are usually performed – one
with the reactant and one without – to study the difference between them. Still, only the
current is obtained and the mechanism and the products remain unknown.

There are several possible methods to measure the products. Gas chromatography
(GC) and high performance liquid chromatography (HPLC) are methods for separating
gas and liquid products respectively,[44] which are followed by detection processes. While
such analysis could be interesting in the future, we have considered it to be out of scope
for this mostly theoretical project.

2.3.1 Underpotential deposition of copper (Cu UPD)

CV gives a total current, but we are generally more interested in surface current density.
This requires us to know the electrochemically active area of the electrode submerged in
the electrolyte. This can be done with underpotential deposition of Cu (Cu UPD).[45]

The equilibrium potential for the reaction

Cu←−→ Cu2+ + 2 e− (2.24)

is 0.34 V vs. RHE,[13] meaning that Cu ions in the solution will reduce and form metallic
Cu in bulk below this potential. However, it is possible to form a monolayer of Cu at
a slightly higher potential. Ideally, a cathodic scan will see two distinguished reduction
peaks corresponding to these two processes. The total charge of one monolayer of Cu is
computed by integration of the first peak (Figure 2.10). The charge can be converted to
a surface area, given knowledge of the surface facets.[45]

2.4 Modelling electrocatalysis

We now approach the main task of modelling electrocatalysis on an atomic level. This is
not an easy task due to four reasons:

• The double layer, where the reaction occur, has a strong electric field; its properties,
like dielectric constant of water or pH, are very different from the properties of
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Deposition

Bulk deposition

Figure 2.10: Underpotential deposition of copper from supporting information to
Paper II. As the potential is decreased, a monolayer of Cu forms on the Au surface.
Eventually, bulk Cu is deposited (blue). By turning the potential sweep before the bulk
deposition (cyan, yellow or somewhere in between), we can measure the deposited and
released charge qML to calculate the surface area. The dotted line is the blank run,
dominated by capacitive effects of the double layer.
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the bulk of the solvent and depend heavily on small displacements relative to the
electrode.[33, 46]

• Varying electric potential changes the thermodynamic landscape, including barriers.
Even if it would be possible to calculate a barrier, it does not mean that it is valid
at different potentials.

• The proton and electron transfer are hard to model, since it is not conclusively
known how the processes takes place.[47]

• It turns out that electron structure calculations in a system with periodic boundary
conditions has difficulties with handling charged systems.[48]

2.4.1 Computational hydrogen electrode

We know that 0 V vs. RHE is the equilibrium potential for hydrogen protolysis by
definition. This means that these systems have the same Gibbs free energy at standard
conditions. We also know that the electric energy of the electron is eU . If we now assume
that GH2

is independent of the potential, we can calculate the energy of the protolysed
system by running an electronic structure calculation for H2 and then just add the eU
term, visualised in Figure 2.11. This is known as the computational hydrogen electrode
(CHE).[49, 50] In order to use it in calculations with other species, we need to assume
that the energy of neutral species (including H2) are independent of the potential.

The CHE is an elegant way of avoiding some of the problems of electrochemical
modelling. There are, however, a number of limitations of the model:

• It assumes that everything except H+ and e− are independent of potential (and
electric field). This can break down, in particular for large molecules that extend
beyond the double layer into the electrolyte, since there will be a large potential
gradient over the molecule.

• It assumes that electron-proton transfer is coupled, which is not necessarily always
the case.

• Barriers and kinetics can not be modelled, since the model circumvents them.

More complex models

There have been further model development to directly model the double layer and
kinetics. By introducing a multilayer of water and hydrogen atoms, electrons will be
transferred from the hydrogen atoms to the surface. The potential can be regulated by the
number of hydrogen atoms, which requires a large simulation cell to sample the potential
range. Kinetics with coupled electron-proton transfer can be modelled, but the potential
will vary throughout the thermodynamic barrier, again requiring a large simulation cell
to diminish the effect.[51, 52]

Alternative models try keep the potential constant by changing the charge. These
include explicit charging the surface, compensating with a homogeneous background[53]
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Figure 2.11: Computational hydrogen electrode.

or jellium (uniform electron gas) in the electrolyte region,[54] and implicitly compensating
for energy corresponding to potential change (assuming that it is separable)[55],

2.4.2 Surface Pourbaix diagrams

A Pourbaix diagram is a two-dimensional phase diagram as a function of pH and po-
tential,[13] named after Marcel Pourbaix for his studies of corrosion. The diagram is
calculated using thermodynamic data of the material in question and the Nernst equation.
However, the diagrams that use tabulated experimental data is normally only valid for
the bulk of the material, and we are interested in knowing the local surface structure.
Using density functional theory, it is possible to construct a surface Pourbaix diagram by
calculating the energy of adsorbed oxo (*O) or hydroxo (*OH) groups.[56] The surface
Pourbaix diagram is easy to read since it is one-dimensional, only depending on the
potential, since the pH dependence is implicit when using RHE (Figure 2.12).
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Figure 2.12: Surface Pourbaix diagram of Au(111) calculated in Paper II. The surface
is adsorbent-free at potentials below 1.0 V vs. RHE, above which (a) 1/2 ML *OH and
(b) 1/4 ML *O are formed. At 1.5 V, (c) 1/2 ML *O and (d) a mixture of 1/4 ML *O
and 1/2 ML *OH are formed.
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Chapter 3

Density functional theory

“ The underlying physical laws necessary for the mathematical theory of a
large part of physics and the whole of chemistry are thus completely known,
and the difficulty is only that the exact application of these laws leads to
equations much too complicated to be soluble.

– Paul Dirac [57]

3.1 From Dirac to Schrödinger

We start our derivation from a relativistic regime (see Strange[58] for further details).
The behaviour of quantum mechanical systems is governed by the time-dependent Dirac
equation

i~
∂

∂t
Φ(r, t) = ĤΦ(r, t). (3.1)

where the Hamiltonian Ĥ is a system-dependent operator with real eigenvalues (normally
Hermitian), and Φ(r, t) is the wavefunction, containing all information about the quantum
mechanical system.[59] By separation of variables, we assume that the wavefunction can
be written as a product of purely time-dependent and a space-dependent parts,

Φ(r, t) = Ψ(r)χ(t), (3.2)

which inserted in equation 3.1 gives

i~
χ(t)

dχ(t)

dt
=

1

Ψ(r)
ĤΨ(r). (3.3)

As both sides depend only either time or space, they must be constant. It turns out that
this constant is the energy, E, so that the time-dependent part, χ can be solved as

χ = e
−iEt

~ (3.4)

and the space-dependent part, Ψ must obey the time-independent Dirac equation,

ĤΨ = EΨ. (3.5)

As we can see, the energies are the eigenvalues of the Hamiltonian. The classical expression
of relativistic energy is

E =
√
p2c2 +m2c4, (3.6)
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and by insertion of the quantum mechanical operators for momentum, p̂ = −i~∇, we get
the following equation

c(−iα · ∇+ βmc)Ψ(r) = EΨ(r). (3.7)

In order for the square of the right hand side to be equal to the square of the energy, the
cross terms must be zero. This means that α and β must be 4× 4 matrices, constructed
as blocks of 2× 2 Pauli matrices and identity matrices. Thus, Ψ(r) is a four-component
wavefunction. These four terms correspond to a pair of 2× 2-spinors. By rewriting the
Dirac equation in the presence of an electromagnetic field, it can be seen that one of the
spinors is an order of c smaller than the other one.1 In the non-relativistic limit, the
smaller spinor may be eliminated, and by shifting the the absolute energy with mc2, we
get the (time-independent) Pauli equation,( 1

2m

(
− i~∇− eA(r)

)2 − e~
2m
σ · B̂(r) + V (r)

)
Φ(r) = EΨ(r) (3.8)

The two components of the wavefunction correspond to spin up and down and are coupled
via the magnetic field term. In the absence of magnetic field, the two spin states are no
longer coupled and we can reduce the wavefunction to one component. We end up with
the familiar time-dependent Schrödinger equation.(

− ~2

2m
∇2 + V

)
Ψ = EΨ. (3.9)

3.2 The many-body problem

We are considering a system consisting of N electrons with charge e and K positively
charged nuclei with charge ZIe. As the potential between two particles with charges q1
and q1 is given by the Coulomb interaction

V (r) =
q1q2

4πε0r
(3.10)

we can write the Hamiltonian as [60, 61]

Ĥ =−
N∑
i=1

~2

2me
∇2
i −

K∑
I=1

~2

2MI
∇2
I +

1

4πε0

N∑
i=1

N∑
j>i

e2

|ri − rj |

− 1

4πε0

K∑
I=1

N∑
i=1

ZIe
2

|ri −RI |
+

1

4πε0

K∑
I=1

K∑
J>I

ZIZJe
2

|RI −RJ |
,

(3.11)

where me and ri are the mass and the position of electron i and MI and RI the mass and
position of nucleus I. As the particles of the systems are fermions, they cannot occupy
the same quantum state according to the Pauli exclusion principle,[62] meaning that the
wavefunction must be antisymmetric with respect to exchange of two indistinguishable

1For antiparticles, the order of magnitude of the two spinors are opposite, and the energies are negative.
Otherwise, the reasoning is analogous.
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particles. These constraints, along with the fact that it is a many-body problem, means
that the equation is intractable for anything beyond certain one-electron systems, e.g. the
hydrogen atom.

3.2.1 Born-Oppenheimer approximation

A first step to reduce the problem is to assume that the electron and ion wavefunctions
are separable

Ψtot(r,R) = Ψel(r,R)Ψnuc(R) (3.12)

which is known as the Born-Oppenheimer approximation.[61, 63, 64] The approximation
means that the electrons follows the movement of the nuclei instantaneously, while
remaining in the same stationary state. The nuclei interacts with an average potential
from the electrons and can be treated in a classical, Newtonian fashion. Intuitively, the
separation is justified by the fact that the electrons are much lighter than the ions and
thus that their time-scales of their dynamics are much smaller. However, this assumes
that the energy associated with electron transitions are large enough to keep them in a
stationary state. This does not hold for metallic systems, as the electrons have access to
a continuum around the Fermi level in response to any nuclear movement. What saves
us is that at temperatures much below the Fermi temperature of the metal (typically
thousands of degrees), the electron transitions are limited to a small region around the
Fermi level, which has little impact of most sought properties.[65]

The electron Hamiltonian may now be written as

Ĥel = −
N∑
i=1

~2

2me
∇2
i +

1

4πε0

N∑
i=1

∑
j>i

e2

|ri − rj |
− 1

4πε0

K∑
I=1

N∑
i=1

ZIe
2

|ri −RI |
. (3.13)

and by denoting the last term as Vext(ri) and using Hartree atomic units (~ = me = e =
1/(4πε0) = 1), we have

Ĥel = −1

2

∑
i

∇2
i +

∑
i

∑
j>i

1

|ri − rj |
+
∑
i

Vext(ri). (3.14)

The many-electron problem still remains intractable. There are essentially two ways to
move forward. One way is to expand the wavefunction; the simplest way is to assume
that it may be written as a linear combination of products of one-electron wave functions
that satifies the antisymmetry property. This approach is called Hartree-Fock and was
an early practical method for electronic structure calculations.[61, 66, 67] However, it is
computationally expensive, in particular for larger systems with more than a couple of
hundred electrons.

The other approach is to abandon the search for the wavefunction and instead work
with the total electron density.

3.2.2 The Hohenberg-Kohn theorems

Using the electron density, n(r) = |Ψ|2, instead of the wavefunction to evaluate quantum
mechanical properties would at least in a formal sense lower the degrees of freedom of
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the system. This idea was introduced independently by Thomas and Fermi in 1927, [60,
68, 69] but the theoretical framework to justify the approach was put forward in 1964 by
Hohenberg and Kohn.[70] The article is the basis for the two Hohenberg-Kohn theorems.
The first of these states that the ground state electron density, n0(r), uniquely determines
the external potential. Since the many-body Schrödinger equation in principle can be
solved knowing Vext, the ground state electron density uniquely defines all the solutions
of the wavefunction and thus all properties of the system. The second theorem proves
the existence of the universal Hohenberg-Kohn functional F [n(r)] such that the energy
functional

E[n(r)] =

∫
Vext(r)n(r) dr + F [n(r)] (3.15)

has its global minimum at the ground state energy, for all possible Vext(r). However,
since we have only rewritten the original problem, finding F [n(r)] would be equivalent to
solving the many-body problem and is thus equally intractable.

3.2.3 The Kohn-Sham approach

In 1965, Kohn and Sham proposed a method for handling the universal functional.[65, 71]
The idea is to replace the real, interacting electrons with independent particles moving in
an effective potential, such that the electron densities are the same.

The Kohn-Sham electrons, with occupied orbitals ψi, have the electron density

n(r) =

N∑
i=1

|ψi(r)|2 (3.16)

and kinetic energy2

T0 = − ~2

2m

N∑
i=1

〈ψi|∇2|ψi〉. (3.17)

T0 is easy to calculate and makes up the second largest part of the energy.[72] The largest
contribution comes from the interaction between the electron from the average of the
other electrons, i.e. from the total electron density, the Hartree energy

EH[n] =
1

2

∫ ∫
n(r)n(r′)

|r− r′| dr dr′. (3.18)

Since the electron density includes the electron in question, this means that EH inherently
contains a so-called self-interaction error, which must be taken into account by other
means.

The left-out energy contributions are exchange, which assures that the Pauli principle
is upheld, and correlation containing the rest of the many-body effects, including T − T0.
In standard DFT, these are lumped together to the exchange-correlation energy Exc. It

2T0 does not correspond to the real kinetic energy, because the Kohn-Sham orbitals are different from
the real ones, even if the electron densities would match.
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must be approximated, which is discussed in the next section 3.3. The total energy can
now be expressed as

E =

∫
Vext(r)n(r) dr + T0 + EH + Exc. (3.19)

By application of the variational principle, we derive the Kohn-Sham equation for electron
i,

−1

2
∇2ψi(r) +

[
Vext(r) +

∫
n(r′)

|r− r′| dr′ +
δExc

δn(r)

]
ψi(r) = εiψi(r). (3.20)

Note that the Kohn-Sham orbitals ψi and the Kohn-Sham energies εi are not the same as
the real orbitals or energies, but only exist to find the true electron density, n(r), and the
energy,

E[n] =

N∑
i=1

εi − EH[n]−
∫
n(r)Vxc[n(r)] dr + Exc[n]. (3.21)

A typical DFT implementation solves the Kohn-Sham equations, with an appropriate
choice of exchange-correlation functional. Starting with an initial guess of n(r), e.g. a
sum of atomic orbitals, the equations are solved iteratively until self-consistency.

3.3 Exchange-correlation functional

As seen above, the exchange-correlation functional is the hard part of DFT calculations.
The exact exchange-correlation functional is not known, and, since finding it would be
at least as hard as solving the classical many-body problem. We are left with using
different levels of approximations, which can be ordered on the so-called Jacob’s ladder
from the Hartree world to the heaven of chemical accuracy.[73] Going higher on the ladder
hopefully increases accuracy but definitely increases computational costs.

A natural starting point for approximations is the homogeneous electron gas, which is
a decent model for metallic systems. The exchange energy, εx, is given exactly as[65]

εhx[n] = −3

4

(
3n

π

) 1
3

(3.22)

while the correlation energy, εhC, has been computed with Monte Carlo simulations to high
numerical accuracy.[74] With help of this, and assuming that the electron density behaves
locally as the homogeneous electron gas, we can make approximations of the exchange-
correlation functional for a general system by expansion in terms of the derivatives of the
electron density.

The first approximation is the local density approximation (LDA),[71] which locally
only depends on the value of n(r). We have

ELDA
xc =

∫
n(r)εhxc[n(r), r] dr. (3.23)
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Usually, the accuracy provided by LDA is not enough. The next step is to add dependence
of the gradient of n(r), in the generalised gradient approximation (GGA)[75–78]

EGGA
xc =

∫
n(r)εhxc[∇n(r), n(r), r] dr. (3.24)

A relatively computationally cheap and overall accurate GGA functional was introduced
by John Perdew, Kieron Burke, and Matthias Ernzerhof in 1996.[79] Being one of the first
exchange-correlation functionals with these good properties, the so-called PBE functional
has become one of the most popular choices of exchange-correlation functional. However,
PBE has a number of drawbacks in terms of accuracy for certain systems; a particular case
in this project is its lack of long-range dispersion, which is discussed below. In addition to
PBE, there are a number of other GGA functionals. Some of them have been developed
as a response to the weak points of PBE, while others have been fitted to chemical data.

The third level on the ladder includes dependence on the second derivative of the
electron density, ∇2n(r), which can be interpreted as the kinetic energy of the Kohn-Sham
electrons. [80] This is called Meta-GGA.

On levels above LDA, it is possible to improve accuracy by including exact exchange,
i.e. perfect obedience to the Pauli exclusion principle for fermions. Exact exchange is
obtained from Hartree-Fock theory, which is a wavefunction based theory. In practice,
hybrid functionals are constructed by calculating Hartree-Fock exchange for the Kohn-
Sham orbitals, which is mixed into the rest of the DFT solution.[81] These can calculate
e.g. band gaps accurately, but are very computationally expensive.[82]

3.3.1 Long range dispersion

Exchange-correlation functionals in the lowest steps of Jacob’s ladder are local or semi-
local in nature, and can not model long range effects.[72] In particular, London dispersion
forces between instantaneous multipoles, stemming from quantum fluctuations,3[83] are
missed out.[84] There are several approaches to add dispersion to GGA functionals:

A simple model, proposed by e.g. Grimme,[85] is to parametrise the interaction by
introducing pairwise terms, proportional to 1/r6 at medium to large distances, similar to
the Lennard-Jones potential.[86] However, the approximation that the total interaction
can be obtained by summing of pair potentials is inaccurate for many systems, as a third
(forth, fifth etc.) atom influences the dynamic multipoles in the pair.[87]

Lundqvist et al.[88, 89] put forward the idea of calculating the total correlation as the
sum of a local and a non-local contribution

Ec = El
c + Enl

c , (3.25)

where El
c is approximated as the LDA correlation and

Enl
c =

1

2

∫
n(r)φk(r, r′)n(r′) dr dr′, (3.26)

3London dispersion is some times used interchangeably with van der Waals. Strictly speaking, van
der Waals includes London dispersion, as well as e.g. interactions between permanent dipoles, and
permanent-induced dipole pairs.
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where φk is a generating response function known as the kernel. The choice of exchange
fell on a variant of PBE (revPBE)[90], and this functional is called vdW-DF.[89] By
instead choosing fitted exchange proposed by Becke,[76, 91, 92] Klimeš et al. developed
the optB88-vdW and optB86b-vdW.[93, 94] Another variety is to use training on chemical
data sets with machine learning to get a bayesian error estimation functional (BEEF-vdW)
[95].

3.3.2 Spin

In order to model magnetic and open shell systems correctly, we need to include spin.
From equation 3.8 we know that the wavefunction in the non-relativistic regime is a
two-component spinor coupled with the magnetic field. In the Kohn-Sham approach
(equation 3.19) we see that the kinetic energy, depending on ψi, is trivially split into
the two components, while the external and Hartree potentials only depend on the total
electron density. The coupling is therefore contained in the exchange-correlation functional,

εxc = εxc[n↑, n↓], (3.27)

which would mean that the generalisation in the case of LDA, the local spin density
approximation (LSDA),[96, 97] would be

ELSDA
xc [n↑, n↓] =

∫ (
n↑(r) + n↓(r)

)
εhxc[n↑(r), n↓(r), r] dr. (3.28)

εhxc would in this case be a linear combination of exchange-correlation for fully polarised
and unpolarised homogeneous electron gas. The spin versions of GGA and higher
exchange-correlation functions are found in an analogous fashion.

3.4 Hellmann-Feynman theorem

If the Hamiltonian depends on a parameter λ, we have[98]

dEλ
dλ

= 〈Ψλ|
∂Ĥλ

∂λ
|Ψλ〉. (3.29)

which is known as the Hellmann-Feynmann theorem. A special case of λ of interest is the
coordinate of nucleus I, RI . This derivative will give us the force on nucleus I. From the
many-body Hamiltonian (equation 3.11), and under the Born-Oppenheimer assumption
that the nuclei interact with the average of the electron cloud, we get

− ∂E

∂RI
= 〈Ψ| − ∂Ĥ

∂RI
|Ψ〉

=

∫
n(r)

ZI(r−RI)

|r−RI |3
dr +

∑
J 6=I

ZIZJ(RI −RJ)

|RI −RJ |3
(3.30)

which is the same as the classical expression. For practical purposes, this means that
both the energy and the force can be calculated in a single-point calculation.
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3.4.1 Second derivative

The Hellmann-Feynman theorem can in principle be extended to the second derivative of
a parameter, namely [99, 100]

d2Eλ
dλ2

= 〈Ψλ|
∂2Ĥλ

∂λ2
|Ψλ〉+ 2〈∂Ψλ

∂λ
|(Eλ − Ĥλ)|∂Ψλ

∂λ
〉. (3.31)

However, it is not possible to calculate the second term in standard DFT, since the wave
function and its derivatives are not directly accessible. Instead, the second derivative
with respect to nuclear coordinates (the Hessian matrix) can be calculated numerically
with finite differences, or analytically with more complex methods, such as the coupled-
perturbed Kohn-Sham method,[101] the fragmented molecular orbital method,[102] and
auxiliary density pertubation theory.[103]

3.5 Basis sets and periodicity

When solving the Kohn-Sham equations computationally, the orbitals must be expanded
in a basis set χj

ψi =

K∑
j

cijχj , (3.32)

where the size of the basis set, K, in principle is infinite, but limited in practical
application.[61] Insertion in equation 3.21,∑

j

cijĤ|χj〉 = εi
∑
j

cij |χj〉, i = 1, 2, 3, . . . , N (3.33)

and multiplying with the complex-conjugate 〈χk|, we obtain∑
j

cij〈χk|Ĥ|χj〉 = εi
∑
j

cij〈χk|χj〉, i = 1, 2, 3, . . . , N. (3.34)

Introducing the shorthand notation Hkj = 〈χk|Ĥ|χj〉, Skj = 〈χk|χj〉 and omitting the i
in the coefficients, we have

HkjCj = εiSkjCj , i = 1, 2, 3, . . . , N, k = 1, 2, 3, . . . ,K (3.35)

which may be written on matrix form as

(H− εiS) C = 0, i = 1, 2, 3, . . . , N. (3.36)

This is a generalised eigenvalue problem for εi with the Hamiltonian matrix H, the overlap
matrix S and the basis coefficient vector C.
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3.5.1 Plane-waves

A natural choice of basis set for a periodic system is plane-waves.[60] Since plane-waves
are orthogonal, the overlap matrix S reduces to the identity matrix. In the work presented
here, the plane-wave based Vienna Ab-initio Simulation Package (VASP)[104, 105] was
used for all calculations. The Kohn-Sham orbitals are expanded in a Fourier series

ψi =
∑
k

cike
ik·r, (3.37)

where the i in the exponent is the imaginary number. The series is truncated so that the
kinetic energy of the plane-waves are smaller than a cut-off energy, i.e.

~2k2

2me
< Ecut. (3.38)

When a low cut-off is used, only smooth changes of the orbitals are accurately described.
Including higher wave numbers will describe more rapid features and ultimately converge
more or less monotonically. Rapidly changing core electronic orbitals are hard to converge,
but it can be avoided by combining the plane-wave basis set with pseudopotentials, i.e.
that the core electrons are not treated as electrons but lumped together with the potential
from the nucleus.[106, 107] This approximation is often acceptable, since the behaviour of
the valence electrons is normally what decides the properties of an atomic system.

K-point sampling and smearing

Working with a periodic system, it is natural to Fourier transform it to perform calculations
in reciprocal space (k-space). Implementation of the Kohn-Sham integrals is carried out as
a summation over well chosen k-points.[108] The discrete nature of the k-point sampling
can lead to a convergence problem: An electron close to the Fermi level can in one
iteration be placed in one orbital, which in turn changes the electron structure. The new
electron structure makes it beneficial for the electron to move to a new orbital, which
gives the original (or similar) electron structure. A remedy to this oscillatory behaviour
is electron smearing, i.e. allowing partial occupation of orbitals.[109] One example is to
let the electrons be Fermi-Dirac distributed at a fictive electron temperature greater than
zero. Once the system has converged, the energy is extrapolated back to 0 K.
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Chapter 4

Applied electronic structure calculations

“ Knowing is not enough; we must apply. Willing is not enough; we must do.

– Johann Wolfgang von Goethe

Several types of electronic structure calculations, of which DFT is one, allow us to
calculate the energy of a system of atoms for a certain geometry. However, single energies
have no physical meaning. In order to determine physical properties, such as adsorption
sites, adsorption energy, spectroscopic vibration energies and reaction free energy, we
need to consider applications, such as energy optimisation, vibrational analysis, and
thermodynamics.

4.1 Relaxation

Most properties we are interested in are calculated in an energetically local minimum,
i.e. a configuration where any displacement results in a higher energy. To find a local
minimum, we need to determine the forces along each coordinate,

fi =
∂E

∂Ri
(4.1)

and follow the gradient until the norm of each fi is below a certain limit, e.g. 0.02 eV/Å.[61]
The fact that the force can be evaluated for each single point calculation simplifies the
process.

4.2 Adsorption and reaction energies

In computational codes like VASP, the absolute energy of a system is highly dependent on
parameters like exchange-correlation functional. Differences of energies are less sensitive,
due to cancellation of errors.

In order to compute the adsorption energy of species A on top of a surface ∗, three
calculations are required: One of A in gas phase (Ag), one with adsorbed A (A∗) and one
with surface only (∗). The adsorption energy is calculated as

Eads(A) = Etot(A∗)− Etot(∗)− Etot(Ag) (4.2)

With this definition, we have that Eads < 0 means that adsorption is energetically
favourable.
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The calculation of reaction energies are made in an analogous way. Let us say that we
have the following reaction

A∗ −−→ B∗ + C∗ + Dg.

Then, the reaction energy would be calculated as

Ereac = Etot(B∗) + Etot(C∗) + Etot(Dg)− Etot(∗). (4.3)

4.3 Vibrational analysis

The molecules and adsorbates of interest vibrate around the energetic minimum found
by a relaxation. A way to interpret this is to compare bonds to springs counteracting
displacements from the equilibrium. Calculations of vibrational frequencies are useful to
compare with spectroscopic measurements and to calculate thermodynamic properties.

Vibrational frequencies are calculated using the theory of small oscillations.[110] This
assumes that the energy landscape is locally harmonic around the equilibrium, which
means that the vibration modes can be obtained by diagonalising the mass-weighted
Hessian matrix (see Appendix). Classically, these modes can have any energy, but quantum
mechanics dictates that only the following energy levels are allowed:

Em,j =
(
j +

1

2

)
~ωi, m = 0, 1, 2, . . . (4.4)

A gas-phase species will have three modes corresponding to translation and three corre-
sponding to rotation (two for a linear molecule). These will yield near-zero frequencies
(imaginary if the curvature is negative) in the vibrational analysis scheme and must be
treated separately. The remaining modes are often treated as vibrations, but for practical
purposes a cut-off frequency could be introduced.

4.4 Statistical mechanics

In principle, DFT calculations are carried out at 0 K while pressure remains somewhat
undefined. In order to relate the obtained energies to what can be observed at realistic
conditions, we need to use thermodynamics and statistical mechanics.

We consider our surface reactions to occur at the ambient temperature (293 K) and
pressure (1 atm). This means that we are in the isothermic-isobaric ensemble, for which
the Gibbs free energy is minimised. This is given by

G = Uint + pV − TS, (4.5)

where Uint is the internal energy, p pressure, V volume, T temperature and S entropy.
For adsorbates, we consider the small volume changes to be negligable and approximate
G with Helmholtz free energy

F = Uint − TS. (4.6)
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For a gas-phase species, we assume the ideal gas approximation, where

V = NRT/p. (4.7)

In both these cases, we see that we can consider the volume to be constant and make
our derivations in the canonical (NVT) ensemble. For further reading on the derivations
below, see Stoltze[111], Chorkendorff and Niemantsverdiet[9], and the documentation for
the Atomic Simulation Environment.[112]

4.4.1 Free energy for gas phase species

We can calculate the total gas phase partition function as

Z =
zN

N !
(4.8)

where z is the partition function for a single particle and n is the number of adsorbates. The
reason for the simple product is the assumption that the particles do not interact with each
other, and the n! factor stems from the fact that gas phase species are indistinguishable.

The single particle partition function can be written as a Boltzmann sum over all
possible energies

z =
∑
i

e−βεi . (4.9)

where β = 1/kBT . We consider a given total energy level to be separable into independent
modes, m, with energy levels jm, i.e.

εi = εj1,j2,... =
∑
m

εjm , (4.10)

where each mode m can occupy a separate set of energy levels.
This means that we can write z as a product, since

z =
∑
i

e−βεi (4.11)

=
∑

j1,j2,...

e−β
∑

m εjm (4.12)

=
∏
m

(∑
jm

e−βεjm
)

(4.13)

=
∏
m

zm. (4.14)

We consider electronic, translational, rotational and vibrational contributions to the
partition function, which are derived in Appendix:

zel = 2s+ 1, (4.15)
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ztr =
(2πmkBT

h2

)1.5
V, (4.16)

zrot =

{
8π2IkBT
σh2 for linear molecules

π7/2

σh3 (8kBT )3/2
√
IAIBIC for non-linear molecules

(4.17)

and

zvib,m =
1

1− e−β~ωm
. (4.18)

Note that the N dependence of the logarithm of the partition function is taken care of
neatly since

lnZ = ln
zN

N !
(4.19)

= N(ln ztr + ln zelzrotzvib)− lnN ! (4.20)

≈ N
(

lnV + ln
(2πmkBT

h2

)1.5
+ ln zelzrotzvib

)
−N lnN −N (4.21)

= N

(
ln
kBT

p
− 1 + ln

(2πmkBT

h2

)1.5
+ ln zelzrotzvib

)
(4.22)

which divided by N (i.e. per particle) is not dependent on the number of particles.
Since the Helmholtz free energy is the thermodynamic potential in the canonical

ensemble, it is simply related to the partition function by1

∆F = −kBT lnZ (4.23)

where ∆F = F − F0, and F0 is the Helmholtz free energy at 0 K. This is the same as
internal energy at 0 K, i.e.

Uint,0 = Eel + EZP (4.24)

where Eel is the electronic energy from the DFT calculation and EZP the zero point
vibrational energy. To this, we need to add a term of electric work,

Wel = neeURHE (4.25)

corresponding to the energy gained or lost by moving ne electrons, with charge e, over the
electric potential URHE. As G = F + pV and pV = kBT for an ideal gas, we simply have

G = Eel + EZP + kBT (1− lnZ)− neeUref (4.26)

If the pressure is changed, this can be adjusted for by adding the term

∆Gp = kBT ln
p

pref
(4.27)

where pref is the reference pressure.

1The thermodynamic energies are given per particle, and not the total quantity of the system.
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Some other quantities

We can calculate the entropy S from F . Since

dF = −S dT − p dV (4.28)

we can derive the dependence of S on Z as

S =
(∂F
∂T

)
V

= kB lnZ + kBT
(∂ lnZ

∂T

)
V
. (4.29)

The internal energy can be calculated as

∆Uint = ∆F + TS

= F − T
(∂F
∂T

)
V

= kBT lnZ − T
(
kB lnZ + kBT

(∂ lnZ

∂T

)
V

)
= kBT

2
(∂ lnZ

∂T

)
V

(4.30)

Plugging in ztr and zrot will give 1
2kBT for each degree of freedom, which is to be

expected classically.[31] This is because the partition functions have been derived in the
classical limit. The electronic partition function will not contribute to the energy, which
is inherently related to the assumption that only the ground state is occupied at relevant
temperatures. The vibrational contribution can be computed quantum mechanically as

∆Uint,vib =
∑
m

~ωm
eβ~ωm − 1

. (4.31)

Thus, we have

Uint = Eel + EZP +
x

2
kBT +

∑
m

~ωm
eβ~ωm − 1

− neeURHE (4.32)

where x = 5 for a linear molecule and x = 6 for a non-linear molecule. If we are interested
in the enthalpy, it can be calculated as

H = Uint + pV = Uint + kBT. (4.33)

In principle, Gibbs free energy could be calculated as

G = H − TS (4.34)

but as long as there is no need for computing H or S, it is more straightforward to use
Equation 4.26 directly.
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4.4.2 Free energy for adsorbates

We consider adsorbates to be fixed at the surface. This means that the adsorbates are
distinguishable (by their position on the infinite surface) so that the adsorbate partition
function is given as

Z = zN . (4.35)

No translation nor rotation are allowed, so all degrees of freedom are vibrational. This is
called the harmonic approximation.[113] Furthermore, even if an adsorbate would have
an open shell in gas phase, we consider the its spin to be quenched by the sea of free
electrons in an extended metallic surface with no net spin. Thus, we get the approximate
Gibbs free energy as

G ≈ F = Eel + EZP − kBT
∑
m

ln zvib,m − neeURHE. (4.36)
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Chapter 5

Summary of papers and outlook

” An expert is someone who has made all the mistakes which can be made
in a narrow field.

– Niels Bohr

5.1 Paper I

The first paper covers glycerol adsorption on Au(111), studied with DFT. We recognise
that dispersion effects are important to model correctly on gold, owing to its nobility. Thus,
a number of dispersion-corrected functionals were tested on a model system, methanol
adsorbed on gold, to select an appropriate exchange-correlation functional. Structural,
electronic, and vibrational properties were investigated on bare and surface-alloyed
Au(111).

5.2 Paper II

The second paper investigates glycerol electrooxidation on gold in acidic media. The
restriction to acidity stems, from a computational point of view, from limits of the validity
of the theoretical model. The DFT calculations on the electrooxidation reaction are
perfomed on a bare Au(111) surface, which is confirmed with the calculated surface
Pourbaix diagram to be valid. However, at higher pH, the surface is reported to be at
least partially covered with *OH,[114] in addition to glycerol being protolysed in the
electrolyte,[115] which may alter the reaction mechanism.

We show that there is a small but detectable activity at 0.5 V vs. the reversible hydrogen
electrode. This agrees with the calculated theoretical onset potential. Furthermore, we
find glycerol oxidation to take place on the cathodic scan, which remains to be explained
in future work.

5.3 Paper III

The third paper investigates methanol electrooxidation theoretically, focusing on dispersion
and microsolvent effects. We show that the addition of dispersion effects confirms the
reaction mechanism in liteature[116], while it has significant impact on the onset potential,
lowering it to 0.6 V vs. RHE. This, however, does not agree with experimental reports of
1.1–1.2 V.[117]
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To explain the discrepancy, we investigate a simple microsolvent model – inclusion
of a single water molecule. We find that inclusion of water has some impact on the
structure, but the reaction mechanism and onset potential are more or less the same as
without water. This leads us to suspect that kinetics plays an important role in methanol
electrooxidation on gold.

5.4 Outlook

We have gained insights in the mechanism of glycerol and methanol oxidation on gold,
but there remain questions to be answered. Electrochemical kinetics of the reactions
is a natural next step to take, especially in the light of the conclusion of Paper III.
Furthermore, it would be interesting to pursue an explanation of glycerol oxidation on
the cathodic scan discussed in Paper II, in cooperation with experimental colleagues.
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Appendix

A Normal mode analysis

In order to find the normal modes of vibration, we need to solve the classical Lagrangian
equations. Given a potential energy landscape, in our case calculated with DFT, the forces
are computed using a central differential quotient. For further details on this derivation,
see Goldstein et al.[110] and Van den Bossche.[118]

Let us expand the potential energy in the vicinity of a stable equilibrium. If xi denote
deviations for atom i, we may expand it in a Maclaurin series:

V (x1, . . . , xn) = V (0, . . . , 0) +
∑
i

( ∂V
∂xi

)
xi +

1

2

∑
i,j

( ∂2V

∂xi∂xj

)
xixj + · · · . (5.1)

We may choose the potential in the equilibrium to be 0, and, since we have an equilibrium,
all forces are zero. Assuming the deviations to be small, we are left with the quadratic
terms of the expansion:

V =
1

2

∑
i,j

( ∂2V

∂xi∂xj

)
xixj =

1

2

∑
i,j

Vijxixj (5.2)

where Vij is a shorthand notation for the second derivatives of the potential. These can
be obtained by sampling the potential energy or the forces around the equilibrium and
applying finite differences, or by more elaborate analytic methods mentioned in section
3.4.1.

On matrix form, Equation 5.2 can be written as

V =
1

2
xTVx (5.3)

where V is the Hessian matrix. By introducing mass-weighted coordinates,1

qi =
√
mixi, (5.4)

we can rewrite the Hessian expression to

1

2
qTUq (5.5)

where Uij = Vij/(mimj)
1/2. The kinetic energy is given by

T =
1

2

∑
i

miẋ
2
i =

1

2
q̇Tq̇ (5.6)

1Introducing mass-weighted coordinates is just a mathematical trick to simply the expression for
kinetic energy. It is possible to do it in a way that is more physically intuitive, at the expense of brevity.
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and thus the Lagrangian by

L =
1

2
(qTUq− q̇Tq̇) (5.7)

The Lagrangian equations of motion then become

q̈ + Uq = 0. (5.8)

Making the oscillatory ansatz

qj = aje
−iωt (5.9)

where aj are amplitudes and ω the angular frequency, we get

(U− ω2I)a = 0 (5.10)

which is an eigenvalue problem with matrix U and eigenvalues ω2. U may be written in
terms of eigenvectors P and eigenvalues Ω as

U = PTΩP. (5.11)

Note that since U is real and symmetric, P is orthogonal and thus PT = P−1. The
potential may be rewritten as

V =
1

2
qT(PTΩP)q

=
1

2
(Pq)TΩ(Pq)

=
1

2
ζTΩζ

=
1

2

∑
i

ω2
i ξ

2
i .

(5.12)

where ζi are normal, mass-weighted coordinates. The kinetic energy can be rewritten in
these coordinates to

T =
1

2
q̇Tq̇

=
1

2
(PTζ̇)T(PTζ̇)

=
1

2
ζ̇
T
PPTζ̇

=
1

2
ζ̇
T
ζ̇.

(5.13)

If the ζi are expressed as a linear combination of qj (which is the practical case in ASE)
can be converted to mass-independent coordinates yi by dividing element-wise with

√
mj .

These would then correspond to actual normal displacements around the equilibrium.
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B Ideal gas partition functions

For further details on these derivations, see Stoltze[111] and Chorkendorff and Nie-
mantsverdiet[9].

B.1 Electron

The electronic partition function is related to the electronic energies in different orbital
shells. With gi degeneracies of the electronic energies εi, we have

zel =
∑
i

gie
−βεi . (5.14)

Since the spacing between electronic levels are normally large relative to kBT (= 1/β),
all but the first term can be neglected. If ε0 is chosen to be 0, the partition function is
simply the degeneracy at the ground state,

zel = g0 (5.15)

For a paired molecule like H2, the ground state is non-degenerate, which gives g0 = 1.
This is also true for CO, which has two unpaired electrons. For radicals having one
unpaired electron, g0 = 2. The O2 is a triplet with two unpaired electrons, giving g0 = 3.
It can be seen that it is equivalent to write

zel = 2s+ 1 (5.16)

where s is the spin.

B.2 Translation

The simplest model of the system of a monoatomic gas phase is the three-dimensional
particle in a box in a quantum mechanical fashion. The energies of a particle in a
one-dimensional box of length x is

εi =
i2h2

8mx2
(5.17)

The system is large enough to assume that the energy spacing close, i.e. the classical
limit. This allows the Boltzmann sum to be replaced by integration according to

ztr =

∫ ∞
0

exp
(
− u2h2

8mx2kbT

)
du (5.18)

With a change of variables, it becomes

ztr =
2x
√

2mkbT

h

∫ ∞
0

e−v
2

dv

=

√
π

2

2x
√

2mkBT

h

=
(2πmkBT

h2

)0.5
x. (5.19)
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For a three-dimensional box of volume V , we have

ztr =
(2πmkBT

h2

)1.5
V. (5.20)

B.3 Rotation

A linear molecule can be modelled as a quantum mechanical rigid rotor,[9] which gives
the eigenenergies

εi =
i(i+ 1)h2

8π2I
(5.21)

where
I =

∑
k

mkr
2 (5.22)

is the moment of inertia around the centre of mass.
E.g., for a diatomic molecule we have

I =
m1m2

m1 +m2
d2. (5.23)

Taking the 2i+ 1 levels of degeneracy into account, the partition function can be written
as

1

σ

∑
i

(2i+ 1) exp
(
− i(i+ 1)h2

8π2IkBT

)
(5.24)

where σ is the symmetry number. A low-symmetry molecules CO, with no rotational
degeneracy, has σ = 1 while symmetric linear molecules like H2 and CO2 have σ = 2.

If the levels are close, which is true for all but the lightest molecules at all but low
temperatures (for H2, the critical temperature is 85 K), the sum can be approximated
with the integral

1

σ

∫ ∞
0

(2u+ 1) exp
(
− u(u+ 1)h2

8π2IkBT

)
du. (5.25)

With the substitution s = 8π2IkBT/h
2 we have

zrot =
1

σ

∫ ∞
0

(2u+ 1) exp
(
− u(u+ 1)

s

)
du

=
1

σ
e1/(4s)

∫ ∞
0

2(u+
1

2
) exp

(
− (u+ 1/2)2

s

)
du

=
1

σ
e1/(4s)

∫ ∞
1/2

2v exp
(
− v2

s

)
dv

=
1

σ
e1/(4s)

[
− s exp

(
− v2

s

)]∞
1/2

=
s

σ
(5.26)

(5.27)
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where v = u+ 1/2. Resubstitution gives

zrot =
8π2IkBT

σh2
(5.28)

In the general case with non-linear polyatomic molecules, the Hamiltonian can be expressed
as

H =
L2
A

2IA
+
L2
B

2IB
+
L2
C

2IC
(5.29)

where LA, LB and LC are angular momenta and IA, IB and IC are eigenvalues of the
moments of inertia.[119] However, the quantification of the angular momenta is complex.
As an intuitive sketch, consider the integral∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

exp
(
− H(p, q)

kBT

)
= (2πIAkBT )1/2(2πIBkBT )1/2(2πICkBT )1/2. (5.30)

In order to get the partition function, this integral must be multiplied by a constant. A
factor of 2π accounts for a complete rotation while integration over all axes contributes
with 4π. σ corrects overcounting while a factor of h in each dimension takes care of the
conversion from momentum p to quantum wavenumber k giving

zrot =

√
π

σ

(8πIAkBT

h2

)1/2(8πIBkBT

h2

)1/2(8πICkBT

h2

)1/2
=
π7/2

σh3
(8kBT )3/2

√
IAIBIC . (5.31)

The symmetry number for non-linear molecules is also related to rotational degeneracy;
e.g., CH3OH has σ = 1, CH3O* has σ = 3 and CH4 has σ = 12.

B.4 Vibration

Vibrations can be modelled as j quantum mechanical harmonic oscillators with energies

εl = ~ωl(n+ 0.5) (5.32)

giving

zvib,l =
∑

e−βn~ωl =
1

1− e−β~ωl
. (5.33)

The zero point energy,
1

2

∑
j

~ωl, (5.34)

is added separately to the ground state energy.
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