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Abstract Recent experimental investigations by McArthur et al. (J. Fluids Struct. 66, 293–
314, 2016) in the wake of a simplified heavy vehicle or commonly known as the ground
transportation system (GTS) model has shown that the flow topology is invariant over a large
range of Reynolds numbers [2.7 × 104 − 2 × 106]. Numerical simulations are performed to
investigate the initial flow topology at a Reynolds number of 2.7 × 104, using well-resolved
large eddy simulations (LES). In the vertical midplane behind the GTS, a flow state which
is anti-symmetric to that reported in McArthur et al. (J. Fluids Struct. 66, 293–314, 2016)
is observed here, thereby, confirming the possibility of occurrence of the complementary
bi-stable flow state. The occurrence of this bi-stable state does not depend on the ground
clearance between the GTS and the ground plane, as a similar flow topology is observed at
both small and large gap heights. Furthermore, the flow topology in the vertical midplane is
also found to be insensitive to the incoming flow for small yaw angles. However, complex
flow behaviour is observed in the wake for larger yaw angles, where the flow topology in
the vertical midplane becomes nearly symmetric, while an asymmetric flow topology is now
observed in the lateral midplane in the near wake. Furthermore, the corner vortices which
originate from either side at the front of the model merge in the far wake, leading to a large
vortex structure nearly equal to the height of the model. The near-wake topology of the GTS
is analysed and compared with previous studies for a range of scenarios, and the forces on
the GTS are computed.
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1 Introduction

The ground transportation system (GTS) model is a simplified cab-over-engine truck model
and is representative of a tractor-trailer combination without any intermediate gap. The ear-
liest experimental investigations of the GTS model by [10] and [71] were performed with
the aim of reducing drag by the use of active and passive flow control devices (several add-
on devices such as slanted rear end and boat-tails to the base of the model) ([4, 8, 9, 14,
28, 44, 47, 54], and others). Storms et al. [71] reported a 19% reduction in the drag coeffi-
cient by the use of boat-tail plates. To accurately compare the flow features in the near wake
with the experimental studies, several numerical investigations were performed by the use
of computational fluid dynamics (CFD). Roy et al. [63] obtained steady state solutions at
Re = 2 × 106 using Reynolds-averaged Navier–Stokes (RANS) k − ω Menter model and
Spalart-Allmaras (SA) model. They assessed the capability of these model by comparing
the flow structures and surface pressure data obtained from the work of [71]. Behind the
base of the model, two symmetrical vortices were observed in the numerical computations,
while the experimental particle image velocimetry (PIV) data showed an asymmetrical vor-
tex structure, with a bottom vortex closer to the base and the top vortex at a distance of a
trailer-width downstream of the base. In the horizontal midplane, two symmetrical counter-
rotating vortices were captured in both the experiments and numerical simulations. While
the numerical simulations did not accurately predict the pressure coefficient on the base,
the prediction of the drag coefficient from the k − ω Menter model was in good agreement
with the experiments. A similar investigation by [65] using RANS models failed to accu-
rately capture the asymmetrical flow field in the vertical midplane of the model, although
the Wilcox 1988 k − ω model showed a larger degree of asymmetry as compared to the SA
and the Mentor SST models.

Ortega et al. [49] performed LES on a truncated GTS model, simulating the flow around
the rear of the body which extends to a distance equal to the height of the model from the
base. The simulations performed on a coarse and a fine mesh predicted the formation of
an asymmetrical vortex structure in the near wake. The mean flow topology in the vertical
midplane on both meshes predicted a large triangular-shaped vortex at the top and closer
to the base, and the smaller vortex at the bottom further away from the base. They also
observed the formation of two counter-rotating vortices from the top corners of the model
which extend far downstream in the wake.

Unaune et al. [73] performed numerical simulations using detached eddy simulations
(DES) and RNG (Re-Normalisation Group) k − ε turbulence model at Re = 2 × 106 for
the GTS model. The transient vortical structures and the shedding behind the body are cap-
tured by their DES, while the URANS (unsteady RANS) predictions approached a steady
state result. The resulting flow topology observed in their simulations is opposite to that
observed in [45] and similar to the LES of [49]; although the vortex structures observed
are elongated in the streamwise direction. They further indicate that enough “upwash” was
not generated to produce vortical structures similar to that observed in [71]. Nonetheless,
the predicted drag coefficient from their URANS and DES were within 0.24% and 1.25%
of the experimentally observed values, respectively. Numerical simulations were performed
by [17] using body-fitted and immersed boundary grids to investigate the flow past a GTS
at Re = 2 × 106. Using RANS k − ε model, they predicted the flow fields and the drag
coefficient for the GTS. Symmetric vortices were observed in the vertical midplane, and the
two grids over-predicted the drag coefficient of the GTS as compared to [71]. Gunes [23]
observed a flow topology similar to the experimental study of [71] using the RNG k −ε tur-
bulence model on an unstructured grid, with a harmonic motion of the upper and the lower
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vortices at rear of the GTS, which subsequently influenced the pressure coefficient on the
base and the drag coefficient of the GTS.

More recently, [45] performed experimental investigations on a 1:40 scale GTS model
in a water channel. The flow topology observed in the vertical midplane in [45] at Re �
2.7 × 104 and [71] at Re = 2 × 106 was similar, given the large disparity in Reynolds
numbers. McArthur et al. [45] also investigated the influence of the gap height on the wake
topology. As the gap height between the ground and the model is increased from 0.03H

to 0.14H (where H is the height of the GTS model), an asymmetrical flow topology was
observed, with the size of the lower vortex increasing with gap height. However, for gap
heights in excess of 0.14H , the flow topology remained unaltered, with minimal change in
the location of the centres of the vortices. A more recent study by [6] classified the wake
topology in the vertical midplane into four categories based on the ratio of the underbody
velocity to the freestream velocity for a simplified truck model. The flow topology such
as the one observed in the vertical midplane of the GTS model for G/H � 0.14 occurred
when this ratio was � 0.5. The flow topology in the vertical midplane of the GTS predicted
by numerical simulations of [49] and [73] appear to be anti-symmetrical to that predicted
by [45] and [71]. The height-to-width ratio of the GTS model is 1.392, while the width-to-
height ratio of the squareback Ahmed body is 1.35, where bi-stability (which refers to the
switching from one reflectional symmetry breaking flow state to another) has been previ-
ously reported ([16, 19–21, 42, 76] and others); indicating that bi-stable phenomenon could
indeed be plausible in the vertical midplane of the GTS [45].

While the GTS model is a simplified version of the actual trucks used today, the flow
topology at the rear of the trailer is invariant to the complicated geometrical features such as
mirrors, wheels and side skirts [12, 40]. In this study, we use large eddy simulations (LES)
to predict the near-wake topology of a simplified GTS model at Re � 2.7 × 104 in order
to compare directly with the experimental observations of [45]. The goals of this study are:
to validate the LES for when the incoming flow is at zero yaw angle, and to detail the near-
and far-wake flow topologies at larger yaw angles, with the latter not having received suf-
ficient attention in previous studies. The results from this investigation are also intended to
serve as a baseline for future comparison with other turbulence modelling approaches. The
remainder of the article is organised as follows: Section 2.1 elucidates the problem setup,
while Section 2.2 briefly details the numerical method employed. The results from LES for
yaw angles of β = 0◦ is detailed in Section 3.1, where the flow topology observed is anti-
symmetric to that observed in [45]. A qualitative comparison describing this complimentary
flow state follows. The flow topology is further investigated for non-zero yaw angles; first,
to investigate if a small asymmetry brought about by the incoming flow at an yaw angle
of β = 2.5◦ is capable of obtaining a flow state similar to previous experimental studies,
and second, to describe the complex flow dynamics at β = 10◦. The results from these
simulations are presented in Section 3.2, and this is followed by conclusions in Section 4.

2 Methodology

2.1 Problem setup

The GTS model, first proposed by [10], is characteristic of a bluff body; with an elliptical-
shaped front nose, and an elongated flat section with a squareback base at the rear. The side,
top and bottom edges at the front are curved, and is representative of a truck cabin with
no gap to the trailer. In this investigation, the curved A-pillars at the front of the model are
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(a)

(b)

Fig. 1 a Schematic of the GTS model showing the major dimensions of the model. The upper frontal shape
of the model is elliptical, with the dimensions of the semi-major axis (a) and semi-minor axis (b) shown. The
bottom edge at the front of the model is filleted with a radius, R. b Schematic of the computational domain in
plan view, with the no-slip region shaded in gray. The dimensions of the GTS model and the computational
domain are normalised by the height of the GTS

removed, resulting in a sharp frontal edge along the side in order to aid the construction of
a purely hexahedral mesh. This also ensures a fixed separation point for the flow and may
perhaps lead to a larger recirculation region at the sides as compared to that observed in
previous experimental studies. Essentially, the two-dimensional profile of the GTS model
in the vertical midplane has been extruded to a length equal to its width. The schematic
of the GTS model used in this study is shown in Fig. 1a, with the major dimensions being
normalised by the height (H ) of the model. Two cases are considered in this study; one
where the model is placed close to the ground at a height of 0.14H , and the second case
where the body is placed at a height of 1.1H above the ground to study the influence of the
shape of the model on the flow topology in the absence of ground effect.

The GTS model is placed at the centre of the computational domain (see Fig. 1b), with
the domain boundaries placed at large distances from the model to ensure a blockage of
� 1% based on the ratio of the frontal area of the GTS to the inlet area of the domain
((0.32385m × 0.4508m)/(4.508m × 4.1203m) � 0.8%). The inlet and outlet boundaries
are at a distance of 18H and 25H from the origin, which is located at the bottom edge of the
base of the model on the symmetry plane. The lateral and top boundaries extend 5H and 9H

from the origin, respectively, and are assigned symmetry boundary conditions when the zero
yaw angle cases. The ground boundary condition used here is set to replicate the experimen-
tal work of [45], with a slip wall enclosing a no-slip wall. The no-slip wall extends 2.5H

and 7.5H upstream and downstream of the model, respectively, and 3H on either side of the
model in the lateral direction on the ground plane. While experimental investigations usu-
ally have cylindrical or streamlined supports, these were not used for the model considered
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here, thereby leading to an unperturbed underbody flow. The inlet boundary condition was
assigned a uniform inflow velocity of U∞ = 1.2768ms−1, leading to a Reynolds num-
ber ReW � 2.7 × 104, based on the width (W ) of the model. Here, ReW = U∞W/ν is
defined as the ratio of the inertial to the viscous forces, where, ν is the kinematic viscosity
of the fluid. It may be noted that the width of the GTS has been used as the characteristic
length for the Reynolds number and the Strouhal numbers, while other quantities are non-
dimensionalised by the height of the GTS in accordance with previous studies [45, 71]. The
homogeneous Neumann boundary condition is used at the outlet. To investigate the possi-
bility of occurrence of bi-stable flow at non-zero yaw angles [76, 77], the incoming flow is
yawed at angles of β = 2.5◦ and 10◦ with respect to the vertical midplane of the GTS as
shown in Fig. 1b. For these cases, the lateral and the top boundaries were assigned the same
boundary conditions as the inlet. The estimated height of the boundary layer on the no-slip
wall at the front of the model (in its absence) is � 0.12H , which is nearly equal to the gap
height between the model and the ground [66].

2.2 Numerical formulation

The governing LES equations are the incompressible Navier–Stokes and the continuity
equations, filtered with the implicit spatial filter of characteristic width, � = (�x�y�z)

1/3,
where �x , �y and �z are the computational cell sizes in the x, y and z coordinate directions,
respectively.

∂ūi

∂t
+ ∂

∂xj

(ūi ūj ) = − 1

ρ

∂p̄

∂xi

+ ν
∂2ūi

∂xj ∂xj

− ∂τij

∂xj

(1)

∂ūi

∂xi

= 0 (2)

Here, ūi and p̄i are the resolved velocity and pressure, respectively, and the bar over the
variable denotes the operation of filtering. The influence of the small scales in Eq. 1 appears
in the subgrid-scale (SGS) stress tensor, τij = uiuj − ūi ūj . The algebraic eddy viscosity
model originally proposed by [68] is used in the present work for its simplicity and low
computational cost. The standard Smagorinsky model represents the anisotropic part of the
SGS stress tensor, τij as

τij − 1

3
δijτkk = −2νsgs S̄ij (3)

where the SGS viscosity,

νsgs = (Csf �)2|S̄| (4)

and,

S̄ =
√

2S̄ij S̄ij (5)

Here, S̄ij is the is the resolved rate-of-strain tensor, and is given by

S̄ij = 1

2

(
∂ūi

∂x̄j

+ ∂ūj

∂x̄i

)
(6)

The Smagorinsky model coefficient, Cs = 0.1 was chosen for its simplicity and low
computational cost, and has previously used in bluff body flows [30, 32, 55, 56, 69]. Since
the resolved strain-rate tensor, S̄ij , does not vanish at the wall, the value of the coefficient
(usually between Cs = 0.1 and 0.2 [64]), should be adjusted to partially take into account
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the effect of the wall. Thus, the damping function, f , is used to damp the turbulence length
scales next to the wall. The Van Driest damping function is given by,

f = 1 − exp

(−n+

25

)
(7)

where, n+ is the wall normal distance in viscous units.
The LES equations are discretised with a commercial finite volume solver, AVL FIRETM

2014 [1], to solve the incompressible equations using a collocated grid arrangement, where
the equations are solved for the velocities. The convective fluxes are approximated by a
blend of 95% linear interpolation of second-order accuracy (central differencing scheme)
and of 5% upwind differences of first-order accuracy (upwind scheme). The diffusive terms
containing viscous plus subgrid terms are approximated by a central differencing inter-
polation of second-order accuracy. It should be noted that for complex geometries using
non-equidistant computational grids a commutation error is introduced, since the formula-
tion of Eq. 1 assumes that the filtering operation and spatial derivation commutes, which is
not true on non-equidistant grids. This error is of the same order as the truncation error of
the second-order linear interpolation scheme (�2) (see [18]). The time-marching procedure
is done using the implicit second-order accurate three-time level scheme:

(
dφ

dt

)

n

= 3φn − 4φn−1 + φn−2

2�tn
; �tn = t − tn−1 = tn−1 − tn−2 (8)

where, indices “n”, “n-1” and “n-2” denote the three time levels. To determine the pressure,
the discrete form of the filtered continuity equation (Eq. 2) is converted into an equation
for the pressure correction which is solved by using the SIMPLE (Semi-Implicit Method
for Pressure Linked Equations) algorithm [57]. The influence of a larger value of central
differencing of 98% blend and pure central differencing (100%) on the flow topology was
also investigated for the convective fluxes on the medium mesh. On increasing the blending
factor, the length of the recirculation region in the near wake decreased, with the location of
the centre of the vortices closer to the base of the GTS model. This resulted in a larger value
of the mean drag coefficient (also see Table 2), although the flow topology remained the
same. However, these simulations showed spurious flow structures near the nose of the GTS
model, and hence, a central difference blending factor more than 0.95 was not used for the
momentum equations (also see [37]). The numerical formulation used here has previously
been validated for a wide range of bluff body flows [29, 31, 34–36, 47, 50–53].

2.3 Computational grid and validation

Three hexahedral meshes were constructed in Ansys ICEM-CFD grid generation package
to investigate the influence of the spatial resolution on the flow topology in the near wake.
For the GTS model at a gap height of G = 0.14H , the coarse, medium and fine meshes con-
sisted of approximately 3.88, 8.35 and 10.78 million elements, respectively. Although the
spatial resolution between the medium mesh and the fine mesh was not significantly higher,
the spatial resolution in the streamwise direction in the near-wake region was increased for
the fine mesh as compared to the medium mesh, resulting in a mesh with a cell count nearly
1.3 times that of the medium mesh. For the case where the GTS model is at a height of
1.1H above the ground, the mesh consisted of approximately 9.18 million elements, with
the distribution of elements similar to the medium mesh. Shown in Fig. 2a is the surface
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(a) (b)

(c) (d)

(e) (f) (g)

Fig. 2 a – d Visualisation of the fine mesh: a surface mesh around the GTS, with the frontal elliptical edge
located at the bottom left and the base of the GTS at the top right of the figure. Cross-section of the O-grid
around the GTS in the b Y − Z plane at X/H = −0.45, c at the front of the model in the vertical midplane
and d at the rear of the model in the vertical midplane. Close-up of the surface mesh distribution on the roof
of the GTS is marked by a red outline in (a) for the e coarse mesh, f medium mesh and g fine mesh

distribution of elements on the fine mesh on the GTS, while Fig. 2b – d show the cross-
section of the mesh in the Y −Z plane, and in the vertical midplane of the model at the front
and the rear. The distribution of the cells is concentrated close to the walls of the GTS and
in the near wake. Also seen in Fig. 2e to g are the close-up views of the roof of the GTS for
the coarse, medium and fine meshes, respectively. While a reliable LES grid is expected to
resolve � 80% of the turbulent kinetic energy everywhere in the flow field [62], the compu-
tational requirements to resolve the wall boundary layer on non-critical bodies/surfaces such
as the ground plane which extends to large distances away from the body, are exceedingly
high. In this regard, the boundary layer on the no-slip wall (and the slip wall) was mod-
elled with a the first element in the wall-normal direction placed slightly above n+ = 30;
while n+ = 1 was used to resolve the boundary layer on the no-slip walls of the GTS
model. Here, n+ is the dimensionless wall distance given by n+ = nuτ /ν, where, n is the
distance of the first cell height from the wall, and uτ is the friction velocity. Furthermore,
the recommended grid spacing in the streamwise and spanwise directions must be of order
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Table 1 Details of the computational mesh

Description Number of elements (million) n+
mean �s+

max �l+max

Coarse 3.88 0.75 195 75

Medium 8.35 0.5 46 25

Fine 10.78 0.4 36 20

�s+ = �suτ /ν = 50 − 150, �l+ = �luτ /ν = 15 − 40, respectively, in order to resolve
the near-wall structures (see [60]). Here, �s and �l are the grid spacings in the streamwise
and spanwise directions, respectively. Table 1 shows the mean grid spacing in the wall-
normal direction and the maximum grid spacing in the streamwise and lateral directions.
The medium and the fine meshes are well below the suggested limits, while the coarse mesh
exceeds them. Although the n+ was higher than unity around the sharp edge side corners and
the bottom filleted surface at the front of the model, the values never exceeded n+ = 2.5.

For all the cases considered in this study, the time-step used was set to 7.5 × 10−4s to
ensure a CFL (Courant-Friedrichs-Lewy) number less than unity around the GTS model.
All simulations were started from a quiescent condition, and the averaging of the flow quan-
tities and forces was carried out after one flow passage for five flow passages through the
domain. For the computation of the force coefficients, the summation of the viscous and
pressure forces in each direction was divided by 0.5ρU2∞A, where ρ is the density of air
(= 1.1885kgm−3), and A is the frontal area of the GTS � 0.146m2. The difference in the
drag force coefficient between the fine and medium mesh was less than 2.25% and 3% for
the incoming flow at yaw angles of 0◦ and 10◦, respectively (see Section 3.3). To further
investigate the influence of the spatial resolution of the meshes used, the time-averaged
flow fields were compared at locations downstream of the base. Shown in Fig. 3a and b
are streamwise and vertical velocity profiles at the specified locations in the near wake. In
each of these images, the x coordinate for the velocity profiles is obtained by the following
relation: X = xo + ((ux,z/U∞) − 1) × 0.1. Here, xo is the x coordinate (with the origin at
the base), ux , and uz are the values of mean streamwise and vertical velocities, respectively.
The velocity profiles were measured at intervals of 0.25H from the base to X/H = 2. At
locations close to the base of the GTS, all the three meshes capture the velocity profiles
accurately, and at a location X/H � 1, the discrepancy between the medium and the fine
meshes is larger, with the fine mesh closer to the coarse mesh. This discrepancy reduces
at larger streamwise distances from the base. Furthermore, the locations of the centre of
the vortices were compared (see Fig. 6), which further show that the location of the vortex
centres of the medium mesh are closer to the base as compared to the fine mesh.

3 Results

3.1 β = 0◦

In this section, flow past a simplified GTS model is investigated at ReW � 2.7 × 104 for
β = 0◦. Shown in Fig. 4a and d are the contours of the time-averaged and instantaneous flow
at the front of the model in the vertical midplane, respectively. The stagnation point occurs
at height of � 0.31H from the bottom edge of the model and the flow remains attached
over the elliptical shaped nose, and beyond this region, a very small recirculation region
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(a) (b)

Fig. 3 Comparison of the velocity profiles in the wake of the GTS model in the vertical midplane. a stream-
wise velocity and b vertical velocity. The black, red and blue lines correspond to the coarse, medium and fine
mesh, respectively. Flow is from left to right in these images

is observed, beyond which undulations in the flow are observed. This region is outside of
the PIV window used in the experimental work of [45], where the flow remained attached
over the nose of the model. On the sides of the model, a fixed separation point is observed
on account of the sharp frontal edge (Fig. 4b), resulting in a recirculation zone that extends
� 0.95H from the front, and is nearly twice longer as that reported in [45]. Also observed
in Fig. 4b is a smaller recirculating adjacent to the wall. Although the size of this structure
is rather small for the incoming flow at zero yaw angle, this recirculating region is larger
as the yaw angle increases (also see Fig. 10d - on the right side of the GTS - or on the
upper side in plan view). In the instantaneous frame (Fig. 4e), a train of discrete vortices
is observed that dissipate further downstream. A train of vortices is also observed on either
side of the longitudinal symmetry plane in the wake as seen in Fig. 4f, at the rear of the
GTS. However, in the mean flow, two counter-rotating vortices are observed in the lateral
midplane (Fig. 4c). The location of the centre of these vortices and the saddle point are
� 0.2H further downstream as compared to their experimental counterparts.

Of interest here is the near-wake topology in the vertical midplane where the flow topol-
ogy of the time-averaged flow is anti-symmetric when compared to the studies of [45] and
[71]; but is similar to that observed in the wake of a Generic European Transport System
(GETS) model, which has a height-to-width ratio similar to the GTS - 1.35 (see Fig. 11.8
of [74]). Shown in Fig. 5a and b are the time-averaged flow topology in the near wake of
the GTS model at a gap height of 0.14H and 1.1H , respectively, while their counterparts
of the instantaneous flow fields are shown in Fig. 5c and d, respectively. While the larger
triangular-shaped vortex appears closer to the ground plane in the experiments, it appears
above the lateral midplane in these numerical simulations, with the smaller elliptical-shaped
vortex appearing closer to the ground plane. It may be recalled that bi-stability was observed
in the lateral plane of a squareback Ahmed body, where the width-to-height ratio is approxi-
mately equal to the height-to width ratio of the GTS model ([5, 20–22, 33, 38, 39, 58, 59, 76,
78] and others). Given the close match of the centres of the vortex locations in Fig. 6a, the
other bi-stable flow state is observed in these simulations. Recent experimental observations
in the near wake of a simplified truck model (whose height-to-width ratio is 1.35) confirmed
the existence of this flow state (see [67]). Furthermore, the flow topology is invariant to the
change in the gap height as seen in Fig. 5b, as a near identical flow topology is observed in
the vertical midplane at a gap height of G/H = 1.1. This is further confirmed by the close
match of the vortex centre locations at gap heights of 0.14H and 1.1H as shown in Fig. 6
[20, 45]. Thus, the occurrence of bi-stable states is not dependent on the gap height, but on
the H/W ratio of the model [21] for G/H � 0.14. The anti-symmetric flow field for the
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(a) (b) (c)

(d) (e) (f)

Fig. 4 Visualisation of the contours of the normalised time-averaged velocity (a – c) and normalised instan-
taneous velocity (d – f) overlaid with streamlines at the front of the GTS model in the vertical midplane - a,
d, the lateral midplane - b, e, and at the rear of the model in the lateral midplane - c, f. Flow is from left to
right in these images

GTS model at G/H = 0.14 leads to flow separation on the ground plane directly below the
saddle point of the flow, similar to that observed in [49]. Furthermore, a large amount of
downwash is generated in this flow state, and perhaps suppresses any increase in the height
of the ground vortex (Fig. 5a).

Figure 6a and b show the location of the centre of the vortices in the vertical and lateral
midplanes, respectively. For comparison, the vortex locations from the experimental works
of [71] and [45] are also shown. Despite the large difference in the Reynolds number, the
locations of the vortex centres in the vertical midplane are in good agreement with their
experimental counterparts. Vortex A corresponds to the tiny bottom vortex adjoining the
large triangular-shaped vortex (B), while the smaller (and elliptical-shaped) vortex (C) is
observed on the opposite side of the large triangular vortex. In the lateral midplane, two
symmetrical counter-rotating vortices are observed (DR and DL, corresponding to the right
and left vortices). The saddle points in the vertical and lateral midplanes are denoted by S1
and S2, respectively. Also shown in this figure are the centres of the vortices for the GTS
model at a height of 1.1H from the ground. The results show that the locations of the vortex
centres of the medium mesh are closer to the base as compared to the coarse and fine mesh,
while those observed for the gap height of 1.1H are closer to its counterparts of the fine
mesh for the GTS at a gap height of 0.14H . In the lateral midplane, the vortex centres are
located further downstream as compared to the experimental work of [45].

The analysis of the near wake is considered in Fig. 7 by the visualising the vortex
contours overlaid with streamlines computed from the mean flow in the specified planes.
Figure 7a shows the formation of the stagnation point at a height of 0.25H from the bot-
tom of the base in the Y − Z plane, which is much higher than that reported in [45]. Also
discernible are the two counter-rotating vortices close to the ground (bottom of the image),
which originate at the front of the model. At downstream distances of 0.225 � X/H � 0.6
from the base, a counter-rotating vortex pair is observed; whose vortex centres occur closer
to the bottom edge of the base as the downstream distance is increased. This corresponds to
the ring vortex that has been observed in previous studies (also see Fig. 14a), and is observed
for X/H � 1, which is within the confines of the recirculation zone in the near wake.
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(a) (b)

(c) (d)

Fig. 5 Visualisation of the contours of the normalised time-averaged velocity - a, b and normalised instanta-
neous velocity - c, d overlaid with streamlines at the rear of the GTS model in the vertical midplane for a gap
height a, c G/H = 0.14, and b, d G/H = 1.1. Flow is from left to right in these images. Contour shading
as per Fig. 4

Note that Fig. 7b is similar to Fig. 16 of [23], albeit transposed across the lateral midplane,
where an anti-symmetric flow topology is observed in the vertical midplane in their URANS
simulations as compared to the current study. In the X − Y planes (Fig. 7g – l), the counter-
rotating vortex pair is observed for 0.15 � Z/H � 0.7, as the planes slice across the ring
vortex. The centres of the two counter-rotating vortex pairs are observed at distances farther
away from the base at locations close to the bottom of the base, and gradually move closer
to the base at higher locations. The length of the recirculation zone decreases marginally
from Z/H = 0.33 to Z/H = 0.69. At Z/H = 0.69, a saddle point close to the base is
observed at a streamwise distance of X/H � 0.15. Beyond Z/H = 0.75, the streamlines
are in-line with the incoming flow. A pair of vortices along the base and close to the outer
edges (parallel to the longer edges of the model) are observed in the X − Y planes, and
these become prominent at Z/H � 0.83 (also see Figs. 9 and 10 of [33]). It may be noted
that vortical structures shown here are not perfectly symmetrical across the Y = 0 symme-
try plane, possibly due to the relatively shorter averaging periods as compared to previous
experimental studies.

The contours of the Reynolds normal stresses in the vertical and lateral midplanes are
shown in Fig. 8 with the contour levels set to those used in [45]. In the vertical midplane,
the maximum value of the normal stresses in the streamwise direction (〈u′ 2

x 〉) occurs close
to the smaller elliptical-shaped vortex located close to the ground, and also at locations dia-
metrically opposite to it, but at a slightly lower intensity; and stretching slightly downstream
of the recirculation zone (Fig. 8a). In the lateral midplane, it occurs along the outer edges of
the counter-rotating vortices as seen in Fig. 8d. The Reynolds normal stresses in the span-
wise direction occur above the saddle point and in the region that divides the inner and outer
regions of the time-averaged flow in the vertical midplane as seen in Fig. 8b, while those in
the vertical direction occur around the saddle point region (Fig. 8c). In the lateral midplane,
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(a) (b)

Fig. 6 Location of the centre of the vortices obtained from the time-averaged wake of the GTS in a the verti-
cal midplane and b lateral midplane. While the flow topology in the LES simulations were anti-symmetrical
to those observed in the experiments, the vortex locations were inverted to compare directly with previous
experimental studies. For each vortex location and the saddle point, the coarse mesh (�), medium mesh

, fine mesh at G/H = 0.14, and the mesh for G/H = 1.1 (�) are compared with the water chan-
nel experiments of [45] at an identical Reynolds number and the wind tunnel experiments of [71] at
ReW = 2 × 106. The bounding streamlines (separatrix) from [45] are also marked by black continuous lines.
Flow is from left to right in these images

the distribution of the normal stresses in the spanwise and vertical direction occurs in the
region of the saddle point as seen in Fig. 8e and f. These images compare well with Fig. 9
of [45], and Figs. 6 and 7 of [21].

Shown in Fig. 9a – d are the power spectral densities (PSD) of the streamwise, span-
wise, vertical velocities and the pressure at a point in the wake (X/H, Y/H,Z/H) =
(1.67, 0, 0.5), which is downstream of the recirculating region. The streamwise component

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Fig. 7 Visualisation of the contours of the time-averaged streamwise vorticity (ωx ) (a) – (f), and vertical
vorticity (ωz) (g) – (l) overlaid with streamlines at the specified locations for the GTS model for β = 0◦: a
X/H = 0.1, b X/H = 0.333, b X/H = 0.5, d X/H = 0.66, e X/H = 1, f X/H = 1.25, g Z/H = 0.17, h
Z/H = 0.33, i Z/H = 0.6, j Z/H = 0.69, k Z/H = 0.75 and l Z/H = 0.83. Figures (a) – (f) are viewed
from behind the GTS model, while figures g – l are in plan view with flow direction from bottom to top in
each image
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(a) (b) (c)

(d) (e) (f)

Fig. 8 Visualisation of the contours of the Reynolds normal stresses at the rear of the GTS model overlaid
by streamlines in the vertical midplane (a - c), and in the lateral midplane (d - f). 〈u′ 2

x 〉 - (a) and (d), 〈u′ 2
y 〉 -

(b) and (e), and 〈u′ 2
z 〉 - (c) and (f). Flow is from left to right in these images

clearly shows the wake pumping frequency of StW = 0.08 reported in previous studies [3,
13, 33, 45, 78], which corresponds to the lengthening and shortening of the wake. The span-
wise and streamwise components show a peak around StW = 0.2, which is consistent with
the observations of [78] (see Fig. 16c of their article) and [75]. The PSD of the pressure
shows a peak around StW = 0.17 (Fig. 9d), which is consistent with the observations of [27]
and [21] when sampled at a point in the symmetry plane beyond the recirculating region.

3.2 Influence of the yaw angle (β > 0◦)

In this section, we investigate the changes brought about by an incoming flow at yaw or
a constant crosswind. An understanding of the flow topology and the forces obtained here
could be used to minimise any adverse effects that may be brought about by crosswinds -
such as stability of the vehicle (also see [79]). [76] reported the percentage of time the two
bi-stables states were observed for a squareback Ahmed body. When the body was at a yaw
angle of 0◦, the ratio of the occurrence of the dominant larger triangular-shaped vortex on the
left-to-right side was 28:72, and when yawed by 0.35◦, the ratio was 90:10, indicating the
sensitivity to the yaw angle. Here, the incoming flow was yawed by β = 2.5◦ to investigate
if the slight asymmetry of the incoming flow could trigger the other bi-stable flow state.
Shown in Fig. 10 are the contours of the flow field in the vertical and lateral midplanes at the
front and the rear of the GTS model for β = 2.5◦, and for a larger value of yaw at β = 10◦.
A flow topology similar to the non-yawed case was observed in the vertical midplane in the
near wake for β = 2.5◦, indicating that the flow is rather insensitive to small values of yaw
angles. At a larger yaw angle of β = 10◦, the flow topology is nearly symmetrical with
the rear stagnation point midway between the base, and the saddle point above the lateral
midplane (Fig. 10e). In the lateral midplane, a larger recirculation region develops on the
right side at the front of the GTS, which grows larger as the yaw angle is increased as seen in
Fig. 10d for β = 10◦. Comparing this image to Fig. 5 of [43], the differences brought about
by the sharp frontal edge can be observed. While a smaller recirculation region persists
on the front left side of the image in the current work; the flow remains attached for the
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(a) (b)

(c) (d)

Fig. 9 PSD of a point in the wake at (X/H, Y/H,Z/H) = (1.67, 0, 0.5) for a streamwise velocity, b
spanwise velocity, c vertical velocity and d pressure. The red and blue lines correspond to Strouhal numbers
of 0.08 and 0.17, respectively

filleted A-pillar. At the rear of the model, yawing brings about asymmetry, with the saddle
point closer to the direction of yawing. As the yaw angle is increased from β = 2.5◦ to
β = 10◦, the flow topology in the lateral plane does not change significantly, although the
rear stagnation point (closer to the base) moves closer towards the edge of the model in the
direction of incoming flow. Nonetheless, these images compare well (qualitatively) with a

(a) (b) (c)

(d) (e) (f)

Fig. 10 Visualisation of the contours of the normalised time-averaged velocity overlaid with streamlines for
β = 2.5◦ - (a) - (c), and β = 10◦ (d) - (f). Flow in the lateral midplane at the front of the GTS model is
shown in images (a) and (d), and in the vertical midplane at the rear is shown in images (b) and (e). The flow
in the lateral midplane at the rear of the model is shown in images (c) and (f). Flow is from left to right in all
these images. Contour shading as per Fig. 4
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(a) (b) (c)

(d) (e) (f)

Fig. 11 Visualisation of the contours of the normalised instantaneous velocity overlaid with streamlines for
β = 2.5◦ - (a) - (c), and β = 10◦ (d) - (f). Flow in the lateral midplane at the front of the GTS model is
shown in images (a) and (d), and in the vertical midplane at the rear is shown in images (b) and (e). The flow
in the lateral midplane at the rear of the model is shown in images (c) and (f). Flow is from left to right in all
these images. Contour shading as per Fig. 4

previous prediction using RANS [65, 70] and LES for a real truck ([11]; also see Figs. 11
and 12 of [74]).

Figure 11 shows the instantaneous velocity contours overlaid with streamlines at the spe-
cified planes for the two yaw angles considered in Fig. 10. The location of the vortices/flow
structures observed in these figures is consistent with those observed in the mean flow topo-
logies (Fig. 10). At the rear of the GTS, the side of the larger of the two vortices observed in
the mean flow topology in the lateral and vertical midplanes consists of a single large vortex
in the instantaneous snapshots; while a series of smaller vortices are observed on the side
where the smaller vortex occurs in the mean flow. The side of the smaller vortex is also asso-
ciated with the region of higher Reynolds stresses in the streamwise direction (see Fig. 15).

Figure 12 shows the surface flow visualisations on the right hand side of the GTS for
the specified yaw angles. The nodal points (N) and saddle points (S) have been identified
for each case (also see [25, 41]). For β = 0◦, an initial separation line is observed close to
the frontal edge of the model, which marks the onset of the recirculation region adjacent to
the wall and ends with the line joining nodal points N1 and N2 with saddle point S1; while
the larger recirculation zone extends approximately to a distance equal to the height of the
GTS at Z/H = 0.5, as seen in Fig. 4b. This larger recirculation zone forms a near parabolic
separation line, with the vertex of the parabola situated close to the lateral midplane of
the body. A second saddle point - S2 is observed slightly below the midplane of the GTS.
Beyond this saddle point, the flow traverses along the side of the GTS, and away from the
nodal points N3 and N4. For β = 2.5◦, the surface flow is similar to the β = 0◦ case,
with the lengths of the separation zones having increased in the streamwise direction, and
no saddle points observed. At distances closer to the base of the model, the separation lines
formed by the corner vortices close to the bottom and the top edges are visible, and they
grow larger as the yaw angle is increased to β = 10◦. The frontal separation extends to
approximately 1.5H downstream of the frontal edge for β = 10◦, while a distinct separation
bubble is not observed in the RANS simulation of [65] at front of the GTS model on account
of the rounded/curved A-pillars of the GTS model.

Figure 13 shows the contours of the pressure coefficient Cp = 2(p − p∞)/ρU2∞, on the
base of the GTS model at the specified yaw angles. For β = 0◦, a region of low pressure
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is observed in the upper part of the base, where the larger triangular vortex is present. The
close proximity of this larger vortex is responsible for the low-pressure region (also see
Fig. 14a, where the vortex core is closer to the base above the lateral midplane), while a
region of slightly higher pressure is observed at the bottom of the base. It may be recalled
that the centre of the bottom vortex occurs further away from the base. This can further
be confirmed by the visualisation of the isosurfaces of the pressure coefficient as seen in
Fig. 14a. In the other bi-stable state, the low and high pressure regions occur at bottom and
top of the base, respectively. Furthermore, the contours are very similar to those observed
behind a squareback Ahmed body, although rotated by 90◦ (also see Fig. 7a of [42]). As
the yaw angle is increased to β = 2.5◦, the region of lower pressure at the top of the base
increases, along with the formation of a low pressure region on the right side (also see Fig.
11.11 of [74]). On further increasing the yaw angle to β = 10◦, a larger region of low
pressure is observed at the top and the distribution of the pressure is nearly symmetrical
about the lateral midplane, with the low-pressure regions occurring on the right side of the
base, away from the direction of the incoming flow.

Figure 14 shows the translucent isosurfaces of the pressure coefficient (Cp) behind the
base of the GTS model at the specified yaw angles of the incoming flow, overlaid with the
vortex cores obtained from the time-averaged flow by using the method detailed in [72].
Similar to the pressure coefficient torus observed in the wake of squareback bluff bodies ([2,
15, 21, 33, 42, 77] and others), a torus tilted in the streamwise direction is observed behind
the GTS for β = 0◦ (Fig. 14a), with the bottom of the torus further away from the top
on account of the flow asymmetry (and where the smaller vortex (C) occurs in the vertical
midplane). This structure is similar to that observed in the wake of a squareback Ahmed
body (see Fig. 3a of [42]) - where the flow asymmetry is in the lateral midplane, with the
small vortex occurring at the location where the torus is farthest from the base. It maybe

(a)

(b)

(c)

Fig. 12 Visualisation of the time-averaged surface streamlines on the right side of the GTS, away from the
incoming flow for the yaw angles of a β = 0◦, b β = 2.5◦ and c β = 10◦. The nodal points are marked by
a capital letter N, while the saddle points are marked by a capital letter S. Flow is from left to right in these
images
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(a) (b) (c)

Fig. 13 Visualisation of the contours of pressure coefficient on the base of the GTS model for a β = 0◦,
b β = 2.5◦, and c β = 10◦. Contour levels for each image are chosen to accentuate the variation in the
pressure coefficient. Contour levels in (a) and (b) are between −0.2 � Cp � −0.1, and between −0.26 �
Cp � −0.16 in (c)

recalled that the averaging of the pressure quantities are performed over one flow state, and
thus results in the formation of a torus titled in the streamwise direction. This is in contrast
to the ring vortex (or torus) in the wake of a squareback Ahmed body being in a plane
parallel to the base, as seen in Fig. 5 of [21], when averaged over the two stable flow states.
This asymmetry is also demonstrated by the isosurfaces of the velocity when conditionally
averaged over one flow state, while the distribution is symmetric when averaged over the
two flow states [76, 78].

Figure 14b and c show the changes to the shape of the pressure coefficient torus brought
about by the incoming flow at yaw angles of β = 2.5◦ and 10◦, respectively. While the
shape of the torus at β = 2.5◦ is similar to β = 0◦, the left side of the torus (when view from
a point directly behind the base) is slightly larger as compared to the right side on account
of the flow asymmetry. However, for β = 10◦, the flow asymmetry (in the lateral direction)
is larger, with the pressure coefficient torus no longer tilted in the streamwise direction; and
this is further supported by the (near) symmetrical flow topology in the vertical midplane

(a) (b) (c)

Fig. 14 Visualisation of the translucent isosurfaces of the pressure coefficient behind the GTS model for a
β = 0◦, Cp = −0.2, b β = 2.5◦, Cp = −0.2025, and c β = 10◦, Cp = −0.2764. The red lines indicate the
location of the vortex cores obtained from the time-averaged flow field. Flow is from top left to bottom right
in these images
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as seen in Fig. 10e. The vortex cores are parallel to the longer edges of the base as seen in
Fig. 14c, and those along the shorter edges of the model are crescent-shaped in plan view,
forming an arc between the vortex cores parallel to the longer edges. The closest point of
the crescent-shaped vortex cores to the base of the model occurs close to the low pressure
regions in Fig. 13c, and are nearly symmetric across the lateral midplane. Also visible in
this figure are the isosurfaces of the pressure coefficient of the rooftop vortex and the right
corner vortex.

The distribution of the Reynolds normal stresses for the three yaw angle cases considered
in this study are shown in Fig. 15. Figure 15a – c shows the isosurfaces of the Reynolds
normal stresses (〈u′ 2

x,y,z〉) in the three directions for β = 0◦. Due to the anti-symmetric
nature of the flow in the vertical midplane, the distribution of the Reynolds stresses in the

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 15 Distribution of the Reynolds normal stresses behind the GTS model for a - c β = 0◦, d - f β = 2.5◦
and g - i β = 10◦ for 〈u′ 2

x 〉 - (a), (d), (g) 〈u′ 2
y 〉 - (b), (e), (h) and 〈u′ 2

z 〉 - (c), (f), (i). Isosurface levels: blue:
0.02, white: 0.0375. Flow is from top left to bottom right in these images
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streamwise direction are transposed across the lateral midplane as compared that reported
in [45], with the maximum values occurring in the lower shear layer and along the sides,
closer to the bottom edge of the base; while the distribution of stresses in the upper regions is
lower. The distribution of the stresses in the other two directions occurs in a region enclosed
by the distribution of the streamwise component of the Reynolds stresses. Consistent with
the distribution in Fig. 8, the distribution of the normal stresses in the spanwise and vertical
directions occur close to the saddle point of the flow, with the distribution of 〈u′ 2

y 〉 extending
slightly higher in the vertical direction as compared to the Reynolds normal stresses in the
vertical direction (〈u′ 2

z 〉). Nonetheless, the distribution of the normal stresses in the three
directions is nearly symmetric across the vertical midplane.

(a) (b) (c)

(d)

(e)

Fig. 16 Visualisation of the translucent isosurfaces of the λ2 (λ2 = -2.25s−2) coloured by the contours of
the pressure coefficient (Cp) for a β = 0◦, b β = 2.5◦, and c β = 10◦ d and e show image c in plan and
(right) side views, respectively. Flow is from the top to bottom in the images (a) - (c), while it is from left to
right in images (d) and (e)
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Figures 15d – f show the distribution of the Reynolds normal stresses in the three direc-
tions when the incoming flow is yawed at β = 2.5◦. The distribution of the stresses is largely
similar to that observed to the case at β = 0◦, with larger values of the streamwise compo-
nent of the Reynolds stresses being observed on the left hand side of each image(direction
of the incoming crosswind), while the distribution of the spanwise and the vertical com-
ponents of the stresses are similar to that observed for β = 0◦. Figure 15g - i show the
distribution of the Reynolds normal stresses when the incoming flow is yawed at β = 10◦.
The maximum distribution of the streamwise Reynolds normal stresses (〈u′ 2

x 〉) occurs in the
lower and the side shear layers, stretching from the base of the model and following the cur-
vature of the bounding streamline. The distribution of the spanwise and vertical Reynolds
normal stresses are predominantly within the region bounded by the streamwise Reynolds
normal stresses, and are nearly symmetrical about the lateral midplane and extends approx-
imately 70% - 80% of the height of the GTS model, as opposed to the β = 0◦, where they
are concentrated in the region around the saddle point.

Figure 16 shows the translucent isosurfaces of λ2 [26] behind the base of the GTS model
at the specified yaw angles constructed from the time-averaged velocities coloured by the
contours of the pressure coefficient (Cp). For β = 2.5◦, the change in the flow topology
is minimal as compared to β = 0◦. From these images, a large amount of the vorticity is
concentrated along shear layers on the sides of the GTS model and along the bottom where
the smaller vortex is observed. This forms a U-shaped structure when viewed from behind
the model with a much smaller region of vorticity concentrated in the upper shear layer.
The vortex structure in the near wake for β = 2.5◦ is similar to the non-yawed case. Also
visible in Fig. 16a and b are the corner vortices which originate at the nose of the model and
traverse downstream. While these corner vortices are parallel to the sides of the GTS model
in Fig. 16a, a small increase in the yaw angle results in these corner vortices shifting away
from the incoming flow. While the upper left vortex is shifted rightwards as seen in Fig. 16b;
the upper right vortex is not only shifted towards the right, but is also displaced downwards
as compared to the non-yawed case (also see Fig. 3 of [70]). The bottom right corner vortex
moves upwards and away from the model as it traverses downstream. Also discernible is
the separation region at the front of the model which grows larger with increasing yaw
angle. At β = 10◦, the flow structures are more complex than at smaller yaw angles. The
corner vortices on the right side of the model are larger for β = 10◦ as compared to its
counterparts at smaller yaw angles. These corner vortices are displaced outwards, away
from the model and downwards, as seen in Fig. 16c - e; the upper corner vortex occurs at a
location below the height of the model as it approaches a downstream location close the base
of the model (also see Fig. 14c). This vortex continues to move closer to the ground as it
traverses further downstream, and at a location approximately 2H downstream, this vortex
begins to rise vertically upwards as it merges with the corner vortex from the left side of
the GTS. The merged vortex is larger and persists at large distances downstream of the base
of the model. The flow behaviour observed here is similar to that observed in the wake of
other slender bodies such as articulated tractor-trailer models [46, 61] and high-speed trains
[24, 29, 48].

To further examine the flow behaviour when the incoming flow is yawed at β = 10◦,
the contours of the streamwise vorticity are visualised in Fig. 17 at the specified stream-
wise locations in Fig. 17a, where the contours of pressure coefficient are shown. As the
flow is yawed with respect to the vertical midplane of the GTS, a stagnation point on the
left side of the GTS model is observed at a height of � 0.3H as seen in Fig. 17b and c. As
the flow separates over the top left corner, three vortices are observed; two smaller vortices
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(a)

(b) (c) (d) (e)

(f) (g) (h) (i)

Fig. 17 a Visualisation of the contours of the pressure coefficient at the specified streamwise locations for
the GTS model for the incoming flow at a yaw angle of β = 10◦. Flow is from top right to bottom left in
this image. Contours of the time-averaged streamwise vorticity overlaid with streamlines in the planes shown
above for: b X/H = −0.5, c X/H = 0 d X/H = 0.5, e X/H = 1, f X/H = 1.5, g X/H = 2, h X/H = 3
and i X/H = 4. The viewing angle is directly behind the GTS model looking upstream. Contour shading as
per Fig. 7

which rotate in the clockwise direction (coloured blue), and one in the anti-clockwise direc-
tion (coloured red) closer to the roof of the GTS and in-between the two clockwise rotating
vortices. On the right side of the GTS, a larger clockwise vortex is observed, which moves
lower and outwards as it moves further downstream (also see Fig. 40 of [65]). Also seen
in Fig. 17b and c are smaller vortices formed near the top right corner of the GTS and a
smaller vortex at bottom along the edge. These smaller vortices do not extend further down-
stream and merge into the near-wake. For X/H � 1, the large vortex on the right hand side
combines with the merged vortices from the roof-top and the side (Fig. 17e – g) to form
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Table 2 Comparison of the time-averaged force coefficients on the GTS model for the various cases
investigated in this study

Description Mesh size (M) 〈Cx〉 Cy RMS 〈Cz〉

Coarse 3.88 0.5724 0.0121 −0.1885

Medium 8.35 0.5734 0.0123 −0.2010

Fine 10.78 0.5608 0.0119 −0.1974

G/H = 1.1 9.18 0.5776 0.0106 −0.0588

β = 2.5◦ 8.35 0.5846 0.2923* −0.1822

β = 10◦ 8.35 0.6803 1.3672* 0.0793

β = 10◦ 10.78 0.6606 1.3636* 0.0992

LES – 98% CDS 8.35 0.5878 0.0104 −0.1994

LES – 100% CDS 8.35 0.6280 0.0107 −0.1945

The size of the domain in millions of hexahedral elements (M) is also shown. *Note that for the GTS model
with the incoming flow at an yaw angle, the mean force coefficient in the spanwise direction - 〈Cy〉 are
presented, while the root-mean-square (RMS) - Cy RMS values are shown for the remaining cases. CDS -
Central differencing scheme in percentage blend

a larger vortex whose height is approximately equal to that of the GTS. This can also be
observed in Fig. 17a for 2 � X/H � 4. Also observed in Fig. 17b – e is the bottom corner
vortex on the right side of the image which moves further away from the body as it moves
downstream. Another vortex which is oppositely signed to the two merging vortices and
occurs closer to the ground is observed approximately up to a distance 2H downstream of the
base (Fig. 17e – g). However, this vortex is not observed beyond X/H = 3, while the larger
merged clockwise-rotating vortex is the predominant flow structure at large downstream
distances, and is accompanied by a smaller vortex close to the ground (Fig. 17h – i).

3.3 Variation of the force coefficients

The time-averaged forces experienced on the GTS model for the various configurations
tested are detailed in Table 2. Here, 〈Cx〉 and 〈Cz〉 correspond to the time-averaged drag
and lift force coefficients, respectively, while Cy RMS corresponds to the root-mean-square
of the side force coefficient. The drag force coefficient experienced by the model with the
medium mesh is within 2.5% of the fine mesh, while the lift coefficient is more sensitive to
the increase in resolution. When the incoming flow is yawed by β = 2.5◦, an increase in
the drag coefficient was observed along with a non-zero value of the sideways coefficient.
Much larger values of the drag and side force coefficient are observed at larger yaw angles
as a result of the larger pressure difference across the sides of the model and the complex
flow behaviour in the wake. At a gap height of 1.1H , the drag coefficient is similar to that
observed on the medium mesh, indicating the invariance of the drag coefficient for G/H >

0.14. Despite the large downwash in the anti-symmetric state observed here, the mean lift
coefficient has a negative value. The lift coefficient is significantly higher at G/H = 1.1
as compared to G/H = 0.14, due to the relatively higher values of pressure coefficient on
the underbody of the GTS at the front of the model as compared to the GTS model near the
ground. Also shown in Table 2 are the values of the force coefficients with a larger blend
of central differencing, where a difference of � 8.6% is observed in the values of the drag
coefficient between pure central differencing and a blend of 95% central differencing and
5% upwind scheme on the medium mesh.
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4 Conclusions

An LES study was undertaken to investigate the initial flow topology in the wake of a GTS
model at two gap heights of 0.14H and 1.1H . A spatial resolution study was carried out on
three grids, and in all cases, the flow topology in the vertical midplane was found to be anti-
symmetric to that reported in the experimental works of [45] and [71]. The location of the
vortex centres was in good agreement with their experimental counterparts when transposed,
thereby, confirming the occurrence of the other bi-stable state in the current simulations.
While the phenomenon of bi-stability has previously not been reported in previous experi-
mental studies of the GTS model, the flow is perhaps more averse to switching as compared
to that observed in the lateral midplane of the Ahmed body. Furthermore, the underbody
support structures used in the experimental investigations may allow the possibility of occur-
rence of only one of the two flow states reported in the experimental investigations of [45]
and [71]. Nonetheless, the run times required to investigate bi-stability numerically would
require several hundred flow passages through the domain, and this is computationally pro-
hibitive. When the distance between the ground and the model was increased to 1.1H , the
flow topology in the vertical midplane remained unaltered, indicating that the gap height
or the underbody flow does not play a significant role in determining the flow topology for
G/H � 0.14 [20, 21, 45].

The influence of crosswinds was also investigated at yaw angles of β = 2.5◦ and β =
10◦. For β = 2.5◦, the flow topology in the vertical midplane remains unaltered as compared
to the zero yaw angle case, although an asymmetry is observed in the lateral midplane as a
result of the incoming flow at an yaw angle, indicating that the flow topology in the vertical
midplane remains unaltered for small yaw angles, as compared to that behind the squareback
Ahmed body [76], where a small amount of yawing brought about a change in the flow
state. At a larger yaw angle of β = 10◦, the flow topology is complex, with the merging
of the top corner vortices in the far wake. Yawing of the incoming flow with respect to the
longitudinal midplane of the GTS brings about a large change in the pressure coefficient at
the base of the model, with regions of low pressure developing on the side away from the
direction of the incoming crosswind, resulting in a large increase in the drag and side force
coefficient.

Thus, the flow topology in the near wake of the GTS model observed in the LES sim-
ulations here is invariant over a large range of Reynolds numbers (with a similar flow
topology being observed in the vertical midplane as compared to that observed by [49]),
and this topology also remains unchanged to an increase in the gap height for G/H � 0.14,
which is in agreement with the findings of [45]. Furthermore, for small values of yaw
angle, the initial flow state in the vertical midplane is identical to that at β = 0◦, indi-
cating that the flow behind the simplified GTS model is rather robust to small changes in
the flow configuration. The focus of the current study is primarily to determine the flow
topology for a range of configurations, and also to establish a baseline for further investiga-
tions using non-zonal hybrid RANS-LES methods such as partially-averaged Navier–Stokes
(PANS) equations to accurately predict the near-wake topology on coarser grids [7, 36],
which would then result in a reduction of the computational resources required for such
simulations.
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36. Krajnović, S., Lárusson, R., Basara, B.: Superiority of PANS compared to LES in predicting a rudimen-
tary landing gear flow with affordable meshes. Int. J. Heat Fluid Flow 37, 109–122 (2012). https://doi.
org/10.1016/j.ijheatfluidflow.2012.04.013
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21 ème Congrés Français De Mécanqiue, Bordeaux (2013)

39. Lahaye, A., Leroy, A., Kourta, A.: Aerodynamic characterisation of a square back bluff body flow. Int.
J. Aerodyn. 4(1-2), 43–60 (2014). https://doi.org/10.1504/IJAD.2014.057804

40. Larsson, T., Hammara, J., Barthb, M.L.A.: Scale resolving CFD and CAA processes for ground vehi-
cles based on Open Source. available online pp. 1–13. http://www.prace-ri.eu/IMG/pdf/WP260.pdf
(2017)

https://doi.org/10.4271/2008-01-2613
https://doi.org/10.4271/2008-01-2613
https://doi.org/10.1103/PhysRevE.86.035302
https://doi.org/10.1103/PhysRevE.86.035302
https://doi.org/10.1063/1.4820372
https://doi.org/10.1017/jfm.2013.83
https://doi.org/10.1017/jfm.2014.345
https://doi.org/10.1017/jfm.2014.345
https://doi.org/10.1504/PCFD.2010.033328
https://doi.org/10.1016/j.jweia.2009.08.012
https://doi.org/10.1016/j.jweia.2009.08.012
http://www.sciencedirect.com/science/article/pii/S0167610509000865
https://doi.org/10.1017/S0022112078001068
https://doi.org/10.1115/1.4006643
https://doi.org/10.1016/j.jweia.2017.02.015
https://doi.org/10.1016/j.jweia.2017.02.015
http://www.sciencedirect.com/science/article/pii/S0167610516301337
https://doi.org/10.1098/rsta.2009.0021
https://doi.org/10.1115/1.4027221
https://doi.org/10.2514/2.1729
https://doi.org/10.1115/1.1567305
https://doi.org/10.1115/HT-FED2004-56325
https://doi.org/10.1016/j.ijheatfluidflow.2012.04.013
https://doi.org/10.1016/j.ijheatfluidflow.2012.04.013
https://doi.org/10.1504/IJAD.2014.057804
http://www.prace-ri.eu/IMG/pdf/WP260.pdf


Flow Turbulence Combust

41. Lu, F.: Surface oil flow visualization. The European Physical Journal Special Topics 182(1), 51–63
(2010)

42. Lucas, J.M., Cadot, O., Herbert, V., Parpais, S., Délery, J.: A numerical investigation of the asymmetric
wake mode of a squareback Ahmed body – effect of a base cavity. J. Fluid Mech. 831, 675–697 (2017).
https://doi.org/10.1017/jfm.2017.654

43. Maddox, S., Squires, K.D., Wurtzler, K.E., Forsythe, J.R.: Detached-eddy simulation of the ground
transportation system. In: The aerodynamics of heavy vehicles: trucks, buses, and trains, pp. 89–104.
Springer, Berlin (2004). https://doi.org/10.1007/978-3-540-44419-0 8
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52. Östh, J., Krajnović, S., Basara, B.: LES study of breakdown control of A-pillar vortex. International
Journal of Flow Control 2(4), 237–258 (2010)
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