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ARTICLE OPEN

Regulation of amino-acid metabolism controls flux to lipid
accumulation in Yarrowia lipolytica
Eduard J Kerkhoven1, Kyle R Pomraning2, Scott E Baker2 and Jens Nielsen1,3

Yarrowia lipolytica is a promising microbial cell factory for the production of lipids to be used as fuels and chemicals, but there are
few studies on regulation of its metabolism. Here we performed the first integrated data analysis of Y. lipolytica grown in carbon
and nitrogen limited chemostat cultures. We first reconstructed a genome-scale metabolic model and used this for integrative
analysis of multilevel omics data. Metabolite profiling and lipidomics was used to quantify the cellular physiology, while regulatory
changes were measured using RNAseq. Analysis of the data showed that lipid accumulation in Y. lipolytica does not involve
transcriptional regulation of lipid metabolism but is associated with regulation of amino-acid biosynthesis, resulting in redirection
of carbon flux during nitrogen limitation from amino acids to lipids. Lipid accumulation in Y. lipolytica at nitrogen limitation is
similar to the overflow metabolism observed in many other microorganisms, e.g. ethanol production by Sacchromyces cerevisiae at
nitrogen limitation.

npj Systems Biology and Applications (2016) 2, 16005; doi:10.1038/npjsba.2016.5; published online 3 March 2016

INTRODUCTION
The yeast Yarrowia lipolytica has a high potential as microbial cell
factory for the production of biofuels and chemicals. Y. lipolytica is
an oleaginous yeast, capable of accumulating over 70% of its
biomass as lipids.1 These lipids are stored in lipid bodies and exist
primarily of triacylglycerols (TAGs) with different chain lengths,
which can function as intermediates for the production of
advanced biofuels.2 Studying metabolism in Y. lipolytica is of
interest as its dysregulation allows engineering opportunity for
increased lipid production. As an example, a push-and-pull
genetic engineering strategy has been employed to divert the
carbon flux during nitrogen restriction towards TAG production.3

Overexpression of acetyl-CoA carboxylase (ACC1) pulls carbons
from the typical excretion metabolite citrate into fatty acid
biosynthesis, while overexpression of diacylglycerol acyltransfer-
ase (DGA1) pushes the fatty acids into the TAGs. This approach has
been successful as almost all carbons are diverted from citrate
excretion into TAG biosynthesis. However, while efforts have been
made to increase lipid production in Y. lipolytica,4 currently our
knowledge of how lipid accumulation is regulated in Y. lipolytica is
limited, whereas regulators as SNF1,5 MIG16 and MGA27

have been shown to affect lipid accumulation. Systems level
analysis is an excellent tool for probing regulatory mechanisms,
as demonstrated extensively for Sacchromyces cerevisiae.8,9

However no such approach has been applied to Y. lipolytica to
date, and we therefore undertook the first integrated analysis of
lipid accumulation in Y. lipolytica.

RESULTS
Reconstruction of genome-scale metabolic model
Integration of multilevel data requires a framework that can
accommodate different data types and allows for mapping of

interactions. For this purpose we generated a comprehensive
genome-scale metabolic model (GEM) of Y. lipolytica metabolism.
Although three GEMs of Y. lipolytica have been published
previously (iYL619_PCP,10 iNL89511 and iMK73512), our model is
far more comprehensive, based on the more recent Yeast 7.11
consensus network13 and curated to include unique reactions
from both iYL619_PCP and iNL895. Further curation was
performed with available literature data and improved annotation
of the Y. lipolytica genome as described in Supplementary
Informations 1 and 2. The resulting model is the most
comprehensive GEM of an oleaginous yeast to date, and provides
the biofuel research community with a tool for further identifying
engineering targets and a framework to unravel regulation of
metabolism. We name this model iYali4, as the fourth published
GEM of Y. lipolytica.

Physiological characterisation of chemostat cultures
A high-lipid producing strain of Y. lipolytica, overexpressing
diacylglycerol acyltransferase (DGA1), the last step of TAG
biosynthesis, was cultivated in a bioreactor under chemostat
conditions. Restrictive availability of ammonium (as nitrogen
source) was compared to the restrictive availability of glucose
(as carbon source), all at the same dilution rate (0.05 per h).
Carbon–nitrogen ratios of 2.2 and 110 were selected as
representing carbon versus nitrogen limitation (Supplementary
Information 3). When the cultures reached steady state, defined at
a constant OD600 and O2 partial pressure in the exhaust gas,
samples were taken for measurements (Figure 1).
An overview of the fermentation profile shows that the specific

glucose consumption rate (qgluc) was similar at both nitrogen
and carbon limitations, and also the biomass yield (YSX) was
comparable (Table 1). This is in stark contrast with for instance
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S. cerevisiae where nitrogen limitation results in ethanol fermenta-
tion and a fivefold decrease in the biomass yield.14 Y. lipolytica is,
however, an obligatory aerobe and does not ferment ethanol.
Although wild-type Y. lipolytica produces citrate as a carbon
overflow metabolite, the DGA1 strain used in this study instead
shuttles citrate towards lipid production.3 HPLC analyses of the
cell-free supernatants confirmed the absence of citrate excretion.
The specific oxygen and carbon dioxide exchange rates are higher
during nitrogen restriction (Table 1), suggesting a more active
oxidative phosphorylation.
A high degree of filamentous growth (Supplementary

Information 4) was observed in all chemostat cultures and shake
flasks cultivations using the same growth medium, albeit at lower
levels in shake flasks. Filamentation has been observed previously
in bioreactor cultivations for studies of lipid accumulation.15

Filamentation can be induced by a range of environmental
changes, including the carbon source,16,17 nitrogen source,16,18,19

temperature,20 oxygenation,18,21 pH and buffer composition.16,19

In addition, conflicting conclusions can be found in the literature,
possible due to strain specificity.22 We adjusted several of these
operational parameters in our chemostat fermentations, but none
of these adjustments resulted in a major reduction in filamenta-
tion, showing that filamentous growth is a complex response that
can involve multiple triggers. We did not evaluate the addition of
a complete supplement mixture or addition of amino acids to the
medium as this would complicate restricting the nitrogen source
and complicate quantification of uptake fluxes. Nonetheless, as
filamentation occurred at all growth conditions, physiological
responses associated with filamentous growth will be filtered out
in a comparative analysis.

Increases in lipids during nitrogen restriction
The lipid compositions of Y. lipolytica were measured for both
nutrient restrictions, and the most dominant phospholipids were
found to be PE, PC and PI (Figure 2), corroborating previous
measurements of Y. lipolytica.23 The low steryl ester (SE) content
was surprising, as SE is typically identified as a storage lipid
together with TAG, and lipid droplets normally contain 7.8–14%
steryl esters.24 However, other reports state that steryl esters are
only present in very small amounts.25

The total lipid content increased from 40.5 mg/gDW
(±5.7 mg/gDW) during carbon limitation to 197 mg/gDW
(±35 mg/gDW) during nitrogen limitation (Figure 2). During batch
fermentation of the DGA strain the total lipid content reached
338mg/gDW confirming that the chemostat cultivations simulate
conditions occurring earlier in the batch fermentation, when lipids
are still actively accumulating.3

The increased lipid content during nitrogen limitation could
surprisingly be contributed to an increase in virtually all lipid
species and not just triacylglycerols and steryl esters (Figure 2). In
S. cerevisiae lipid droplets are likely structured with an inner-core
of TAGs, surrounded by a shell of steryl esters and an outer
surface of a phospholipid monolayer,26 whereas lipid droplets in
Y. lipolytica grow in size when more lipids are accumulated.24

Larger lipid droplets require more total phospholipids, whereas
the ratio of phospholipid per lipid content would decrease, albeit
they only contribute 1.6–2% to the total amount of lipids in lipid
droplets.24 The increase could also be due to a larger amounts of
other intracellular membranes. The increase in filamentation
(Supplementary Information 4) observed during nitrogen limita-
tion may contribute to the increased phospholipids. A more
cylindrical shape of the cells result in a larger surface-to-volume
ratio, whereas the amount of lipids in the cell wall remains at 5%
in both yeast and filamenteous Y. lipolytica.27

All isolated lipids were derivatized to release fatty acid methyl
esters (FAMEs) that were subsequently analysed by GC-MS. The
fatty acid composition shows only a minor shift towards shorter
chain lengths (Figure 2); C16 versus C18; and the saturation level
decreases at nitrogen limitation compared with carbon limitation.
This is in contrast to batch fermentations where C18:0 is the
second most prominent fatty acid,3 whereas C16:1 and C18:2 have
the lowest levels.3
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Figure 1. Experimental design. Triplicate chemostats were run at
steady-state, after which various samples were taken. Strain-specific
GEMs were generated using the experimental data and the
predicted flux changes were compared with differentially expressed
transcripts, indicating potential transcriptional regulation.

Table 1. Physiological parameters

Carbon
restriction

Nitrogen restriction

Specific growth rate (per hour) 0.047 (±0.004) 0.048 (±0.002)
Biomass concentration (g/l) 2.1 (±0.1) 2.7 (±0.5)
Extracellular glucose
concentration (g/l)

0 17.9 (±0.8)

qGluc (mmol gDW/h) 0.61 (±0.06) 0.64 (±0.06)
qO2 (mmol gDW/h) 1.3 (±0.3) 2.1 (±0.3)
qCO2 (mmol gDW/h) 1.5 (±0.1) 2.2 (±0.3)
RQ (− ) 1.15 (±0.20) 1.0 (±0.1)
YSX (gDW g/glucose) 0.43 (±0.02) 0.42 (±0.01)
Dissolved oxygen (%) 82 (±4) 74 (±10)

Abbreviation: RQ, respiratory quotient.
Data are means (s.d.) from three independent chemostats.
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Figure 2. Lipid and total fatty acid composition. Error bars are s.d.
of three independent biological replicates. CL, cardiolipin; ES,
ergosterol; FFA, free fatty acid; PA, phosphatidate; PC, phosphati-
dyl-choline; PE, phosphatidylethanolamine; PI, phosphatidyl-inositol;
PS, phosphatidyl-serine; SE, steryl ester; TAG, triacylglycerol.
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Transcriptional changes during nitrogen limitation
To quantify the regulatory responses to the shift in nutrient
limitation we performed RNA sequencing. Gene-set analysis was
performed on normalised RNA counts to obtain a systemic
overview of the differential expression, where gene-sets were
defined by GO term annotations obtained from various databases.
The overall picture obtained was that Y. lipolytica under nitrogen
limitation attempts to minimise its nitrogen usage (Figure 3). GO
terms enriched for transcripts that are upregulated during
nitrogen limitation are involved in protein turnover and autop-
hagy, providing alternative sources of nitrogen. In contrast, many
of GO terms enriched for downregulated transcripts are related to
amino-acid metabolism.
The transcriptional response appears highly regulated with

about 30 putative transcription factors differentially expressed
(Supplementary Information 5). Although transcriptional regula-
tory networks can be subjected to rewiring,28 such as the shift of
SREBP from regulating ERG genes to regulate filamentation,29

other parts of transcriptional regulatory networks are more
conserved.
Several signalling networks are involved in the response to use

of different nitrogen sources in S. cerevisiae.30 Nitrogen restriction
releases nitrogen catabolite repression (NCR), which is regulated
by interplay of four GATA transcription factors conserved to
Y. lipolytica, Gln3, Gat1, Gzf3 and Dal80. Homology prediction
is difficult for their genes due to high similarity, however,
Yali0D20482g and Yali0C22682g are likely GAT1 and GZF3,
whereas GLN3 and DAL80 are Yali0F17886g and Yali0E05555g.31

GAT1 and GZF3 are strongly upregulated during nitrogen
limitation (Supplementary Information 5). Interestingly, glutamate
dehydrogenase (Yali0F17820g; Yali0E09603g), glutamate synthase
(Yali0B19998g) and glutamine synthetase (Yali0F00506g) are
not upregulated during nitrogen limitation, while they are

upregulated in nitrogen restricted R. toruloides.32 As an alternative
route to recycle nitrogen, Y. lipolytica has an ortholog
(Yali0A06974g) of the Aspergillus nidulans xanthine
dehydrogenase,33 which is absent in S. cerevisiae. Presence of this
pathway means that purines can be degraded via allantoin to
release ammonia. Multiple genes in this pathway are under
control by Gat1 and Gln3, whereas this whole pathway is
upregulated during nitrogen restriction (Figure 3), corroborating
the release of NCR.
A more central role in nitrogen sensing and signalling is played

by the TOR complex,34 where nitrogen starvation inhibits TOR,
what subsequently, among others, inhibits protein translation,
activates autophagy and reconfigures amino-acid permeases.30

The observed differential gene expression profile supports TOR-
mediated regulation, such as upregulation of autophagy, protea-
some, peptidases and ubiquination (Figure 3).
Another key regulator of metabolism is Snf1, a protein kinase

that is involved in many signalling pathways, including the shift
from fermentation to aerobic metabolism in S. cerevisiae,
regulation of amino-acid metabolism, inhibition of translation
and activation of β-oxidation. A Y. lipolytica knockout of SNF1,
or other components of the Snf1 signalling complex, has an
increased lipid content, and from this it has been proposed that
Snf1 is an important regulator of lipid accumulation in
Y. lipolytica.5 In S. cerevisiae Snf1 inhibits the activity of the
acetyl-CoA carboxylase Acc1 by phosphorylation,35 and these
phosphorylation-sites on Acc1 are conserved in Y. lipolytica Acc1.
However, the gene expression profile of the SNF1 knockout was
very distinct from the chemostat expression profiles, even though
both presented an oleaginous phenotype.5 For instance, removal
of Snf1 increases expression of β-oxidation5 while this pathway
was downregulated during nitrogen restricted chemostat culture,
represented by the GO terms acyl-CoA dehydrogenase and
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oxidase (Figure 3). β-oxidation could be considered as a futile
cycle during lipid accumulation, although it has been reported
that Y. lipolytica degrades its reserves lipids even in presence of
high carbon concentration in the medium.36,37 Y. lipolytica has six
acyl-CoA oxidases with different specificities.38 The deletion of all
six genes produces a higher lipid content25 while deletion of the
peroxisomal biogenesis gene PEX10 also increases lipid
accumulation.4 These metabolic engineering strategies are based
on manipulating the β-oxidation response of Y. lipolytica in
oleagenic conditions. The SNF1 knockout, in contrast, leads to a
similar oleaginous phenotype but its regulatory response seems to
be distinct from what is observed in typical nitrogen-limitation
induced lipid accumulation. This questions the important role of
Snf1 in the regulation of lipid metabolism. The SNF1 knockout is
forced to accumulate lipids due to the lack of repression of Acc1
by Snf1, however, the observed transcriptional response is not

representative for lipid accumulation, and therefore the role of
Snf1 in lipid accumulation is likely limited to its regulation of Acc1.

Correlation of transcription and metabolic fluxes
Although differential expression of genes is indicative of how the
organism reacts to a certain treatment or condition, changes in
transcript levels do not necessarily translate to changes in protein
levels and, when these proteins are enzymes, in changes in
metabolic fluxes. Nonetheless, correlations of transcriptional
changes with changes in metabolic fluxes suggest transcriptional
regulation of those reactions. Therefore, metabolic fluxes for each
reaction were estimated using the Y. lipolytica GEM, by constrain-
ing the model with condition-specific experimental data, i.e.,
glucose and oxygen consumption rates, CO2 production rate,
growth rate and measured lipid composition (Table 1, Figure 2).

Figure 4. Schematic overview of changes in flux and transcript levels. Arrows can represent multiple reactions. Z-scores indicate changes on
the levels of metabolic flux or RNA, TR score indicates a correlation between metabolix flux and RNA, suggesting transcriptional regulation.
(a) Central carbon metabolism including lipid metabolism. (b) Nitrogen metabolism. (c) Amino acid biosynthetic pathways.
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The resulting models were sampled using a random sampling
algorithm,39 providing means and s.d. for each flux in either
nitrogen or carbon limitation. Standard scores were calculated
for each reaction and these were compared with standard
scores calculated for the transcriptional changes. Of the 2,194
gene-reaction pairs, 53 showed transcriptional regulation
(Supplementary Information 6).
Our gene-set analysis already identified downregulation of

amino-acid metabolism (Figure 3). This downregulation is also
observed in the metabolic fluxes through several of the amino-
acid biosynthetic pathways (Figure 4). Specifically, leucine has
been suggested to be involved in the regulation of lipid
metabolism in Y. lipolytica.4 The LEU2 gene is an often used
selective marker on overexpression plasmids to metabolically
engineer leucine auxotrophic strains (e.g., Po1g), while the
additional supplementation with leucine, and not isoleucine,
resulted in a higher accumulation of lipids.4 It is plausible that
Y. lipolytica senses the increased leucine level and as a
transcriptional response further downregulates amino-acid
biosynthesis. This further downregulation then provides an
ever stronger redirection of flux towards lipid metabolism.
Interestingly, in S. cerevisiae leucyl-tRNA synthethase has been
identified as controlling TORC1 in a leucine-dependent manner.40

Although this identifies an intracellular leucine sensor, the
activation of TORC1 with increased leucine is actually the opposite
as what is observed during nitrogen limitation.

Lipid metabolism has limited transcriptional regulation
While the lipid contents of the cells change drastically upon
nitrogen limitation, the transcript levels of lipid metabolism was
poorly regulated. In contrast to the increasing lipid content at
nitrogen limitation, some of the transcripts were downregulated
at this condition. Lipid metabolism therefore does not appear to
be regulated at the transcriptional level.
Previously, the transcriptional response to the onset of lipid

accumulation has been studied in fed-batch cultivations.31 There
are numerous differences observed in expressional changes
between the two data sets, including changes in isocitrate lyase,
aconitase and dephospho-CoA kinase expression during fed-batch
cultivations that are not changing in the chemostats. Many of
these difference can be explained by the fact that the chemostat
experiments only compares steady-state nitrogen versus carbon
limitation, whereas the fed-batch cultivation includes adaptation
and growth-related differences. Nonetheless, both data sets
show similar trends, such as changes related to NCR, but more
importantly the lack of transcriptional regulation of lipid
metabolism, not only during steady-state lipid accumulation but
also during its transition towards this state.31

While metabolic engineering efforts have been made in the
overexpression of genes part of the lipid biosynthetic pathway,3,15

it seems that these strategies are based on crudely forcing the flux
towards lipid metabolism instead of taking the native regulatory
mechanisms into account. In contrast, the native regulation
that occurs during nitrogen limitation is primarily focused on
regulating amino-acid metabolism (Figure 5).

DISCUSSION
Limitation of nitrogen during continued growth of Y. lipolytica
provokes a dramatic response in the biomass composition, i.e. a
sustained increase in virtually all lipids. It has been proposed
that an important role in this process is the inhibition of AMP-
dependent isocitrate dehydrogenase evoked by an increased
activity of AMP deaminase.41 Although transcriptional regulation
likely has another important role in this response, as not only a
significant number of transcripts but also many TFs are differently
expressed, it appears that lipid metabolism itself is undergoing

very limited transcriptional regulation. The metabolic network is
adapted to divert the carbon flux from pathways requiring
nitrogen, such as amino-acid metabolism, while the lipid
biosynthetic pathways are seemingly in high enough activity to
harbour this increased flux. Nonetheless, it is likely that additional
regulation takes place such as post-translational modifications, as
it is known that Acc1 activity is repressed by phosphorylation by
Snf1, which probably contributes to the oleaginous phenotype in
the SNF1-knockout. This corroborates findings from fed-batch
cultivations of Y. lipolytica, where also limited transcriptional
regulation of lipid metabolism was observed.31 In addition, in
R. toruloides the limited transcriptional regulation of lipid
metabolism is primarily focused on the downregulation of
β-oxidation.32 Although Y. lipolytica does not seem to regulate
the expression of its lipid metabolism, metabolic engineering
efforts have been made to increase the lipid yield by over-
expression of additional copies of native genes involved in lipid
metabolism, such as ACC1, DGA1 and recently stearoyl-CoA
desaturase.15 These efforts have been successful; however, it
ignores the original regulatory mechanisms of the cell. Taking the
native regulatory network into account will result in more robust
and increased lipid yields, and our findings may enable coupling
growth and lipid accumulation, which is required for obtaining
high specific productivities of TAG.
A more systematic study of lipid accumulation in oleaginous

yeasts requires a high-quality framework to integrate the various
data, which we provide here with a high-quality genome-scale
model of Y. lipolytica. Our findings point to that Snf1 might not
naturally have an important role in lipid accumulation as
previously postulated. Thus, even though a knockout of SNF1
results in an oleaginous phenotype, the transcription profile is the
opposite of what happens during lipid accumulation induced by
nitrogen restriction. Our results therefore point to that lipid
accumulation in Y. lipolytica at nitrogen limitation is similar to the
overflow metabolism observed in many other microorganisms,
e.g. ethanol production by S. cerevisiae at nitrogen limitation, and
more in line with what is observed in mammals where a high
carbon to nitrogen ratio in the diet results in TAG accumulation.

MATERIALS AND METHODS
Yeast strain and chemostats
The Yarrowia lipolytica strain used in this study was derived from Po1g
(Leu− ), contains the MTYL053 plasmid expressing DGA1 and was provided
by ref. 3. Chemostat cultures were performed with a dilution rate of 0.05
per hour at 30 °C in 1.2 l bioreactors (DASGIP, Jülich, Germany) with a
working volume of 750 ml at pH 3.5, controlled with 2 M KOH. Dissolved
oxygen was kept above 30% with a stirrer rate of 600 rpm and an air flow
rate of 1 v.v.m. For carbon restriction, 1 l medium contained 5 g glucose,
5 g (NH4)2SO4, 3 g KH2PO4, 0.5 g MgSO4·7 H2O, vitamins and trace metal

Snf1Glucose

AcCoA

AA

FA

TAG

Acc1
Ammonium

Purines Urea

Gat1, Gln3

Protein

TOR

via
allantoin

Amino acid
permeases

D
ga

1

Other
lipids

�-oxidation

activation
inhibition
chemical conversion

Figure 5. Schematic overview of regulation that occurs during
nitrogen limitation in a high-lipid producing strain.
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solutions42 and 125 μl antifoam 204 (Sigma-Aldrich, St Louis, MO, USA). For
nitrogen restriction a similar medium was used, where the glucose was
increased to 25 g, the (NH4)2SO4 decreased to 0.5 g while SO4 levels
remained constant by adding 5.96 g K2SO4. CO2 and residual O2 in the
exhaust gas were measured using an online gas analyser (DASGIP).
Samples for cell dry weight, lipid and FAME analysis and transcriptomics
were taken when the chemostats reached steady state, defined as stable
CO2 and O2 outflow and optical density, which was achieved after
circa 120 h.

Lipid and fatty acid analysis
Samples were taken from the steady-state chemostat cultivations to
investigate their lipid contents and compositions. The biomass was
disrupted and lipids extracted using a fast microwave-assisted extraction
method,43 and subsequently analysed by LC-CAD, allowing quantification
of 10 different lipid species. Fatty acids were extracted and derivatized to
fatty acid methyl esters using a similar microwave-assisted method44 and
subsequently analysed by GC-MS.

RNA extraction and sequencing
Samples for RNA analysis were rapidly taken from steady-state chemostats,
frozen in liquid nitrogen and stored at − 80 °C. Total RNA was extracted
with Trizol (Invitrogen, Carlsbad, CA, USA) using the manufacturer’s
instructions with additional mechanical disruption of the cells using a
FastPrep homogenizer (MP Biomedicals, Santa Ana, CA, USA) and 1 mm
silica beads. Further RNA preparation and RNA sequencing was performed
by SciLifeLab in Uppsala, Sweden using their IonTorrent platform. Data are
deposited at ArrayExpress (E-MTAB-3837). Raw RNAseq reads were aligned
to the Y. lipolytica CLIB122 reference genome using local alignment in
Bowtie,45 counts were obtained with HTSeq46 and transformed using
voom.47 In all analyses, carbon limitation was set as reference condition.

De novo assembly
Raw RNA data from all samples was concatenated and reads of o40 base
pairs were removed. Transcripts were de novo assembled and coding
sequences predicted using the Trinity software package.48 Proteins were
functionally annotated using Blast2GO.49 Full length transcripts and coding
sequences were aligned to the reference genome contigs from strain
CLIB12250 using Blat51 to determine their position and percent identity.
Determination of best hits was made using Identity score, calculated as
[(Q end—Q start—Q gap bases)/Q size+(T end—T start—T gap bases)/
T size] × [match/(match+mis-match)]/2. Transcripts with an identity score
o0.4 were considered poor quality alignments.

Genome-scale modelling
A genome-scale model of Y. lipolytica was reconstructed using the RAVEN
toolbox in Matlab52 and the yeast consensus network version 7.11 (ref. 13)
was employed as a template. To facilitate integration of our FAME analysis,
we reverted the extensive expansion of lipid metabolism in yeast 7, where
the length of each acyl-chain is specified. A previously published Yarrowia
GEM was assessed and curations on this model were transferred to our
model.11 Additional gap filling and curation was performed manually. This
resulted in our model iYali4, available from BioModels database
(MODEL1508190002) and as Supplementary Information 7.
Flux ranges were determined using the random sampling approach,39

where random combinations of objective functions are used to sample the
edges of the solution space. The difference in flux ranges between carbon
and nitrogen restricted conditions were converted to Z-scores, and
likewise for the mRNA fold changes, as described previously.39

Gene set analysis
Gene sets were generated from GO term annotation of the Yarrowia
genome as provided by Blast2GO,49 Ensembl,53 InterPro54 and UniProt.55 A
total of 29,513 GO terms were annotated to 5,232 genes. Gene set analysis
was performed with the normalised RNAseq counts using Piano,56 with the
mean of the gene-level statistics, ignoring gene-sets smaller than 5 and
larger than 500 genes, sampling 1,000 times and corrected for multiple
testing using FDR.
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