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Abstract
Cavitating multi-phase flows include an extensive range of cavity structures with
different length scales, from micro bubbles to large sheet cavities that may fully
cover the surface of a device. To avoid high computational expenses, incompress-
ible transport equation models are considered a practical option for simulation
of large scale cavitating flows, normally with limited representation of the small
scale vapour structures. To improve the resolution of all scales of cavity structures
in these models at a moderate additional computational cost, a possible approach
is to develop a hybrid Eulerian mixture - Lagrangian bubble solver in which the
larger cavities are considered in the Eulerian framework and the small (sub-grid)
structures are tracked as Lagrangian bubbles. In this thesis, such a multi-scale
model for simulation of cavitating flows is being developed. In the current re-
port, first the performance of three different numerical approaches in cavitation
modelling are compared by studying two benchmark test cases to understand the
capabilities and limitations of each method. Two of the methods are the well
established compressible thermodynamic equilibrium mixture model and the in-
compressible transport equation finite mass transfer (FMT) mixture model, which
are compared with a third method, a recently developed Lagrangian discrete bub-
ble model. In the Lagrangian bubble model, the continuum flow field is treated
similar to the FMT approach, however the cavities are represented by individ-
ual bubbles. After describing the aforementioned cavitation models, the hybrid
mixture-bubble model is presented with a discussion over some of the encoun-
tered numerical issues in the model development. This model is developed by
coupling the Eulerian FMT mixture model and the Lagrangian bubble model in
the open source C++ package OpenFOAM. A critical step in developing this hy-
brid model is the correct transition of the cavity structures from an Eulerian to
a Lagrangian framework. To address these issues, a new improved formulation
is developed, and simulation results are presented that shows the issues are over-
come in the new model. Further, for the Lagrangian modelling, different ways to
consider how the fluid pressure influences bubble dynamics are studied, including
a novel way by considering the local pressure effect in the Rayleigh-Plesset equa-
tion, which leads to improved predictions.

Keywords: Cavitation, Eulerian-Lagrangian model, Disperse multiphase flow,
Multi-scale model, Homogeneous mixture model, OpenFOAM
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1
Introduction

1.1 Cavitation

Cavitation is a common phenomenon in industrial hydraulic systems, such as ma-
rine propulsion systems, turbines and fuel injectors. It is in many cases undesir-
able and it is tried to avoid its occurrence, or at least to minimize its effects. One
issue is material loss and degradation of the hydraulic systems due to cavitation
erosion, which is believed to be the result of violent and very fast collapses of
the generated vapour micro-bubbles. Moreover, cavitation is often accompanied
by issues of noise, vibrations, load variations, blockage and loss of efficiency in
hydraulic devices. However, it is found a desirable event in some other situations
such as ultrasonic cleaning and ultrasonic drug delivery. Therefore, reliable pre-
diction and control of cavitation is of considerable importance in the design of
hydraulic and marine systems as well as its application in biomedical treatment
and chemical systems.

1.1.1 Definition

Cavitation is the formation of vapour in a liquid when local static pressure of
liquid falls below a critical pressure threshold. As pressure of a larger region gets
below the threshold pressure, more liquid will change phase into vapour. Without
considering the effects of shear forces in flowing fluids, the pressure threshold is
equal to the saturation pressure. The difference between cavitation and boiling
is that cavitation occurs due to pressure drop while boiling is caused due to an
increase in temperature.

The region or pocket of the generated vapour in the cavitating flows is called
cavity. The cavity can be either steady and attached to the surface or it can be sep-
arated from the surface and transported downstream. Multiphase cavitating flows
contain an extensive range of cavity structures with different length scales. For
example, a sheet cavity that fully or partially cover the suction side of a hydrofoil
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1. Introduction

may break down into smaller cloud cavities and micro bubbles which are further
transported into regions of higher pressure, where collapse-like condensation re-
sults in the formation of liquid jets and pressure shocks. Due to the mentioned
significance and complexity of the flow field, understanding and controlling cav-
itation has been a major challenge in engineering in recent decades and various
numerical and experimental approaches have been developed for different appli-
cations.

1.2 Numerical simulation

Computational Fluid Dynamics (CFD) simulation, which can be a supplement
or alternative to experimental measurements, have gained more popularity in re-
cent decades. Experimental tests can be very expensive, suffer from scale effects,
and give limited information; the latter is a particular problem in cavitating flows
where the application of optical measurement techniques is often not possible. In
comparison, CFD methods can provide more detailed features of the flow field
to have a more comprehensive understanding of the hydrodynamics of cavitation.
However, cavitating flows include a vast range of spatial and temporal scales in
different applications, and sometimes are accompanied by other processes and
flow effects that makes the modelling and computations challenging. For exam-
ple, the duration of the final stage of bubble or cavitating vortex collapse is of the
order of one microsecond [1] while the erosion process might take place over the
lifetime of a propeller. Also, the normal velocity of the interface can vary from
some meters per second for turbomachinery systems to hundreds of meters per
second in diesel injector nozzles. Besides that, the peak pressures can reach up
to several thousands of bars for a few microseconds during the last stages of cav-
ity collapse. Another parameter to consider is fluid properties, as cavitation does
not occur only in water but also in e.g. rocket pumps, the lubricant of bearing
[2], diesel injectors, or blood vessels during ultrasound drug delivery. Depending
on the fluid properties and pressure differences, sometimes strong shock waves
and considerable temperature variations are seen in the domain which means that
compressibility and thermal effects should be considered in the simulation. Con-
sidering the issues with sufficient spatial and temporal resolutions as well as the
mentioned flow effects, there is no unique CFD approach today that has sufficient
performance for all cavitation problems. In fact, current computational capabil-
ities do not allow the resolution of all scales arising in typical cavitating flows
except for a few academic cases [3]. Therefore, various numerical methods are
being used today, and each of them is applicable or feasible only to a specific
group of cavitation problems. There are different categorizations of cavitation
models based on the fundamental assumptions behind them.

2



1.2. Numerical simulation

1.2.1 Equilibrium models

In one group of models, the two-phase cavitation regime is considered as a single
fluid flow which is in mechanical and thermodynamic equilibrium. This equi-
librium assumption implies that mass transfer rate at the gas-liquid interface is
infinite. These models are mostly implemented in density-based algorithms with
different approaches to find the pressure-density relation. For example, Schnerr at
al. [4] and Koop [2] used an equation of state (EoS) to find the flow pressure. The
different phases and their relevant interface are recognised based on the density
value at each point and the EoS can be a function of temperature. Kyriazis et al.
[5] used an explicit density-based solver with real fluid thermodynamic properties
for n-Dodecane to demonstrate heating effects in bubble collapse cases. When
the flow temperature variation is not significant, the EoS can be independent of
the temperature which simplifies the pressure-density relations; this is known as
barotropic EoS. The barotropic models are implemented in both density-based
(e.g. Koukouvinis et al. [6]) and pressure-based algorithms. Goncalves et al. [7]
compared an incompressible pressure-based solver with a compressible density-
based solver with barotropic cavitation models. From the results it seems nec-
essary to consider fluid compressibility effects to correctly describe the cavity
dynamics. The single fluid EoS models do not usually need any empirical param-
eters; however the captured liquid-gas interface is rather diffuse in these models
and a high grid resolutions with very small time steps are needed for adequate
prediction of a sharp interface. Furthermore, to correctly capture pressure wave
propagation, very small time steps are normally needed in the simulation. There-
fore, these models are computationally expensive and they are usually applied to
cavitating flows in small scale geometries such as diesel injector nozzle flows.

1.2.2 Transport equation based models

Another widely used modelling approach is the transport equation based method.
Here, similar to the previous approach, the multiphase flow is treated as a ho-
mogenous mixture and one set of continuity and momentum equation is used to
calculate the mixture flow. However, a transport equation is solved to capture
the liquid-vapour interface. This equation can be developed based on the volume
fraction of the two phases (e.g. Singhal [8] and Bensow and Bark [9]) or through
a level-set method, i.e. expressed based on a signed distance of any point to the
interface, e.g. [10]. Also, the mass transfer between the phases is defined as an
explicit source term to the transport equation. Therefore, this approach, known as
finite mass transfer rate method (FMT), should incorporate a numerical model to
estimate vaporization and condensation rates. Most models that are used in the
literature (selectively [11], [12] and [13]) estimate the phase change rate based on
a simplified form of the Rayleigh-Plesset equation, in which the second temporal
derivative of bubble radius as well as the effect of non-condensable gas are ig-
nored. This simplification may affect the model accuracy; Ye and Li [14] showed
that the bubble growth rate can become greatly reduced if the bubble-bubble in-
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1. Introduction

teraction and second-order derivative in the Rayleigh-Plesset equation are con-
sidered. To improve the model accuracy, however, some empirical constants are
implemented in these models which should be tuned for each different simulation
to adjust the mass transfer rate. Such uncertainty of model constants is one of the
limitations of the finite mass transfer approach. A recent study by Koukouvinis
and Gavaises [15] showed that even with the finite mass transfer approach consis-
tent results can be achieved by theoretically increasing the transfer rates to infin-
ity. The transport equation method is commonly implemented in pressure-based
algorithms and the pure fluids are usually assumed to be incompressible; there are
however a few studies in which the fluid compressibility is taken into account. For
example, Koukouvinis et al. studied the expansion and collapse of a single bubble
subject to gravity [16] and in the vicinity of a free surface [17]. However, they
ignored the mass transfer rate in the simulation. Also, Yakubov et al. [18] investi-
gated the effect of fluid compressibility in pressure-based solvers using the finite
mass transfer approach. This study shows that considering fluid compressibility
in the pressure correction equation may lead to ill-conditioned matrices of coeffi-
cients which can cause numerical issues for steady-state simulations or transient
simulations with large time steps. From the results, it can also be inferred that the
cavitation patterns are very similar for compressible and incompressible simula-
tions. Therefore, for the large scale problems, such as cavitating ship propellers
and turbines, it is more common to use incompressible transport equation models
as they are less computationally expensive and can give rather satisfactory results
using larger time steps, as compared to equilibrium-based models. However, due
to simplifications in the mass transfer rate model as well as the grid resolution
dependency of the transport equation, cavity structures smaller than the grid size,
such as cavitation nuclei and bubbles, or sparse clouds of bubbles, are not well
treated using these approaches. Accurate simulation of such structures and their
violent collapse and fast rebounds are very important in accurate prediction of
cavitation erosion.

1.2.3 Discrete bubble model

Discrete bubble model (DBM) is an approach in which the cavity structures are
tracked in a Lagrangian framework while the continuum flow is calculated using
Eulerian governing equations. In other words, cavity structures are considered
as individual bubbles and groups of bubbles, or parcels of them, and tracked by
solving the Lagrangian equations of motion. Different numerical studies in the
literature show the potential of this method to represent cavitation phenomenon.
Giannadakis et al. [19], for example, studied the predictive capability of a stochas-
tic Lagrangian model accounting for the onset and development of cavitation in-
side diesel nozzle holes. Since different flow forces on cavities are implemented
directly in the transport equation and bubble size variation is represented using
a more accurate form of the Rayleigh-Plesset equation, the Lagrangian approach
can give a more realistic estimation of cavitation dynamics as compared to the
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1.2. Numerical simulation

transport equation approach. Abdel-Maksoud et al. [20] compared Eulerian and
Lagrangian methods, and showed that only Lagrangian models are able to de-
scribe correctly the bubble behaviour in vortices. In this method, the small sub-
grid scale structures and nuclei can be resolved which is crucial in cavity collapse
and rebound estimation as well as erosion prediction. Also, it allows to take into
account inhomogeneous and transient water-quality effects [21].

To have a more physical representation of the cavity dynamics in DBM, var-
ious interactions between cavity structures should be modelled appropriately in
the solution algorithm. These interactions include, but are not limited to, differ-
ent flow forces on bubble trajectory as well as its dynamic, turbulence effect on
bubble motion and break-up, bubble-bubble interaction and the bubble contribu-
tion on mixture properties and surrounding pressure. However, the Lagrangian
models can be computationally expensive when the number of bubbles is large.
Besides that, they are limited in representation of large and non-spherical vapour
structures.

1.2.4 Hybrid models

Considering the stated limitations of the previous groups, there is no numerical
model in these categories which is capable in resolving all spatial and temporal
scales in a general cavitating flow. However, from the above mentioned capabil-
ities of the Eulerian and Lagrangian formulations, a solution can be to develop a
hybrid multi-scale model to resolve the large vapour structures through a mixture
approach, and to capture the small-scale structures as discrete bubbles (e.g. [22]).

Using multi-scale models to simulate multiphase flows is a popular approach
and numerous studies can be found in literature. For example, Tomiyama and
Shimada [23] proposed a (N+2)-field modeling approach which can deal with
two continuous phase fields and N dispersed gas phase fields. Also, Černe et
al. [24] and Štrubelj and Tiselj [25] developed another model by coupling of
an interface capturing Volume of Fluid (VOF) based method with the two-fluid
model, so that in the parts of the domain where the flow was too dispersed to be
described by the interface capturing algorithms, the two-fluid model was used.
However, as explained before, Eulerian approaches are limited in capturing small
sub-grid bubble dynamics with reasonable computational expense and most of
the developed multi-scale models in literature are Eulerian-Eulerian solvers. The
concept of multi-scale hybrid Eulerian-Lagrangian solvers is a more recent ap-
proach to simulate multiphase flows in large scale applications for which effective
small scale details need to be resolved sufficiently. This methodology has gained
more popularity in recent years for simulation of atomizing gas-liquid flows [26].
The works of Kim et al.[27], Herrmann [28] and Tomar et al. [29] are the pio-
neering efforts to couple the Lagrangian Particle Tracking (LPT) with transport
equation based methods. Also, Ling et al. [30] developed a hybrid model with
more emphasis on the correction of momentum equation source terms due to the
Eulerian-Lagrangian coupling in order to accurately compute the dynamics of the
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1. Introduction

Lagrangian droplets that are larger than the grid spacing. In that study, the Eule-
rian structures are directly converted to one Lagrangian droplet with equal volume
(similar to Tomar et al. [29]), but only a special zone of the flow domain is sub-
jected to this conversion and thin ligaments and sheets are exempted from this
treatment. In addition to the direct transition from Eulerian to Lagrangian struc-
tures, there are statistical algorithms (e.g. [31]) in which the transfer of mass from
Eulerian to Lagrangian framework is done via a statistical model, tuned to the up-
stream predictions of the Eulerian model. This method reduces the computational
time in comparison to the previous method, but some of the information (posi-
tions, mass, momentum) may not be preserved during the transition. Also, Ström
et al. [32] used a switching zone with a statistical method which is designed to
ensure that the Lagrangian parcels exit the zone with the correct statistics. The
advantage of this approach was that the computationally demanding resolution of
the liquid primary atomization process could be avoided altogether.

The mentioned Eulerian-Lagrangian hybrid models have been developed for
atomizing gas-liquid flows, however, this approach can be utilized for cavitating
flows as well. For example, Hsiao et al. [33] and Ma et al. [34] have devel-
oped a model with coupling of a Lagrangian Discrete Singularities Model and an
Eulerian level set approach. In these studies, the Eulerian cavities are directly
transformed to Lagrangian bubbles, but the bubble volume is spread smoothly
over neighbouring cells within a selected radial distance. There are important dis-
tinctions between cavitating flow and atomizing flow applications which should
be considered in model developments. In the mentioned hybrid models for at-
omizing flows (except [32]), it has been assumed that the Lagrangian particles
do not occupy any volume in the Eulerian description which is valid when the
Lagrangian formulation is used only in the dilute regions of a flow. Also, the re-
sulting model will be useful in situations where continuous phase density is very
low in comparison to the dispersed phase density [32], such as liquid spray ap-
plications. However, in cavitating flows we encounter the opposite case since the
continuous phase density (water) is much larger than the (vapour) bubble density
and such an assumption is not valid. Besides that, in liquid atomizers the dilute
dispersed flow region and continuous two-phase region are present in separate
regions of the flow as the dispersed droplets are results of the break-up of the two-
phase structures in the downstream, this makes the numerical implementation of
the transition algorithm more convenient. However, in cavitating flows, at each
point of the two-phase regime, both small bubbles as well as large Eulerian cavi-
ties can be present. Another significant difference between the two applications is
that in atomized liquids, for direct transition each liquid fragment is usually con-
verted into one Lagrangian droplet with equal volume, while in cavitating flows,
each Eulerian structure is actually a cloud of bubbles or a bubbly mixture and
its properties (e.g. density) are not equal to the pure vapour (dispersed phase)
properties. Therefore, the cavity might be replaced by a group of smaller bubbles
(instead of one larger bubble) in such a way that the properties of the combined
bubble group are equal to the corresponding values of the old Eulerian cavity.
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1.3. Objectives of the study

Vapour condensation / liquid vaporization is a mass transfer process which only
happens in the cavitating flows, adding the need for modelling mass transfer in
the governing equations. A key factor in developing such solvers is the correct
and smooth transition between Lagrangian and Eulerian structures and it is more
important in cavitating flow simulations. When an Eulerian mixture structure is
transformed to a Lagrangian bubble or vice versa, since the related transport equa-
tion to track the structure is modified, a wrong transition process may cause drastic
non-continuous changes and spurious numerical pulses in the domain.

1.3 Objectives of the study

Considering the described capabilities and limitations of different models in the
previous section, the main objective of this study is to develop a hybrid mixture-
bubble model in OpenFOAM that is capable in representing cavitation phenomenon
with extensive range of length scales from large sheet and cloud cavities that may
fully cover a device surface to sub-grid micro bubbles. To fulfil this objective, the
following steps have been taken in this thesis.

• Development of a discrete bubble cavitation model in OpenFOAM: There is
no Lagrangian cavitation model in the OpenFOAM code, and the first step
is to develop such a model by implementing a basic available Lagrangian li-
brary in a suitable continuum flow solver in the code. Then, the Lagrangian
library needs to be improved to solve for the bubble dynamics and con-
sider the bubble effect on the continuum flow field. A necessary step in this
part is to improve the general Rayleigh-Plesset equation in determining the
cavitation bubble dynamics. Other improvements in this part are correct-
ing the bubble-wall boundary condition in OpenFOAM and considering the
bubble-bubble interaction on bubble dynamics.

• Comparing different cavitation models: A general description of the lim-
itations of different models is given in the previous section. However, to
have a further understanding of each model behaviour and finding the po-
tential area of improvements for the Eulerian and Lagrangian parts of the
hybrid model, the performance of the three types of the cavitation models,
i.e. EoS, FMT and DBM models, should be compared in the simulation of
benchmark test cases. It also verifies the implementation of the DBM model
in OpenFOAM.

• Coupling of the Eulerian mixture model with the Lagrangian bubble model:
To develop the main hybrid solver, the DBM and FMT models should be
coupled in OpenFOAM and a transition criterion should be defined to trans-
form the small collapsing cavities from the Eulerian framework to the La-
grangian one and also to transform large Lagrangian structures to the Eu-
lerian framework. This step is similar to the work of Vallier [35], in turn
inspired by the study of Tomar et al. [29].
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• Realizable improvement of the hybrid mixture-bubble model: As will be
explained in the following chapters, after coupling the mixture and bubble
models, the first solver that is developed based on available models in litera-
ture, need to be improved further to have a physically compatible transition
between Eulerian and Lagrangian frameworks, and to consider the bubble
contribution in the continuum flow field and mixture properties. Such im-
provements are another contribution of the current study.

1.4 Thesis outline

In chapter 2, the different numerical models that are used in this study are de-
scribed. First, the three models from different approaches (§1.2.1- §1.2.3) are
introduced. Then the coupling of an Eulerian model with a Largangian method in
the hybrid solver is explained in detail, with focus on the correct definition of the
transition process and the improved Eulerian governing equations.

In Chapter 3, the performance of the first three models are compared in simu-
lating two benchmark test cases. This comparison helps to identify and understand
the capabilities and limitations of each group of numerical models. The first test
case is the single bubble collapse. For this case, an analytical solution is available,
and the predicted bubble collapse behaviour and the surrounding pressure can be
assessed in detail. In this part, the effects of different parameters such as mass
transfer model empirical constant (used in the finite mass transfer and Lagrangian
models), as well as spatial and temporal resolutions in capturing the flow physics
are investigated. After that, the models are compared in simulating the collapse
of a cluster of bubbles, previously studied by Schmidt et al.[36]. Here, no exact
solution is available but only comparison between the methods can be made. In
the bubble cluster, the effect of neighbouring bubbles and relative pressure pulses
play an important role in the collapse behaviour. In addition to validating the
Lagrangian model and the improved form of the Rayleigh-Plesset equation, the
performance of the Eulerian finite mass transfer model is studied in detail and
the effect of various parameters in this method including empirical constants are
investigated, which helps to have a better understanding of its behaviour and pos-
sible source of deficiencies for future improvements. In the these two cases, the
emphasise is on the Lagrangian model performance in prediction of bubble col-
lapse dynamics and its effect on the continuum pressure.

In the last section of chapter 3, different cavity patterns over a two dimensional
hydrofoil is simulated to present the overall performance of the hybrid model and
also to validate the improved Eulerian-Lagrangian transition process. The report
is then concluded with recommendations for future improvements of finite mass
transfer and Lagrangian models as well as introducing the ongoing plan in further
development of the hybrid solver.

A part of this work is published in one journal article [37] and another part is
submitted for another article in the International Journal of Multiphase Flows.
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2
Numerical methods

In this study, a hybrid solver is developed through the coupling of an Eulerian
volume fraction based mixture model and a Lagrangian discrete bubble model.
In this solver, the pure liquid and vapour phases are assumed to be incompress-
ible and isothermal, and the pressure and velocity equations are coupled using
a pressure based algorithm. The mixture properties are obtained using a linear
function of liquid (or vapour) volume fraction, based on the homogenous flow
assumption. Also, the liquid volume fraction is obtained by solving the transport
equation model (Eulerian modelling) or from individual bubble distribution (La-
grangian modelling). In the current chapter, two Eulerian and a Lagrangian mod-
els are discribed first. Then, the coupling of the Lagrangian model with one of
the Eulerian ones in the hybrid solver is explained which is followed by introduc-
ing necessary improvements to make the Eulerian-Lagrangian transition process
more realizable. The described Eulerian models are the incompressible transport
equation based model which is implemented in the hybrid solver and also, the
compressible equilibrium model which used as a more accurate model to validate
the performances of the incompressible models.

All of the numerical models have been developed in OpenFOAM (Open Source
Field Operation and Manipulation) [38]; for the Lagrangian and hybrid models
this involves improving the interPhaseChangeFOAM solver and coupling it with
a Lagrangian library, which is an improved version of an available Lagrangian
model in OpenFOAM. OpenFOAM is an open source C++ package to model and
simulate fluid dynamics and continuum mechanics. It is possible to adapt the
code and build new functionalities, libraries, solvers, and utilities. The spatial
discretization in OpenFOAM is performed using a cell centred colocated finite
volume (FV) method for unstructured meshes with arbitrary cell shapes, and a
multi-step scheme is used for the time derivatives. More details about this pack-
age can be found in Weller et al. [39], Jasak [40] and Rusche [41]. In this work,
the OpenFOAM version 2.3.x is used.
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2. Numerical methods

2.1 Compressible equilibrium EoS model

In this study, the governing equations of the compressible model are the Euler
equations, which include continuity, momentum, and energy equations, similar
to previous studies of Sezal [42] and Koop [2]. Due to the dominance of inertia
effects in the considered cases, viscous effects can be neglected. The equations
are given by

∂~q
∂ t

+
∂Fi (~q)

∂xi
= 0, (2.1)

where~q is the vector of conserved quantities defined as

~q =


ρ

ρu1

ρu2

ρu3

ρE

 , (2.2)

and Fi (~q) is the physical flux in coordinate direction xi, given by

Fi (~q) = ρui


1

u1

u2

u3

E

+ p


0

δ1i

δ2i

δ3i

ui

 . (2.3)

In these equations, ρ is the mixture density and E is the specific total energy
which is the sum of the specific internal energy and the specific kinetic energy.
The other parameters have the same definition as before. The Euler equations are
solved with the suitable temperature dependent equations of state for each phase.

In two-phase water-vapour flows, three possible states may occur: pure liquid,
pure vapour, and mixture. If the calculated density is higher than the liquid sat-
uration density, the fluid is assumed to be pure liquid. The liquid phase is then
described by the modified Tait EoS [43], given by

p = K0

[(
ρ

ρl,sat(T )

)N

−1]

]
+ psat(T ), (2.4)

where K0 is a liquid dependent constant and ρl,sat is the saturated liquid density at
temperature T . Since the density of water is approximately constant, the temper-
ature can be obtained from the caloric EoS [2, 44], which is an approximation of
the complete form of internal energy equation

T =
e− el0

Cvl
+T0, (2.5)
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2.1. Compressible equilibrium EoS model

where e is the internal energy of the fluid and el0 is the liquid internal energy
at reference temperature of T0. Also, Cvl is the liquid specific heat at constant
volume. When the density drops below the vapour saturation density, the fluid
is assumed to be pure vapour. The perfect gas law is used to describe the pure
vapour phase,

p = ρRT. (2.6)

Here, R is the specific gas constant and the temperature is obtained using the
caloric EoS,

T =
e− el0−Lv(T0)

Cvv
+T0. (2.7)

In this relation, Lv(T 0) is latent heat of vaporization at the reference temperature
(T0) and Cvv is the vapour specific heat at constant volume. With the thermody-
namic equilibrium assumption, the mixture pressure can be considered equal to
saturation pressure. Here, the temperature is calculated using the mixture internal
energy as

T =
ρ(e− el0)−αvρv,satLv(T0)

αvρv,satCvv +(1−αv)ρl,satCvl
+T0, (2.8)

where ρv,sat is the saturated vapour density at temperature T and αv is the vapour
volume fraction, computed from the mixture density as

αv =
ρ−ρl,sat

ρl,sat−ρv,sat
. (2.9)

The parameters in Equations 2.4 to 2.8 are given in Table 2.1. The saturated values
of pressure, psat , and liquid and vapour saturated density, ρl,sat and ρv,sat , in the
equations are obtained from IAPWS-IF97 library [45].

Table 2.1: Equilibrium model parameters

N K0 Cvl (J/kgK) Cvv (J/kgK) T0 (K) el0 (J/kg) R (J/kgK) Lv(T0) (J/kgK)

7.15 3.3×108 4180 1410.8 273 617 461.6 2.753×106

In this model, the compressibility of both liquid and vapour phases is taken
into account, which makes it capable of capturing possible shock waves and pres-
sure pulses in a cavitating flow. The model has been implemented as a density-
based solver in OpenFOAM by Arabnejad [46] and is similar to another earlier
implemented solver [47]. The numerical flux is evaluated by solving the approxi-
mate Riemann problem using HLLC-AUSM low-Mach Riemann solver [2]. Sec-
ond order accuracy in space is achieved by piece-wise linear reconstruction with
the limiter function of Venkatakrishnan [48]. The solution is advanced in time
using a second order explicit low storage Runge-Kutta scheme.
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2. Numerical methods

2.2 Incompressible finite mass transfer model

In this model, the vapour and liquid phases are treated as a single mixture fluid and
mass and linear momentum are conserved in the flow domain. Here, the flow is
considered as incompressible and isothermal, motivated by the balance of compu-
tational cost and model accuracy for the intended applications as described above,
but a similar framework can be developed for compressible flows. Therefore, the
governing equations in this model are the continuity and Navier-Stokes equations,
as well as a scalar transport equation to track the liquid-vapour interface.

2.2.1 Mass and momentum conservation

Although the pure liquid and pure vapour are considered as incompressible, the
mixture density varies based on volume fraction of the immiscible phases and
hence the continuity equation is written by

∂ρm

∂ t
+

∂ (ρmui)

∂xi
= 0, (2.10)

where ui is the flow velocity vector and ρm denotes the mixture density, and the
Navier-Stokes equation is given by

∂ (ρmui)

∂ t
+

∂
(
ρmuiu j

)
∂x j

=
∂τi j

∂x j
+ρmgi. (2.11)

In this equation, gi is the gravity vector and τi j is the stress tensor which is defined
as

τi j =−p δi j +µm

(
∂ui

∂x j
+

∂ui

∂x j
− 2

3
∂uk

∂xk
δi j

)
, (2.12)

where p is the static pressure, δi j is the kronoker delta, and µm is the mixture dy-
namic viscosity. Assuming homogeneous flow, the mixture density and viscosity
are obtained using the linear relations as

ρm = αρl +(1−α)ρv, (2.13)

µm = αµl +(1−α)µv. (2.14)

In the above relations ρl is the liquid density and ρv is the vapour density, while µl
and µv denote liquid and vapour dynamic viscosities, respectively. α is the liquid
volume fraction that specifies the relative amount of liquid in a control volume. In
the utilized finite mass transfer model, the liquid-vapour interface is represented
by solving a scalar transport equation for liquid volume fraction.
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2.2. Incompressible finite mass transfer model

2.2.2 Mass transfer modelling

The liquid volume fraction transport equation is given by

∂α

∂ t
+

∂ (αui)

∂xi
=

ṁ
ρl
, (2.15)

where ṁ is the rate of mass transfer between phases. Using Equations 2.13 and
2.15, the continuity equation (2.10) may be rewritten as

∂ui

∂xi
= (

1
ρl
− 1

ρv
)ṁ. (2.16)

The RHS term denotes the effect of vaporization and condensation. For incom-
pressible pressure-based solvers it is more convenient to use this form of the con-
tinuity equation, rather than Equation 2.10. Therefore, the main governing equa-
tions in this model are Equations 2.11, 2.15 and 2.16. However, to close the above
set of equations, the mass transfer rate, ṁ, should also be determined. There are
many numerical models proposed in literature to estimate this term and most of
them are based on a simplified form of the Rayleigh-Plesset equation (later given
in Equation 2.30) in which the second order derivative term as well as dissolved
gas pressure, surface tension and viscous forces are neglected. The Schnerr-Sauer
model [11, 38] has been used quite often in literature (e.g. [49]) and has proven
to give reasonably satisfactory results for a range of applications. This model is
used in the current study, but the methodology for the later explained hybrid solver
does not rely on this particular choice of mass transfer model.

The Schnerr-Sauer model assumes that there are several vapour bubbles, also
called nuclei, inside the liquid which act as the initial sources of cavitation in-
ception. The number, size and distribution of these bubbles can be determined in
water quality experiment tests. To simplify the numerical modelling, it is assumed
that the initial nuclei have been distributed evenly throughout the liquid, and they
have equal size which is the smallest size that vapour bubbles can have [50]. The
vaporization and condensation rates are then given by

ṁc =Ccα(1−α)
3ρlρv

ρmRB

√
2

3ρl|p− pthreshold|
max(p− pthreshold,0),

ṁv =Cvα(1+αNuc−α)
3ρlρv

ρmRB

√
2

3ρl|p− pthreshold|
min(p− pthreshold,0),

(2.17)
where ṁc and ṁv are the rates of condensation and vaporization, respectively. In
the above equations, RB and αNuc are the generic radius and volume fraction of
bubble nuclei in the liquid which are obtained from

αNuc =
VolNuc

1+VolNuc
=

πn0d3
Nuc

6

1+ πn0d3
Nuc

6

, (2.18)
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RB = 3

√
3

4πn0

1+αNuc−α

α
, (2.19)

where VolNuc is the nuclei volume, and n0 and dNuc are user defined parameters
corresponding to the number of nuclei per cubic meter and the nucleation site
diameter, respectively. Also, Cc and Cv are the condensation and vaporization
rate coefficients in OpenFOAM ([38]), and pthreshold is a threshold pressure at
which the phase change is assumed to happen, usually considered as the vapour
pressure of the fluid. As the overall combination of these values only influences
the mass transfer rate as a constant coefficient, in this study only the vaporization
and condensation rate coefficients (Cv and Cc) are modified and the fluid properties
as well as model parameters are kept constant. The number of nuclei per cubic
meter (n0) is assumed to be 108 and the nucleation site diameter (dNuc) is set to
10−4m. Also, the liquid-vapour saturation pressure is assumed to be 2320 Pa.

To apply the finite mass transfer model in simulations, an in-house modi-
fied version of the interPhaseChangeFOAM solver is used in this study. Inter-
PhaseChangeFoam is a solver for two incompressible, isothermal, immiscible
fluids with phase-change (i.e. cavitation) which uses a volume fraction based
approach. The set of phase-change models provided are designed to simulate cav-
itation but other mechanisms of phase-change are supported within this solver
framework. In the in-house modified version [50, 51], the MULES corrections
are omitted in the solution algorithm. More details about this solver as well as the
specific implementations of the condensation and vaporization source terms of the
Schnerr-Sauer model in the continuity and liquid volume fraction equations can
be found in [50] and [51].

In the finite mass transfer solver, the pressure and velocity equations are cou-
pled using a PIMPLE algorithm. This algorithm is a merge of the SIMPLE ([52])
and PISO algorithms. There are different ways to merge these algortihms, see e.g.
[53]. Here, the PISO loop is complemented by an outer iteration loop, and for
each time step, in every outer simple loop a special number of inner PISO loops
are performed. More details about the utilized solution algorithm may be found in
[54]. In the simulated flow fields, that will be discussed in the following chapter,
a first order implicit time scheme is used for time discretization, the momentum
equation convection terms are discretized using Gaussian linear upwind differenc-
ing scheme while the convective terms of the volume fraction scalar equation is
discretized by Gaussian TVD schemes with the van Leer limiter.

One feature of the finite mass transfer approach, similar to the equilibrium
EoS method, is that it treats the structures as a homogeneous mixture, therefore
sparse vapour clouds or sub-grid inhomogeneity in cavitation clouds are not well
treated. An extremely high mesh resolution would be required to resolve the small
individual cavitation bubbles, which is not feasible in engineering applications.
In addition, during the last steps of the cavity collapse and early stages of its
rebound, the cavity size changes very rapidly and the bubble inertia becomes more
important. However, in the simplified mass transfer model the bubble inertia,
corresponding to second order derivative term in the Rayleigh-Plesset equation,
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2.3. Discrete bubble model

is ignored and this approach cannot fully resolve cavity collapse and rebound.
The Lagrangian model, however, is potentially able to take into account the cavity
inertia and is less dependant on grid resolution.

2.3 Discrete bubble model

In this model the cavities are treated as discrete Lagrangian bubbles in an ambient
Eulerian continuous flow. At each time step, the Eulerian equations are solved
first, then the bubbles are tracked by solving a set of ordinary differential equations
along the bubble trajectory, after which the Eulerian vapour fraction is updated
based on the new bubble positions and radii. The Eulerian governing equations
are the continuity and Navier-Stokes equations as described for the finite mass
transfer model (Equations 2.16 and 2.11).

2.3.1 Bubble equations of motion

The Lagrangian equations for tracing individual bubbles are given by

dxb,i

dt
= ub,i,

mb
dub,i

dt
= Fd +Fl +Fa +Fp +Fb +Fg,

(2.20)

where xb,i and ub,i denote the bubble position and velocity vectors, and mb is
the mass of the bubble. The RHS of the second equation includes various force
components exerted on the bubbles in the i− th direction, which are, from left to
right, sphere drag force [55], Saffman-Mei lift force [56], added mass, pressure
gradient force, buoyancy force, and gravity. These forces are given as

Fd =
3
4

CDρ
mb

ρbdb

(
ui−ub,i

)
|ui−ub,i|,

Fl = 1.615Cld(ρµ)
1
2 db

2(ui−ub,i)|∇×U |
1
2 ,

Fa =
1
2

ρ
mb

ρb

(
Dui

Dt
−

dub,i

dt

)

Fp =
mb

ρb

∂ p
∂xi

,

Fb =−mb
ρ

ρb
gi,

Fg = mbgi.

(2.21)
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In these relations, ρb and db are the bubble density and diameter and ρ in the
density of the surrounding fluid. Also, CD is the drag coefficient which is given
by

CD =

 0.424Reb Reb > 1000

24
(

1+ 1
6Re

2
3
b

)
Reb < 1000

(2.22)

where, Reb is the bubble Reynolds number, defined as

Reb =
ρdb|ui−ub,i|

µ
. (2.23)

Also, in the lift force, Cld is given by

Cld =


(

1−0.3314
√

0.5Rew
Re

)
e−0.1Re +0.3314

√
0.5Rew

Re Reb < 40

0.0524
√

0.5RewRe Reb > 40
(2.24)

and Rew is the vorticity Reynolds number, defined as

Rew =
ρdb

2|∇×U |
µ

. (2.25)

Explicit implementation of flow forces is an advantage of the Lagrangian model
which gives the opportunity to consider different flow effects on cavity behaviour,
but it also means that the representation is dependent on the accuracy of available
models for these effects. The forces typically depend on the bubble size.

2.3.2 Bubble dynamics

To find the bubble size variation due to surrounding flow, consider a spherical
vapour bubble with radius R in an incompressible Newtonian fluid, Figure 2.1.
Neglecting the mass transfer through the interface, the liquid velocity is equal to
the interface velocity, u(R, t) = Ṙ. It is assumed that the bubble is composed of
vapour and dissolved gasses. Considering the balance of normal stresses at the
bubble interface and ignoring the gravity effect, the pressure on the interface is
given by [1]

pR = pv + pg0

(
R0

R

)3γ

−2
σ

R
+2µ

∂u
∂ r
|r=R. (2.26)

In this relation, pv is the vapour pressure. The second term is the dissolved gas
pressure in which pg0 and R0 are the initial gas pressure and radius, while γ is the
ratio of heat capacities of the gas at constant pressure and volume, i.e. cpg and
cvg. The third term is the surface tension stress in which σ is the surface tension
coefficient of the surrounding fluid, and the last term denotes the viscous stress on
the bubble surface in which µ is the dynamic viscosity of the surrounding fluid and
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Figure 2.1: Single bubble in infinite domain

r denotes the radial component of the spherical coordinate system. In addition to
the mentioned simplifications, we assume spherical symmetry around the bubble.
Then, the flow around the bubble is of source (or sink) type and so irrotational.
Therefore, the flow continuity and momentum equations are simplified to [1]

u(r, t) = Ṙ
R2

r2 , (2.27)

∂u
∂ t

+u
∂u
∂ r

=− 1
ρ

∂ p
∂ r

. (2.28)

Substituting Equation 2.27 into Equation 2.28 gives

R̈
R2

r2 +2Ṙ2
[

R
r2 −

R4

r5

]
=− 1

ρ

∂ p
∂ r

. (2.29)

This equation can simply be integrated between any two points on a radial line
from bubble interface to infinity. If the interface (r = R) and infinity (r = ∞) are
chosen as integration end points, then considering the relative boundary condi-
tions at interface (Equation 2.26) and infinity (p = p∞), the well-know Rayleigh-
Plesset equation is achieved as [1, 57, 58],

ρ(RR̈+
3
2

Ṙ2) = pv− p∞ + pg0

(
R0

R

)3γ

−4µ
Ṙ
R
− 2σ

R
, (2.30)

where p∞ denotes the pressure at infinity. An inherent assumption in this equation
is that the bubble is located in a completely unbounded spherically symmetric
infinite domain. However, in most real case applications this assumption will not
hold, as the bubble is surrounded by other cavity structures or may be confined
within flow boundaries. Therefore it is more useful to take the integration between
the interface and another nearby point. If the second point is chosen at r = 2R,
then we achieve a localized form of Rayleigh-Plesset equation as

ρ

(
1
2

RR̈+
17
32

Ṙ2
)
= pv− p2R + pg0

(
R0

R

)3γ

−4µ
Ṙ
R
− 2σ

R
, (2.31)

17



2. Numerical methods

where p2R denotes the pressure at r = 2R. Both equations are differential and
highly non-linear, due to the inertial terms. In this study, the time-step adaptive
second-order Rosenbrock method is implemented to solve the Rayleigh-Plesset
equation numerically (see e.g. [59] for a description of this approach). In the
solution algorithm, all of the equation parameters should be specified. The sur-
rounding fluid properties (σ , µ , γ and ρ) are constant values or may be obtained as
explained before. Also, the vapour pressure, pv, is considered as the liquid-vapour
saturation pressure at the flow temperature. Then, the only unknown term is the
dissolved gas pressure which is a function of the initial (or reference) radius, R0,
and gas pressure, pg0, of the bubble. These parameters should be specified when
a bubble is injected. For the Lagrangian solver, where new cavity structures are
introduced as (parcels of) bubbles, at the injection time the bubble may be as-
sumed to be in equilibrium with the surrounding liquid and the initial parameters
can be obtained from equilibrium relations. Also, R0 and pg0 can be obtained
from experimental data if water quality and dissolved gas pressure are well spec-
ified. If a new bubble replaces a small Eulerian cavity (as will be explained for
the hybrid solver), then the reference radius and gas pressure should be obtained
from the properties of the old Eulerian cavity to avoid any unphysical transition
or numerical instability.

Since the dispersed (bubble) phase in the cavitating flow is locally dense, and
have properties quite different from liquid properties, the bubbles have consider-
able effect on the ambient flow field (similar to Eulerian cavities) as well as other
bubbles. Thus, both the bubble-bubble and bubble-flow interactions should be
considered in the model.

2.3.3 Bubble-bubble interaction

In the current study, the bubble-bubble interaction is considered through imple-
mentation of bubble-bubble collision. To find the collision possibility between
each bubble and other bubbles, one way is to loop over all of the other bubble,
and examine their positions and velocities relative to the specified bubble; how-
ever, this is a computationally expensive algorithm for dense disperse flows as the
number of particles (bubbles) can be quite large. As a more effective method, in
this study, the bubble-bubble collision is detected in a faster algorithm based on
the ”cell occupancies”, Figure 2.2. The cell occupancy is a property of the grid
cells which contains a label list of the bubbles that occupy a cell. Using the cell
occupancy, it is possible to examine only the bubbles that are in reachable dis-
tance. Here, we need to define an interaction distance and the cell occupancies
of the grid cells are transformed between every couple of cells which are within
the interaction distance to each other. Consider the red bubble in Figure 2.2, for
example. The interaction area is specified by a dashed circle line. Having the bub-
ble’s host cell index and the cell occupancies of the other cells in the interaction
distance (i.e. within the circle) we can find the index of other bubbles that are in
reachable distance. Then, the collision possibility between this red bubble and the
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2.3. Discrete bubble model

surrounding blue bubbles is examined. Using the cell occupancy property, it is
possible to detect the collisions between the bubbles that are located at two sides
of a processor boundary, in parallel computation, while in the previous approach it
was not possible to send Lagrangian bubble information to a neighbouring proces-
sor. In the developed solver, the interaction distance is a user-defined parameter
that can be tuned differently in different simulations.

Figure 2.2: Bubble-bubble collision detection based on cell occupancy

After a collision, a pair of bubbles may coalesce to form a larger bubble or
they may bounce back from each other and this is specified based on the bub-
bles relative velocity and the interaction time. It is known that there is a limited
time available for bubble-bubble interactions, and when two bubbles approach
each other, a liquid film is trapped between them which tends to resist any fur-
ther movement that could bring the bubbles closer [60]. If the interaction time
is long enough that the liquid film can drain to a sufficiently small thickness and
rupture, the bubbles may coalesce, otherwise they bounce back from each other.
The outcome of collision is therefore assumed to be a function of two time-scales,
the bubble interaction time, ti, and the liquid film drainage time, td . According to
Chester and Hofman [61], these time scales are given by

ti =
(

ρlDeq
3

16σ

)1/2

,

td =
ρlVrelDeq

2

8σ
,

(2.32)

where, Vrel is the relative velocity between the two bubbles, and Deq =
4D1D2

(D1+D2)
is

the equivalent diameter of the bubbles with diameters D1 and D2. The coalescence
probability is expressed as

Pc = e−td/ti = e−
√

We/2, (2.33)

where, We =
ρlV 2

relDeq
2σ

is the liquid Weber number based on the equivalent diam-
eter. If a uniform random number in the range [0,1] becomes smaller than the
coalescence probability, then coalescence occurs, otherwise bouncing happens.
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2.3.4 Bubble effect on the Eulerian flow field

The bubble-flow interaction can be implemented in the Eulerian equations in dif-
ferent ways that in large define the characteristics of the hybrid model. There are
generally two methods that are used to implement the bubble effect on the Eule-
rian flow field. One approach is to consider the bubbles as a separate phase by
defining a new void fraction for them and apply the bubble effect through correct
implementation of this parameter in the Eulerian equations (Equations 2.16, 2.11
and 2.15). Also, the bubble reacting force should be applied directly as a source
term in the Navier-Stokes equation. This approach is used by, e.g., Ström et al.
[32]. A simpler approach, however, is to implement the bubble effect by imple-
menting its volume fraction contribution in the calculation of mixture properties
and phase change rate (Equations 2.13, 2.14 and 2.17). In this latter approach, the
continuous flow is considered as a single fluid mixture, and the Eulerian govern-
ing equations are similar to the finite mass transfer model. However, the liquid
volume fraction of each cell is obtained from bubble cell occupancy, instead of
solving the scalar transport equation (2.15). The bubble cell occupancy for a
cell is obtained based on the relative volume of the cell that is occupied by the
bubble(s). This calculation includes a loop over all bubbles inside the cell and
summing up the volume of these bubbles and dividing the total volume by the cell
volume. Then this relative value is used to define vapour volume fraction, 1−α ,
which is used to find the mixture properties from Equations 2.13 and 2.14. Due
to its simplicity, the later approach is used in this study. Hsiao et al. [33] used
the same method to calculate new mixture properties. Also, the continuity equa-
tion source term is obtained using the Schnerr-Sauer model (Equation 2.17). It
is possible to calculate the phase change source term from bubble size and distri-
bution variation directly, however as the main intention is to use the Lagrangian
approach coupled to a FMT model to have a hybrid Eulerian-Lagrangian solver,
the continuity equation is solved in a similar way to the previous method. It also
helps to have a smooth transition from Eulerian cavities to Lagrangian bubbles as
will be described later. It is important to note that the Lagrangian bubbles do not
constitute a second phase, but they contribute as vapour structures in the mixture
fluid; therefore, there is no inter-phase momentum transfer term to be considered
in the Navier-Stokes equations. The implementation of the bubble effect on the
Eulerian flow field is another contribution of this study which is explained in more
detail in a following section for the hybrid model.

2.3.5 Bubble-wall interaction

In this study, the wall boundaries are considered to be rigid and it is assumed that
a bubble collides the wall boundary when the distance between its centre to the
nearest wall face becomes equal or less than its radius. When a spherical particle
collides with the wall boundary, it may bounce from the wall, stick to the wall or
slide over the wall surface. Experiments show that during bubble-wall collision a
liquid film is present between the bubble and the wall [62]. Zenit and Legendre
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[63] showed that the behaviour of a bubble colliding with a wall is different from
that of a solid sphere, due to the liquid film and the bubble deformation. In this
study, it is assumed that a bubble bounce from the wall.

The bubble velocity after collision depends on the relative direction between
bubble velocity and the wall normal vector. If the tangential and normal unit
vectors of the colliding wall face are denoted by tw and nw, then a bubble velocity
before collision can be decomposed as

U0
b =U0n

b nw +U0t
b tw. (2.34)

Using this decomposition, the after-collision velocity is decomposed as

Ub =−εwU0n
b nw +(1−µw)U0t

b tw, (2.35)

where, εw and µw are the coefficient of restitution and wall friction coefficient,
respectively. εw is given by

εw = e−30
√

Ca/St∗, (2.36)

where Ca and St∗ are the Capillary and modified Stokes numbers, defined as

Ca =
µU0n

σ
,

St∗ =
2(ρb +0.5ρl)RU0n

9µ
.

(2.37)

An important issue in the tracking of Lagrangian bubbles, that should be con-
sidered in numerical modelling, is the relative sizes of bubbles and grid cells.
Sometimes (e.g. when a new bubble is injected) a bubble may be large and oc-
cupy a number of cells. In OpenFOAM, when a bubble approaches a wall, the
wall boundary condition is applied correctly only if the bubble size is smaller
than the cell edge that is normal to the wall and if a bubble is larger than this limit,
the bubble-wall collision is not detected properly. There are two approaches to
solve this issue. The first method is to track the bubbles in a coarser grid. In this
method, the Eulerian equations are solved in the main finer grid, then the obtained
flow field data are mapped to a second coarser grid in which the cell edges (or at
least the edges in the wall normal direction) are larger than all bubble radii. Then
the bubbles are tracked in the coarser grid and the updated Lagrangian data are
mapped to the finer grid to apply the bubble effect on the continuous flow field.
The other remedy for this issue is to modify the wall boundary condition and re-
define it based on the bubble radius rather than the edge size of the (host) cell. In
the simulated flow fields of this study, that will be discussed later, the bubble-wall
collisions happen in only one problem and in that case a second coarser grid is
used to tack the bubbles. In the other problems, only one grid is used to track
all cavity structures. When the flow data are mapped to a coarser grid, losing
some resolved flow details is unavoidable. Therefore, it is recommended to revise
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the numerical boundary conditions in OpenFOAM, rather than using a coarser
grid. The related boundary condition is revised in the recent improvements of the
solver, but in presented results of the current report, the two-grid approach is used.

The Lagrangian model is a four-way coupling model since both bubble-flow
interactions and bubble-bubble interactions are considered. Also, the solution al-
gorithm for the Eulerian equations and the equation discretizations for this model
are exactly the same as for the finite mass transfer model. At each time step, the
continuity and Navier-Stokes equations (Equations 2.16 and 2.11) are solved first
and the updated pressure and velocity field are used to solve the Lagrangian trans-
port equation (2.20), bubble dynamics (Equation 2.31) and bubble interactions
with each other and with flow boundaries (as described in §2.3.3 and §2.3.5). The
updated bubble size and distribution are then used to update the volume fraction
values to obtain the new mixture properties for the next time step. The DBM
model is implemented in OpenFOAM by adding a Lagrangian library to the inter-
PhaseChangeFOAM solver, as a part of the current project. For this purpose, an
improved version of the basic solidParticle class in OpenFOAM was used. The
improvements in the class includes implementing the R-P equation for calculation
of bubble diameter, solving the bubble-wall boundary condition issue, implement-
ing the bubble-bubble interaction model, calculation of the vapour fraction using
bubble cell occupancy function, adding different Lagrangian force models (de-
scribed in Equation 2.32) and other corrections related to the parallelization of
the solver. It should be noticed that in the new solver, the vapour fraction value
is obtained from the distribution of the Lagrangian bubbles, and Equation 2.15 is
not solved in the modified InterPhaseChangeFOAM solver.

While the bubble sizes in the Lagrangian model can be much smaller than
the grid size, these models are computationally expensive when the number of
bubbles is large. Also this approach is limited in representation of large and non-
spherical vapour structures.

2.4 The multi-scale hybrid model

Considering the above mentioned capabilities and limitations of the Eulerian and
Lagrangian formulations, the Eulerian approach is more capable in resolving large
cavity structures, while the Lagrangian method is a more appropriate option for
the sub-grid bubbles, and neither of the models is suitable for resolving all cavities
of different length scales with reasonable computational expenses. Therefore, a
hybrid Eulerian mixture - Lagrangian bubble model is developed in this study. In
the hybrid model the governing equations of the continuous flow field are similar
to the previous models (i.e. Equations 2.11 - 2.17) and the main difference is in
the tracking of the cavity structures. Here, the cavities are categorized as Eulerian
structures or Lagrangian bubbles. Then the Lagrangian bubbles are tracked using
the discrete bubble method while the Eulerian structures are treated by solving
the volume fraction scalar transport equation. The implementation of this model
is similar to the implementation of the DBM model in OpenFOAM, however,
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Equation 2.15 is not omitted from the solution algorithm, as it is solved to track
the Eulerian structures. Also, an algorithm should be defined for transformation
of Eulerian cavities to Lagrangian bubbles and vice versa. These implementations
are performed as a part of the current research.

The categorization of the structures into Lagrangian or Eulerian groups is done
based on the relative size of each cavity with respect to the local grid size of the
discretized domain. If a cavity is large enough to be resolved by a threshold
number of computational cells, called Ncell,th, then it is tracked in the Eulerian
framework, otherwise it is treated as groups (or parcels) of Lagrangian bubbles.
Also, since the volume of each cavity can change during the flow, at each time step
the small Eulerian cavities or large Lagrangian bubbles may be transformed from
one framework to the other. This transition is compatible with the flow physics as
each Eulerian cavity normally represents a cluster of bubbles.

The hybrid model is similar to the previously developed model of Vallier [35],
in turn inspired by the study of Tomar et al. [29]. However, as will be explained
below, the Eulerian-Lagrangian transition as well as the Eulerian flow governing
equations have been improved to avoid numerical inconsistencies in the solution
algorithm.

2.4.1 Eulerian-Lagrangian transition

At each time step, small Eulerian cavity structures that are not resolved by suf-
ficient number of computational cells, are transformed to Lagrangian bubbles.
Eulerian cavity structures are recognized in the flow domain by the hosting cells’
liquid volume fraction which is less than 1. Thus, to remove an Eulerian structure,
the corresponding liquid volume fraction of the respective cells (α) needs to be
set equal to 1. This transition is shown schematically in Figure 2.3 for a simple
grid. The grid cells that have Eulerian cavities are coloured blue with α < 1. Two
of the cavities are resolved only by four cells and they are replaced by Lagrangian
bubbles. Also, if a bubble later becomes large enough, it is transformed back to a
Eulerian structure by deleting the bubble and setting a corresponding new α value
in the occupied cells. This is a common straight-forward manner that has been

Figure 2.3: Transition of small Eulerian cavities to Lagrangian bubbles
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used in earlier studies, as well. For example, in the hybrid model developed by
Vallier [35], when a bubble replaces a cavity, by setting the α value to 1, it is
assumed that the hosting cells are full of liquid and the bubble effect on the Eule-
rian field is considered as a momentum source term in the Navier-Stokes equation,
similar to the contribution of a point particle. Without considering the new bub-
ble effect in the mixture properties (as described in §2.3.4), the sudden change
in the α value will cause a jump in the values of the mixture properties, ρm and
µm, based on the Equations 2.13 and 2.14. Since there is a significant difference
between the values of the liquid and vapour properties, this jump is considerable.
Besides that, the mass transfer rate, ṁ, experiences a sudden change after remov-
ing an Eulerian vapour structure (Equation 2.17). Such significant changes in the
flow properties and the continuity equation source term can cause spurious nu-
merical pulses which may have significant unrealistic effects on the flow field.
For example, these pulses can decrease the local pressure in the cavitating region
which leads to generation of new vapour structures. Also, spurious pulses have
negative effect on the noise prediction and erosion estimation of the flow. On the
other hand, if the α value is not set to 1 after transition, then the Euler cavity
is not removed and the cavity structure is modelled in both of the Eulerian and
Lagrangian frameworks which causes numerical inconsistency.

Therefore, there are some issues with the current implementation of the model,
including the spurious pulse problem, spurious vapour generation and insufficient
consideration of bubble effect on the continuous field. A solution for these issues
is presented in the following section.

2.4.2 Realizability improvement of the model

To avoid the issue described above, the coupling between the bubbles and the
Eulerian mixture flow needs to be reconsidered. As mentioned before, both of
the finite mass transfer and the discrete bubble models have similar governing
equations in modelling the continuous flow field and the main difference is in the
cavity tracking approach. Also, the vapour contribution in the mixture properties
and governing equations is introduced through the α parameter. However, this
parameter is not sufficient to represent both Eulerian and Lagrangian cavities at
the same time. Therefore, considering (1−α) to be the Eulerian vapour volume
fraction in a computational cell, a new parameter is introduced to define the con-
tribution of Lagrangian bubbles in the domain. Besides that, the continuous flow
governing equations and mixture property relations should be revised to avoid
spurious numerical pulses in the solution.

In order to avoid the spurious pulse problems, the mixture properties and phase
change rate is defined based on a new term which is similar to α but that does
not change during Eulerian-Lagrangian transition. In each bubbly cell, the cell
volume is occupied by both Eulerian fluid and Lagrangian bubbles. The fluid
contribution in the cell is defined by a new parameter which is called β ; similarly
the bubble volume fraction in the cell is 1−β . It is obvious that in cells containing
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bubbles, β is less 1, while it is equal to 1 everywhere else. During the Eulerian
to Lagrangian transition, a vapour structure which occupies (1−α) fraction of
the hosting cells is replaced by a bubble which occupies (1− β ) fraction of the
same cells. Therefore the new value of β in the host cells is the same as the old
value of α . Also, the new value of α is 1 which is exactly the same as the old
value of β since there were no bubbles in the host cells before the transition. In
other words, both α and β have similar sudden changes, however their product
αβ does not change during the Eulerian-Lagrangian transition. In the bubble
cells, where α = 1, αβ has the same value as β and everywhere else it is equal
to α . Consequently, this parameter is suitable to replace α in the definition of
mixture properties and calculation of phase change rate, ṁ. Therefore, the mixture
properties formula can be modified as

ρm = αβρl +(1−αβ )ρv,

µm = αβ µl +(1−αβ )µv.
(2.38)

Further, the phase change rate formula is modified as

ṁc =Ccαβ (1−αβ )
3ρlρv

ρmRB

√
2

3ρl|p− pthreshold|
max(p− pthreshold,0),

ṁv =Cvαβ (1+αNuc−αβ )
3ρlρv

ρmRB

√
2

3ρl|p− pthreshold|
min(p− pthreshold,0).

(2.39)
Using the above equations avoids drastic changes and large spurious pulses in
the flow. Therefore, a new parameter, β , is defined to consider the Lagrangian
cavities contribution and the governing equations are reformulated based on the
αβ parameter.

However, two minor corrections are still needed in the multi-scale solver. Dur-
ing the transition, in each cell of the host cells group, the new value of β should be
exactly equal to the old value of α to keep the αβ parameter conserved. In other
words, the bubble contribution in each cell should be equal to the contribution
of the corresponding Eulerian cavity. However, while the summation of cavity
contribution (old α) is the same as the summation of bubble contribution (new
β ), their individual contribution in each single cell is not equal since they have
different geometrical shapes (Figure 2.3). As a solution, instead of injecting one
large bubble, the vapour structure is replaced by a group of small bubbles which
do not occupy more than 1 cell. The size of new bubbles in each cell are deter-
mined based on the old value of α such that the value of αβ is conserved in that
cell. The improved transition approach is shown schematically in Figure 2.4. The
blue cells include Eulerian cavities and the red ones are occupied by Lagrangian
bubbles. In the white cells both α and β are equal to 1. Also, instead of large
bubbles, several smaller bubbles are injected, as compared to Figure 2.3. This
leads to an increase in computational cost, as more bubbles are introduced, but
gives a significantly improved representation of the smaller vapour structures. It
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is important to note that the vapour volume fraction of the small Eulerian cavities
are less than one, which means that the cavity is not pure vapour. In other words,
during Eulerian-Lagrangian transition we are dealing with a small cloud of many
bubbles (distributed in the surrounding liquid) and not a single bubble full of pure
vapour. From the Eulerian data it is not possible to obtain the distribution of bub-
ble diameters and positions in this small cloud. However, it is interesting to know
that the bubble distribution and sizes do not considerably change the collapse rate
of the total cloud from an Eulerian point of view and this point can be inferred
from the works of Schmidt et al. ([3] and [36]). In these studies, a group of
bubbles with nonuniform distribution in position and size were simulated both as
individual bubbles as well as an equivalent cloud and the results show that both
simulations lead to quite similar collapse profile. Therefore, replacing the cav-
ity with more smaller bubbles rather than one single large bubble, not only solve
the numerical pulse issue, but also makes the transition more aligned with real
physics. The small bubbles can have different distributions in size and position,
however, to decrease the computational expenses it is suggested to keep the num-
ber of bubbles as low as possible, therefore only one or two bubbles are injected
in each cell as in Figure 2.4.

Figure 2.4: Improved transition; the blue contours show the Eulerian cavity vol-
ume fraction and the red contours depict the Lagrangian bubble con-
tribution

Avoiding vapour generation in the bubbly cells is one further improvement
needed in the solver. In each computational cell that contains vapour, the cavity
structure should be tracked either by the Eulerian transport equation or the La-
grangian bubble tracking algorithm. In other words, there cannot exist an Eulerian
cavity in a cell that is occupied by a Lagrangian bubble, and vice versa. To avoid
compromising this situation, the mass transfer source term in the volume fraction
equation should be omitted in the bubbly cells. Thus, Equation 2.15 is rewritten as

∂α

∂ t
+

∂ (αui)

∂xi
=

ṁ
ρl
∗ pos(β −1). (2.40)

When there is a bubble in a cell, β is less than 1, therefore the pos(β −1) equals
zero and no vapour is generated in the cell. Without this modification an Eulerian
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structure can be generated in bubble host cells, according to Equation 2.39, as
the flow pressure is usually equal or less than the threshold (vapour) pressure
in these cells. Then, the vapour structure in such cells and its contribution to
the mixture properties will be considered twice. Besides that, the new Eulerian
cavity is small at the time of generation and therefore it will be transformed into
a Lagrangian bubble in the next time step and then the new and old bubbles can
coalesce and make a larger bubble. And this process can be repeated in each
time step by generating new Eulerian structures which lead to an unstable and
unphysical growth of the Lagrangian bubble.

2.4.3 Solution strategy

The final solution strategy consists of two algorithms. The major algorithm to
solve the flow governing equations, and another algorithm for Eulerian-Lagrangian
transition. In the developed solver, after initializing of the flow field and defining
the solution parameters, in each time step the governing equations are solved in
the following order:

Algorithm 1 Solution procedure

1: for t=start time:end time do

2: Solve Equation 2.11 to obtain new velocity field.

3: Find the mass transfer rate, ṁ, from Equation 2.39.

4: Obtain the new pressure field, by solving Equation 2.16.

5: Update the mass transfer rate, ṁ, from Equation 2.39.

6: Solve Equation 2.40 to find the new liquid volume fraction field.

7: Solve Equations 2.20 and 2.30 for each bubble to obtain the new positions
and diameters.

8: Perform the mixture-bubble transition algorithm (algorithm 2).

9: Update the mixture properties by solving Equation 2.38.

10: end for

The second algorithm is the Eulerian mixture - Lagrangian bubble transition
algorithm. The original step-by-step transition process is explained by Vallier
[35]. However, to meet the currently introduced improvements, the algorithm
needs to be revised. Similar to Vallier’s approach, in the first step all of the cavity
structures in the flow domain are detected. Next, the number of computational
cells that represent each structure are counted. If this number is less than a thresh-
old value (e.g. 5, in this study), it is decided that the relative structure is not

27



2. Numerical methods

represented by sufficient number of grid cells. Then, for each cavity that is not
well resolved, the algorithm 2 is followed.

Also, if a Lagrangian bubble collides with a large Eulerian cavity, or it be-
comes large enough to be resolved by sufficient number of cells, it will be trans-
formed to an Eulerian structure by deleting the bubble, while in the host cell β is
set to 1 and α = βold. The transition criteria can be improved in further develop-
ment of the model, which is the topic of a future study.

Algorithm 2 Transition algorithm

1: Create a list of cell labels {cell j , j=1:J}, associated with the cavity structure.

2: for j=1:J do

3: Evaluate the cavity volume Vvapour, j.

4: Find the minimum edge length of the cell, ∆min, j

5: Find the minimum No. of bubble(s) in the cell, Nb, and the largest possible
bubble radius, Rb, so that

Nb
4
3πRb

3 =Vvapour, j,
Rb < ∆min, j.

6: for k=1:Nb do

7: Find the bubble position vectors Xb,k in the cell j:
The positions vectors are Nb points in the cell volume with uniform dis-
tribution.

8: Set the bubble velocity, Ub, equal to the Eulerian mixture velocity in the
cell, U j.

9: Inject the bubble

10: end for

11: Remove the Eulerian cavity of the cell by setting α j = 1.

12: end for
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3
Results

In this chapter, the performances of different introduced models in simulating
benchmark problems are investigated, and the implementation of the new hybrid
Eulerian-Lagrangian solver is verified and validated. In the following results,
first the Lagrangian model is compared with the equilibrium EoS and finite mass
transfer model by studying two benchmark test cases to understand the capabil-
ities and limitations of each method. The first case studied is the collapse of a
single bubble in an infinite domain, which helps to understand each model be-
haviour in capturing the cavity interface and the surrounding pressure variations.
The special differences between the Lagrangian and finite mass transfer models in
this case clarify some possible origin for some limitations of the latter method as
well. The second investigated case is the collapse of a cluster of bubbles, where
the collapse of each bubble is affected by the dynamics of surrounding bubbles.
This case confirms the importance of considering local pressure in the improved
form of the Rayleigh-Plesset equation (2.31) and illustrates the influence of the
liquid compressibility for cavity modelling and appropriate capturing of the col-
lapse pressure pulses. Also, in a third test case, the improvements of Eulerian-
Lagrangian transition algorithms (§2.4.2) is verified through a qualitative results
of the 2D cavitating flow around a hydrofoil.

3.1 Single bubble collapse

The collapse of a single bubble is a benchmark test case that has been widely
used for primary validation of different numerical models in literature. Here the
collapse of a vapour bubble in an infinite medium with atmospheric pressure is
simulated and the effects of viscosity, non-condensible gas, surface tension and
gravity are ignored. This problem is also known as the Besant problem and can
be solved analytically. Although the pressure at infinity has constant atmospheric
value, its radial distribution from the bubble interface to the surrounding liquid is
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Figure 3.1: Single bubble collapse

not uniform (Figure 3.1), and it has a Laplacian distribution according to Equation
2.29.

As described by Franc and Michel [1], the collapse time of the bubble, also
known as the Rayleigh time, is given by,

τR = 0.915R0

√
ρ

p∞− pv
. (3.1)

Further, by integrating the Rayleigh-Plesset equation, the collapse rate is obtained
as,

dR
dt

=−

√
2
3

p∞− pv

ρ

[
R0

3

R3 −1
]
. (3.2)

From this relation, the bubble radius profile can be calculated analytically. The
pressure distribution around the bubble is determined from Equation 2.29 as

Π(r) =
p(r)− p∞

p∞− pv
=

R
3r

[
R0

3

R3 −4
]
− R4

3r4

[
R0

3

R3 −1
]
. (3.3)

Here, we consider the case where initial bubble radius is 0.4 mm and the flow is as-
sumed to be initially at rest. The pressure inside is pv = 2,320 Pa. Also, the liquid
volume fraction is set to 0.01 inside the bubble and equal to 1 outside. The mass
transfer rate in the Schnerr-Sauer model is a function of α(1−α), which means
that for pure liquid and pure vapour the rate of condensation or vaporization term
is zero and to start the cavitation process, the initial α value of the vapour region
should be set to a very small but non-zero value (here, 0.01). In the vaporization
term, we have an αNuc term as well, but it is too small to ensure a sufficient initial
rate of cavitation. Considering the spherical symmetry of the flow field, only an
asymmetric wedge mesh with an angle of five degrees is created (Figure 3.2a).
The far field boundary is located 0.5 m from the bubble centre, with a fixed atmo-
spheric pressure (105 Pa) and zero gradient conditions for liquid volume fraction
and velocity. The total domain is discretized with 5,000 cells, including 100 points
in the radial direction. The initial bubble is well resolved by 20 cells in the radial
direction and 50 cells in the circumferential direction. The generated grid with
the initial pressure field is depicted in Figure 3.2b; it is radially uniform inside the
bubble. For the Lagrangian model simulation, instead of liquid volume fraction
initialization, a 0.4 mm bubble is injected at the first time step and the correspond-
ing liquid volume fraction is calculated from bubble cell occupancy. The liquid
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and vapour densities are assumed to be ρl = 1000 kgm-3 and ρv = 0.01389 kgm-3,
and the corresponding dynamic viscosity values are set as µl = 0.001 kgm-1s-1

and µv = 10−5 kgm-1s-1. The solution time step is set to 5× 10−9 s for incom-
pressible simulations and 1×10−10 s (corresponding to CFL number of 0.32) for
the equilibrium model. Therefore, for the incompressible simulations we have
∆t/τR = 1.35× 10−4, and for the compressible simulation ∆t/τR = 2.7× 10−6.
However, larger time steps are also used for time-step dependency studies. In
the following sections the results of each model when solving this problem are
compared with the theoretical solution.

(a) (b)

Figure 3.2: Single bubble; (a) flow domain with initial vapour fraction; (b) gen-
erated grid with initial pressure distribution

It should be mentioned that for all cases the pressure profiles are compared
with the theoretical values up to 0.975 of the collapse time. At this instance, the
bubble interface velocity is about 48 m/s according to Equation 3.2 (R/R0 ≈ 0.3),
which corresponds to very low Mach numbers in liquid and therefore the liquid
flow field can be considered to be incompressible and the velocity to be divergence
free. Therefore, Equation 3.3 can be applied at the investigated instances and
the numerical results can be compared with the theoretical solutions as long as
the liquid compressibility does not have a considerable effect on the numerical
methodologies.

3.1.1 Equilibrium model result

The numerical evolution of bubble radius with time is compared with the exact
analytical solution in Figure 3.3. In this plot, the radius and the evolution time are
non-dimensionalized by initial radius and Rayleigh collapse time, respectively.
Since the bubble interface may not be perfectly sharp at all time steps, R is the
equivalent radius of the total vapour volume. As depicted in the figure, the radius
profile is well captured by this method.

In Figure 3.4, the pressure distribution in the radial direction is compared with
the analytical data at different normalized time steps. In this figure, the normalized
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Figure 3.3: Validation of the equilibrium (EoS) model in predicting the evolu-
tion of the bubble radius

times t/τR of 0.812, 0.894, 0.921, 0.948 and 0.975 are chosen which are corre-
sponding to non-dimensional radius (R/R0) values of 0.64, 0.52, 0.47, 0.4 and
0.3, respectively. At these steps, the bubble size variation is quite fast and the sur-
rounding flow field changes rapidly. Before t/τR = 0.812, the pressure variations
around the bubble does not have large gradients and the profile is rather similar
to the initial distribution. Considering the stated assumptions, the pressure is ex-
pected to be equal to the vapour pressure inside the bubble, which corresponds
to a non-dimensional value of -1. From the bubble interface to the farfield, the
pressure increases to the farfield pressure. However, according to Equation 3.3,
its profile has a maximum value close to the interface if R/R0 < 0.63 [1]. This
behaviour is clearly seen from the analytical solution in Figure 3.4. The numer-
ical results also follow the general trend, but with some noticeable differences.
First, the pressure near the interface is still close to vapour pressure and the pres-
sure increase starting point seems to be at a radius larger than the bubble radius.
Also, the pressure is underestimated outside of the bubble, especially at the later
steps, i.e t/τR = 0.948 and 0.975. Besides that, some large wiggles are seen in
the pressure profile which are due to numerical pressure waves that are emitted
from bubble interface. When the fluid phase changes from vapour to liquid in
a computational cell, there is a change in the relative equation of the state for
the fluid and the general profile of the density-pressure relation changes. Such a
change in the modelling equations causes some spurious pulse in the flow. Since
in the polar grid, cells are aligned with the interface and phase change occurs in all
cells of a radial layer simultaneously, then numerical pulses of the neighbouring
cells are superposed and generate a significant disturbance. In a cartesian grid,
for example, the vapour condensation at neighbouring cells does not happen si-
multaneously and the wiggles in the pressure profile are expected to cancel and
be smaller; this is observed in the second case of the bubble cluster. Furthermore,
these pulses are a function of numerical discretization schemes as well and more
diffuse schemes are expected to generate smaller pulses.
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3.1. Single bubble collapse

(a) t / τR = 0.812

(b) t / τR = 0.894

(c) t / τR = 0.921

Figure 3.4: Comparison of equilibrium (EoS) model pressure distribution with
analytical data at different time steps
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(d) t / τR = 0.948

(e) t / τR = 0.975

Figure 3.4: Comparison of equilibrium (EoS) model pressure distribution with
analytical data at different time steps (cont.)

The first inconsistency, that is the delay in the pressure increase starting point,
can be due to the numerical diffusivity of the bubble interface, shown in Figure
3.5. In this figure, an imaginary red line shows the exact bubble radius overlayed
on predicted vapour fraction and pressure fields at t/τR = 0.812. In Figure 3.5a,
the computed vapour fraction distribution over the discretized domain is shown.
It is seen that the bubble interface is diffused over three layers of radial cells (the
orange, the green and the light blue cells), which means that in these cells the fluid
is considered as a saturated mixture in the equilibrium model and the pressure in
the last layer (outside exact bubble radius) cannot vary considerably from vapour
pressure. It should be mentioned that the maximum value of the α contour is
increased to 1.05 for an easier detection of the orange layer. In Figure 3.5b, the
pressure contour around the bubble is depicted. It is seen in this figure that the
pressure is equal or close to the vapour pressure up to one cell layer after the
bubble radius. Since the radial edge size of each cell is 0.02 mm (initial radius
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(a)

(b)

(c)

Figure 3.5: Resolution of bubble interface from the equilibrium model at t/τR =
0.812; (a) vapour volume fraction contour; (b) pressure contour at
global scale; (c) pressure contour at local scale. The red line depicts
the bubble radius of the analytical solution.
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is resolved by 20 radial cells) this discrepancy is comparable to what is shown
in Figure 3.4. Besides, it can be seen that in the second and third radial layers
after the bubble, the pressure is not uniform in the circumferential direction while
it is expected to be uniform from the flow symmetry. This means that there are
some numerical fluctuations in the estimated pressure field around the interface.
In Figure 3.5c, the same contour is plotted with local scale (i.e. 2,320 < p <
2,380 Pa) and it shows that inside the bubble the pressure is not exactly constant,
especially in four radial layers where the fluid is saturated mixture, c.f. Figure
3.5a. In these layers, the temperature has a small variation (less than 0.5 degrees)
and it causes around 40 Pa variation in the saturated pressure value. This is one of
the capabilities of the temperature dependant equations of states that consider the
temperature changes during cavitation.

Figure 3.6: Comparison of equilibrium (EoS) model pressure distribution with
analytical data with shifted interface

To have a better understanding of the model performance in calculation of
pressure field outside the bubble, the analytical data are shifted a little in Figure
3.6. In fact, in the new analytical profiles, the sharp bubble interface is assumed to
be equal to the outer edge of the diffused numerical interface so that both pressure
profiles have similar gradient at the interface. From this figure it can be inferred
that the equilibrium model would be capable to resolve outer pressure profile more
reasonably if the interface could be captured sharply and at the correct location.

To investigate the effect of the grid resolution on the model results, the prob-
lem is solved with a coarser grid in which the initial bubble is discretized with 12
cells (i.e. ∆r/R0 = 0.083). In Figure 3.7, the estimated bubble radius and pressure
profiles are compared with the corresponding ones of the fine grid. For the bub-
ble radius, the results are very similar, however, considerable differences are seen
for the pressure estimation. For the coarse grid, the maximum nondimensional
pressure peak is 32, which is not seen in the plot range.
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3.1. Single bubble collapse

(a)

(b)

Figure 3.7: Domain discretization effect on the equilibrium model; (a) bubble
radius; (b) pressure profile

Finally, it should be noted that for this special problem, the liquid compress-
ibility effect is negligible. According to the depicted pressure profiles (e.g. Figure
3.4), up to the investigated time instances, the maximum pressure value in the
domain is around 8 bar (Π = 7) while the minimum driving pressure is 1 bar. Ac-
cording to the Tait equation (Equation 2.4) water density variation for this range
of pressure change is less than 0.1 percent and the liquid can be considered to be
incompressible and Equation 3.3 is applicable.

3.1.2 Finite mass transfer model result

As mentioned in the previous chapter, for the pressure-velocity coupling of the
pressure based models, the PIMPLE algorithm is used in this study. For this test
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case, at each time step, one outer SIMPLE loop is performed, and in each SIMPLE
loop at least three PISO loops are performed. Therefore, the solution algorithm is
practically a PISO loop, using three corrector steps in each time step.

The temporal evolution of bubble radius for the finite mass transfer model is
compared with the exact analytical solution in Figure 3.8. According to this figure,
the finite mass transfer model is capable in estimation of bubble radius profile if
the empirical coefficients are set high enough. In fact, for low rate coefficients,
the bubble collapses very slowly.

Figure 3.8: Validation of the finite mass transfer model with different coeffi-
cients in predicting the evolution of the bubble radius

To have a better understanding of the model performance for this flow, the
collapse pressure profiles are compared with analytical data in Figure 3.9. It is
seen that although moderate coefficient values (C = 100) can capture the radius
evolution, there may be numerical issues in representing the pressure field. In
Figure 3.9a, it is seen that in the last stages of collapse (t/τR > 0.921), the pres-
sure inside the bubble is overestimated. Besides that, some numerical pulses are
emitted from the interface which cause the outside pressure at t/τR = 0.921 to be
higher than the corresponding value at t/τR = 0.948, for example. Here, ignor-
ing the pure phase compressibility is also affecting the prediction. As seen in the
compressible equilibrium model results (Figure 3.4), a numerical pulse causes a
pressure wave that is emitted gradually in the domain and therefore, only the local
pressure is increased. However, for the finite mass transfer model in this study, the
liquid is assumed to be incompressible and a local numerical pulse increases the
whole domain pressure instantaneously. Therefore, the outside pressure profile at
t/τR = 0.921 is higher than the corresponding profile at t/τR = 0.948. Further
increasing the coefficient to 500 or 1000 solve the inside pressure overestimation
issue, however, the numerical pulses get more significant. If the coefficients are
increased to 104, then both of the issues are approximately addressed. However,
similar to the equilibrium model, the interface is diffused and the pressure in-
crease starting point is shifted a little in the radial direction and the pressure peaks
are underestimated. If the coefficients are increased to very high values (Figure
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3.1. Single bubble collapse

(a)

(b)

Figure 3.9: Comparison of finite mass transfer (FMT) model pressure distribu-
tion with analytical data; (a) Cc =Cv = 102; (b) Cc =Cv = 500; (c)
Cc =Cv = 104; (d) Cc =Cv = 5×106

3.9d) the pressure profile does not change considerably. However, comparison of
profiles at t/τR = 0.921 and 0.894 shows that small numerical pulses still exist in
the simulation. It should be mentioned that increasing the model constants may
decrease the stability of the problem and special measures should be done to make
sure a converged solution of the vapour transport equation is achieved. The gen-
eral trend of pressure profile relative to the model constants are in agreement with
the work of Schenke and van Terwisga [64] in which they used the Merkle mass

39



3. Results

(c)

(d)

Figure 3.9: Comparison of finite mass transfer (FMT) model pressure distribu-
tion with analytical data; (a) Cc =Cv = 102; (b) Cc =Cv = 500; (c)
Cc =Cv = 104; (d) Cc =Cv = 5×106 (cont.)

transfer model [12] and concluded that for more satisfactory prediction of bubble
Rayleigh collapse, the model constants should be quite large while the time steps
should be fine enough.

Another parameter that can be effective on model performance is the time step
size. In this study, the very small time step of 5× 10−9s was chosen at first, to
make sure that it works for different applied models. This value may work for
EoS model as well, but to avoid some pressure fluctuations and to satisfy the CFL
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3.1. Single bubble collapse

number limitation, a smaller time step was used in the compressible approach.
For the FMT model, however, a time step study (Figure 3.10) shows that the time
step should be smaller than 5× 10−8 s to ensure time-step independent solution.
Further time step study (not reported here) confirms converged solution using dt =
5×10−9 s. However, smaller time step may increase the solution instability, and
the solution parameters need to be set more carefully, e.g. by decreasing the so-
lution tolerances or setting a minimum number of iterations, to ensure converged
result for high values of mass transfer coefficients. Also, from Figure 3.10 it seems
that the spurious pulses may be avoided by increasing the simulation time step;
however, it can be shown that there is not a predictable relation between these
pulses and the time step, as for time steps larger than 5× 10−8 s (e.g. 1× 10−7

s), some spurious pulses are seen in the domain that are larger than the previous
ones.

(a)

(b)

Figure 3.10: Time-step dependency of the finite mass transfer model; (a) bubble
radius; (b) pressure profile
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To investigate the model dependency on the grid resolution, the problem is
solved with a coarser grid (∆r/R0 = 0.083) as well. In Figure 3.11, the estimated
bubble radius and pressure profiles with empirical coefficients of 104 are com-
pared with the corresponding ones of the fine grid. It is seen that while the bubble
radius is well estimated with the coarser grid, considerable numerical pulses exist
in the solution even with the high mass transfer coefficients. This is an important
point, since in typical engineering problems, the small cavity structures are not
discretized with very fine grids.

(a)

(b)

Figure 3.11: Domain discretization effect on the finite mass transfer model; (a)
bubble radius; (b) pressure profile
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3.1.3 Lagrangian model result

In this section, first the Lagrangian results based on the original form of the R-
P equation (2.30) are presented. In the original form of the equation, the farfield
pressure is known and constant. In such case, since we have the exact development
of bubble radius from the analytical solution (Equation 3.2), the vapour fraction
field is resolved accurately and the result can be used to investigate the pressure
equation and mass transfer rate. The problem is also solved based on the localized
form of R-P equation (Equation 2.31) to investigate the effect of local pressure in
calculation of bubble dynamics since the original form of R-P is not applicable in
more complicated problems, as will be shown later.

In Figure 3.12, the obtained pressure profile from the Lagrangian approach
with original R-P is compared with the analytical data for two different mass
transfer coefficients. Similar to the Eulerian model, the coefficients should be
high enough for an accurate estimation of pressure inside the bubble; however,
even with small coefficients no numerical pulse is seen in the Lagrangian model
results and the outside pressure profiles are very well estimated, Figure 3.12a.
Also, for this model, one only needs to make sure that the coefficients are high
enough and the pressure profiles are well captured even at the last stages of col-
lapse, Figure 3.12b, and no considerable difference is seen when the empirical
constants are increased further, Figure 3.12c. It should be mentioned that the so-
lution instability problems, that were mentioned for the finite mass transfer model
above, do not exist for this Eulerian-Lagrangian approach, even when increasing
the model constants to very high values or decreasing the time step to smaller
ones. It seems that for the bubble Rayleigh collapse with the stated assumptions,
the issue with the finite mass transfer model is related to the scalar transport equa-
tion of vapour fraction. When the exact value of bubble radius is known at each
time step and the interface is sharply captured, the pressure equation (continuity)
is solved accurately and only the mass transfer rate should be high enough to com-
pensate for the bubble inertia in the Rayleigh-Plesset equation that was simplified
in finite mass transfer models.

The inherent issues with the original form of Rayleigh-Plesset equation are
its dependency on the constant known farfield pressure and the assumption of un-
restricted field around the bubble. In most practical applications, the bubble is
surrounded by other cavity structures and local flow effects need to be considered.
There are modified versions of the equation in literature in which the local flow
pressure on the bubble interface, or near that, is used in the equation (instead of
p∞) and to compensate for this simplification some correction terms are added to
the equation. For example, Hsiao et al. [65] suggested a slip velocity correction
term based on the bubble-flow velocity difference. Also, Giannadakis [66] pro-
posed another correction term based on local turbulence quantities. However, for
this simple collapse problem, such modifications in the equation cannot improve
the results as the flow velocity is very small and there is no turbulence in the sym-
metrical flow around the bubble. As a solution, the equation was re-derived here
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(a)

(b)

(c)

Figure 3.12: Comparison of Lagrangian model based on original R-P equation
with analytical data in calculation of pressure distribution; (a) Cc =
Cv = 102; (b) Cc =Cv = 104; (c) Cc =Cv = 5×106
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3.1. Single bubble collapse

based on the local pressure value as stated before, using Equation 2.31.
In Figure 3.13, the Lagrangian model performance based on the localized R-P

equation is validated with the analytical solution. Here, only the high coefficient
(C = 10,000) result is presented, as the lower coefficients were shown to be prob-
lematic in pressure estimation inside the bubble, as discussed above. It is seen
that the bubble radius evolution is well captured with the localized R-P as well. In
Figure 3.14, the pressure lines for different time steps are compared with analyti-
cal solution which shows that this model can estimate the pressure peaks and their
location with good accuracy and without any numerical pulse or significant delay
in the pressure increase starting point. Only after t/τR > 0.95 some discrepancy
is seen between numerical and analytical data and it is due to the localized R-
P equation dependency on the exact estimation of local pressure. During the last
stages of the collapse, the pressure field around the bubble varies quite rapidly and
a small error in pressure estimation can lead to considerable difference in bubble
radius calculation which leads to more discrepancy in the following time steps.
However, the estimated pressure in the last steps is still acceptable as compared to
finite mass transfer and equilibrium models results.

In Figure 3.15, the results using a larger time step, dt = 1×10−7 s, are com-
pared to the obtained data with dt = 5×10−9 s. The results are overall similar for
bubble radius as well as pressure profiles and only in one time step (t/τR = 0.948)
the pressure line has a small shift.

Figure 3.13: Validation of Lagrangian model based on localized R-P equation
in predicting the evolution of the bubble radius

To study the model dependency on the grid resolution, the problem is solved
with a coarser grid (∆r/R0 = 0.083) as well. In Figure 3.16, the calculated bubble
radius and pressure profiles with empirical coefficients of 104 are compared with
the corresponding ones of the fine grid and it is seen that even with coarser spatial
discretization, the model has an acceptable accuracy and no numerical pulse is
generated in the domain. It can be concluded that the Eulerian-Lagrangian model
can produce satisfactory results with larger time steps and coarser grids as com-
pared to other models.
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Figure 3.14: Comparison of Lagrangian model based on localized R-P equation
with analytical data

(a)

(b)

Figure 3.15: Time-step dependency of the Lagrangian model based on localized
R-P equation; (a) bubble radius; (b) pressure profile
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3.2. Collapse of a bubble cluster

(a)

(b)

Figure 3.16: Domain discretization effect on the Lagrangian model based on
localized R-P equation; (a) bubble radius; (b) pressure profile

The single bubble collapse is a simple problem that can clarify the basic
behaviour of the numerical approaches. However, the bubbles are usually sur-
rounded by other cavity structures and the flow field can be restricted by wall
boundaries. Also, there are special cases where the ambient pressure is so high
that the observed numerical pulses are of minor importance and we are more inter-
ested in measuring large collapse pressures. In the following part, a more complex
test case is simulated to analyse the models behaviour regarding these effects.

3.2 Collapse of a bubble cluster

In this section the collapse of a cluster of bubbles over a flat wall is simulated.
Here, the bubble dynamics is affected by the collapse of the surrounding bubbles
as well as the near wall influence. In the current study, the bubble cloud which
was previously defined by Schmidt et al. [36] is used. This cloud consists of 125
spherical vapour bubbles with a radius distribution ranging from 0.70 mm to 1.64
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mm with non-uniform distribution. The average radius of the bubbles is 0.95 mm
and they have a minimum distance of 0.2 mm to avoid intersection. Also, they
have larger concentration and radii around the center of the cloud. The overall
cloud is located in a small liquid-filled cubic domain of 20×20×20 mm3 and has
a total volume fraction of 5.8 %. The cubic domain, itself, is located in a larger
rectangular domain of 4×4×2 m3 and the bottom faces of the two domains are
coplanar. The bubble distribution inside the inner domain is depicted in Figure
3.17. Recently, Ogloblina et al. [67] investigated the bubble-bubble interaction
and the stand-off distance effects on the collapse behaviour of the cluster and
based on the obtained results, it can be concluded that the bubble interactions in
the currently used cluster is significant.

Figure 3.17: Distribution of 125 spherical non-intersecting bubbles within a cu-
bic domain of 203 mm3 over a flat wall (red surface). This domain
is inside a large outer domain of 4×4×2 m3 (not shown here).

The fluid domain is assumed to have a stationary initial condition with a uni-
form temperature of 293 K. The initial pressure inside the bubbles is set equal to
the vapour pressure of 2,340 Pa and in the surrounding liquid it is assumed to have
a Laplacian distribution, which is reasonable for a stationary condition. The ini-
tial pressure along a line which passes through the cloud center is shown in Figure
3.18. The coplanar bottom faces of the domain are defined as impermeable walls
and other outer faces are considered as far-field boundaries with constant pressure
of 40 bar and no gradient of other flow quantities.

To discretize the bubble cloud, the small domain consists of uniform 553 carte-
sian structured cells with the numerical resolutions (∆CFD) of 0.36 mm, and it is
equivalent to Grid 3 in the work of Schmidt et al. [3, 36]. In this discretization, the
smallest bubbles are resolved by about 32 cells and the largest ones are discretized
by more than 400 cells, which approximately corresponds to 0.2 < ∆/R < 0.5; it
is thus coarse compared with the resolutions studied for the single bubble col-
lapse. In Figure 3.19 the contours of the initial solution are shown. The vertical
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Figure 3.18: Initial pressure distribution along a line which passes through the
center of the cloud. The line is defined as: -1 <x <1, y = z = 0.01.

cut planes are vapour fraction fields in the small inner domain using cell values
(right) and continuous colouring (left), while the bottom horizontal face depicts
the pressure field on the bottom face of the inner domain. In this figure, the upper
limit of vapour fraction contours is set to 0.5 for better contrast.

Figure 3.19: Initial flow contours for Grid3: vapour fraction using cell values
(vertical right); vapour fraction using point values for continuous
colouring (vertical left); pressure (horizontal)

The time step of the simulations is 3.9×10−8 s corresponding to CFL number
(for compressible solution) of 0.7 and the sampling frequency of 2.56× 107 Hz.
For the pressure-velocity coupling of the finite mass transfer and Lagrangian mod-
els simulations, four outer SIMPLE loops are performed, and in each SIMPLE
loop four PISO loops are performed. Finally, in order to measure the imposed
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pressure of the collapsing bubbles on the bottom wall, one pressure transducer
is located at the center of the bottom face. This transducer covers an area of
1×1cm2.

To validate the simulations, first the equilibrium model results are compared
with the data of Schmidt et al. [3, 36]. In Figure 3.20a, the dimensionless volume
variations of the bubble cloud and collapse durations are compared. As there is no
experimental data or analytical solution for this specific cloud with the specified
boundary conditions, a simplified analytical estimation is utilized to evaluate the
general trend of the results. Assume the collapse of an equivalent bubble with
the same initial vapour volume as the bubble cloud, yielding an initial equivalent
radius of 4.8 mm. The Rayleigh collapse time of this bubble in a farfield pressure
of 40 bar is 6.9×10−5 s (Equation 3.1). The collapse time of the numerical cloud
in the current simulation is 7.3× 10−5 s while from the work of Schmidt et al.
[3] it is found to be 6.3× 10−5 s. Therefore, both estimated collapse times are
reasonable. The volume variation profile of the equivalent bubble is also plotted
in Figure 3.20a for comparison. From the collapse time and volume variation
profiles it is seen that there is a time shift between the two simulations. This shift
is seen in the pressure profile as well, see Figure 3.20b. This is probably due to
an anticipated small difference between the initial pressure field (resulting from
solving the Laplace equation in the liquid) of the two simulations. However, the
profiles look very similar for both volume variation and wall pressure, and after
the initial shift the simulation profiles are almost parallel. There is also some
difference in pressure peak values which is due to different flux schemes that
were used in the simulations. In the pressure profile, the result of a finer grid
(∆CFD = 0.09 mm) is shown as well and it is seen that the results of the current
study is more similar to the fine grid profile of Schmidt et al. [3].

In Figure 3.21, the vapour volume variations of the finite mass transfer model
with different mass transfer coefficients are compared to the equilibrium model re-
sult. It is seen that with different mass transfer coefficients, the finite mass transfer
model estimate similar variation for the total volume of the cloud with time. For
the single bubble collapse, it was found that when the empirical constants are
larger than a minimum value, the bubble radius profile does not show a consider-
able change. For a cloud of bubbles with a large ambient pressure (40 bar in this
case), however, the total volume of the cloud does not change significantly with
the chosen range of coefficient values, although individual bubbles may have dif-
ferent radius variations which can be anticipated from small differences between
C = 1 profile and the others.

The temporal evolution of cloud volume for the Lagrangian model based on
different R-P equations are compared to the equilibrium model in Figure 3.22.
Three different forms of the R-P equation are used in these simulations. The first
one is the original form of the equation (Equation 2.30) with the infinity pressure
(p∞) value equal to the pressure at the farfield boundaries (40 bar). The other
case is the original form in which the liquid surface average pressure at the bubble
interface is used as p∞. As stated before, this approach has been used in literature

50



3.2. Collapse of a bubble cluster

(a)

(b)

Figure 3.20: Validation of the equilibrium model simulation of bubble cluster;
(a) time history of the vapour volume; (b) average pressure on the
wall transducer

as a simplified method to consider local flow effect on the bubble. The third
case is the localized R-P equation (Equation 2.31). It is seen in the figure that
the original R-P equation with farfield pressure estimates a faster collapse. This
is expected since the farfield pressure (40 bar) is much larger than the effective
local pressure around the bubble. Also, replacing the farfield pressure with the
corresponding value at the interface leads to a very slow rate of collapse and after
70 µs only 15 % of the cloud volume is condensed. In previous studies, this
approach has been modified by correction terms such as a constant pressure added
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Figure 3.21: Time history of bubble cloud volume using finite mass transfer
model (FMT) with different coefficients

Figure 3.22: Time history of bubble cloud volume using Lagrangian model with
different R-P equations
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to p∞, slip velocity correction term, [65], or corrections based on the turbulence
quantities, [66]. However, such corrections do not work for this problem, since
the slip velocity and the turbulence level are negligible and the corrected constant
pressure is unknown. Comparing to these two forms, the localized R-P equation
can capture the collapse rate very well. In fact, the estimated collapse time is close
to the one from equilibrium model and the total volume profile is very similar to
the finite mass transfer method result, see Figure 3.21. It should be mentioned
that for the localized R-P equation, the empirical constants should be larger than
a minimum value (C ≈ 100) to capture the volume profile reasonably. It is shown
later that with smaller coefficients, the pressure field is not well-estimated and
it affects individual bubble collapse in the Lagrangian approach. However, after
this minimum value, the cloud rate of collapse is independent of the mass transfer
coefficients.

In Figure 3.23, the average pressure profiles of the finite mass transfer models
on the 1× 1 cm2 pressure transducer are compared with the equilibrium model
result. For the single bubble collapse some numerical wiggles were detected in
the pressure profiles of the equilibrium model results and as stated, in the polar
grid, due to the simultaneous phase change in several polar cells (equidistant to
the center), these wiggles are augmented and form larger pulses. In the bubble
cluster case, however, a Cartesian grid is used and the numerical pulses are negli-
gible compared to large physical collapse pressure peaks. In fact, no considerable
numerical pulse is seen in the average pressure profile over the small transducer
(Figure 3.20b) and the local peaks of the equilibrium model profile are related to
the collapses of different bubbles. Therefore, the equilibrium model result can
be considered a reasonable benchmark solution for estimation of the finite mass
transfer model performance. In Figure 3.23, it is seen that the pressure estima-
tion of the finite mass transfer model is highly dependent on the empirical coeffi-
cients, contrary to what was noted for the volume variation. If the coefficients are
low, Figure 3.23a, no local pressure peak is seen from individual bubble collapse
and the average pressure on the wall increases smoothly to the maximum value
which corresponds to the final violent collapse, and after the collapse it decreases
smoothly. When the coefficients are increased to moderate values of (C = 102),
there are some local peaks in the wall pressure profile and the maximum pres-
sure value is estimated much larger than the corresponding value of compressible
equilibrium model, Figure 3.23b. When the coefficients are further increased to
high values (C = 105), these peaks still exist, Figure 3.23c, and it is seen that for
both moderate and high coefficients they are so frequent that the profile is not a
regular line. It should be mentioned that the maximum pressure peaks for C = 102

and C = 105 are larger than 3000 bar which are not in the range of depicted plot.
Actually, most of the local peaks can be regarded as spurious numerical pulses
and it can be further distinguished if the plotted data are filtered out every 10 time
steps as shown in Figure 3.24. From this figure, the finite mass transfer result for
C = 105 is rather similar to the equilibrium model, although there is a time shift
due to earlier collapse of the finite mass transfer approach. However, in general
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cases that the correct solution is unknown, it is not possible to distinguish between
numerical and physical collapse pulses and this can lead to inaccurate prediction
of the impact loads and erosion estimations in cavitating flows.

In Figure 3.25, the average pressure profiles of the Lagrangian model with lo-
calized R-P equation are compared with the equilibrium model result. It is seen
that with small mass transfer coefficients, the bubble cloud collapses too early
and the model estimates too small local pressure peaks, Figure 3.25a. As shown
in Figure 3.23a for the finite mass transfer model, when the empirical constants
are small, the pressure field and its temporal peaks are not well captured. Since
in the Lagrangian approach, the localized R-P solution is directly dependent on
the surrounding pressure, an inaccurate pressure estimation leads to a wrong pre-
diction of the vapour volume profile and collapse time. Also, for the larger co-
efficients, the estimated average pressures are similar to those of the finite mass
transfer model, Figures 3.25b and 3.25c. It shows that even with more accurate
formulation in resolving the vapour interface, the numerical pulses still exist. As
stated before, in this study the compressibility of pure liquid and vapour are not
taken into account and it seems that the liquid incompressibility around the cloud
is the major reason for spurious pulses. In an incompressible fluid, every single
pulse from the variation of a bubble size propagates simultaneously throughout
the flow domain, including the wall boundary. Such numerical peaks can be seen
in the work of Yakubov et al. [18], where ignoring the pure phase compressibility
caused quite larger peaks in the hydrofoil surface pressure and lift force profiles
(Figure 17 of [18]). However, considering the liquid compressibility in pressure
based cavitating flow solvers may lead to ill-conditioned matrices of coefficients
which needs special measures and smaller time steps to ensure solution stability
and this, in turn increases the computational expenses; such an improvement is
the subject of a future study.

For further comparison and understanding of different models, the bubble
cloud structure and wall pressure contours at different time instances are depicted
in Figure 3.26. It should be noticed that the time instances of different rows of
the figure are not exactly the same. Since the equilibrium model result has a small
time delay as compared to the other two models (Figs. 3.21 and 3.22) the time
instances of the equilibrium model contours are chosen a little later (0.2−0.4 µs)
to compare the corresponding instances of cavity structures in each row. Also,
since there is a 0.2− 0.4 µs time difference in the collapse profile of the current
equilibrium model results and the corresponding data of Schmidt et al. ([36]),
the chosen time steps of Figs. 3.26c - 3.26e for the equilibrium model is exactly
1 µs larger than the corresponding values in Figures 6(2)-6(4) of [36]. For plot-
ting the cavity structures of the Eulerian models, the vapour fraction threshold of
0.01 < αv < 0.9 is chosen. In Figure 3.26a, it is seen that while in the Lagrangian
approach each spherical bubble can be presented with the exact dimension, in the
Eulerian modelling the vapour volume is distributed over a number of cells which
may lead to the diffusion of the bubble interface. For a more precise representation
of bubble interfaces, a finer grid is needed as the one in the work of Schmidt et al.
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3.2. Collapse of a bubble cluster

(a)

(b)

(c)

Figure 3.23: Average wall pressure over the small transducer using finite mass
transfer model with different empirical constants; (a) Cc =Cv = 1;
(b) Cc =Cv = 100; (c) Cc =Cv = 105
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3. Results

Figure 3.24: Filtered average wall pressure over the small transducer using finite
mass transfer model with Cc =Cv = 105

[36] with 11 million cells in the inner domain or even, to have a better represen-
tation, the generated grid with a total of 120 million cells in the study of Adams
and Schmidt [68]. Figure 3.26b is depicted to show the similarity in the cavity
structures despite the difference in estimation of the pressure profiles between the
compressible and incompressible methods. The small marked bubble in this fig-
ure collapse a few time step later and since it is close to the bottom boundary, the
collapse pressure effect on the wall is considerable. Based on Figure 3.26c the
equilibrium model can capture the emitted pressure wave on the wall as in this
model the compressibility of the pure phases is taken into account. However, for
the Lagrangian and finite mass transfer model the collapse pressure appears as
a sudden and simultaneous pressure change in the whole flow domain (and not
as an emitted wave). Therefore, no circular wave pattern is seen in the pressure
contours of these models in which the liquid compressibility is neglected. In fact,
the pressure on the wall, and specially close to collapse point, has a huge and in-
stantaneous increase at the collapse time, but after just a few time steps the wall
pressure becomes rather uniform.

Due to the nonsymmetrical pressure field around the bubbles, they are ex-
pected to lose their spherical symmetry during the collapse, as predicted by the
equilibrium model. In fact, in the last steps of the collapse, the bubbles are de-
formed by impinging liquid jet and they are finally pierced and take a torus shape.
However, as shown in Figure 3.26d for the Eulerian models, the bubbles have
small deformation in shape while in the corresponding contours of [36] (Figure
6(3) of the paper) the small bubbles are already pierced by the liquid jet. The
collapsing bubble have similar shapes later in Figure 3.26e, while in Figure 6(4)
of [36] (the corresponding instance) the last bubbles have torus shape. There-
fore, the Eulerian equilibrium model, at least, can estimate the bubble piercing
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3.2. Collapse of a bubble cluster

(a)

(b)

(c)

Figure 3.25: Average wall pressure over the small transducer using Lagrangian
model with different mass transfer coefficients; (a) Cc = Cv = 1;
(b) Cc =Cv = 100; (c) Cc =Cv = 105
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(a)

(b)

(c)

(d)

(e)

Figure 3.26: Comparison of equilibrium model (left), Lagrangian model (mid-
dle) and mass transfer model (right) in prediction of cloud structure
and wall pressure at different time instances (a) t = 0; (b) t = 3.4
µs; (c) t = 3.7 µs; (d) t = 6.1 µs; (e) t = 6.8 µs.
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3.3. Eulerian-Lagrangian transition in a 2D cavitating flow

and nonsymmetrical shapes, however it needs a very fine grid (around 2203 cells
for this case). From the middle contours of Figs. 3.26d and 3.26e, it is seen
that the Lagrangian bubble stay spherical during the entire collapse time as in the
Rayleigh-Plesset equation, the bubble is assumed to keep its symmetrical shape.
However, it is possible to improve the Lagrangian model and consider the non-
spherical shapes in this approach regardless of the computational grid size and it
can be the subject of a future study.

3.3 Eulerian-Lagrangian transition in a 2D cavitating flow

In this section, the performance of the original and the new realizable Eulerian-
Lagrangian models are compared during the Eulerian-Lagrangian transition pro-
cess for qualitative validation of the proposed improvements (§2.4.2). In Figure
3.27a, two cavity structures with different length scales are shown over the suc-
tion side of a 2D hydrofoil. Following the transition criterion, the large structure
should be kept in the Eulerian framework while the smaller one is a candidate to
be transformed to the Lagrangian bubble framework. Also, in Figure 3.27b, the
pressure contour around the cavities before transition is depicted. The contour
is plotted on logarithmic scale for easier detection of pressure pulses. Inside the
cavities (green area) the pressure is around vapour pressure (2340 Pa).

The pressure field after the Eulerian-Lagrangian transition of the original multi-
scale model (i.e. without improvements) is shown in Figure 3.28. Figure 3.28a
displays the pressure contour one time step after the transition. As can be seen, the
local pressure at the small cavity location decreases to not only smaller than the
threshold vapour pressure but also to large negative values. Also, some time steps
later (Figure 3.28b), due to the decrease in pressure as well as the mass transfer
source term in the α equation (Equation 2.15), new vapour structures are gener-
ated around the bubble which are subsequently transformed to new Lagrangian
bubbles and leading to more pulses in the flow. Such spurious pulses are repeated
several times in the domain.

The pressure contour obtained from the realizable model is shown in Figure
3.29. Here the small cavity structure is replaced by more but smaller bubbles in
order to keep the αβ parameter conserved during the transition. As a result, no
numerical pulse or negative pressure is seen in the domain.

To have a better understanding, in Figure 3.30 the minimum pressure of the
flow field is shown for 75 time steps after the Eulerian-Lagrangian transition. It
is seen that while the minimum pressure of the realizable model is approximately
constant and is around the threshold vapour pressure, for the original model, the
pressure repeatedly yield large negative values due to several spurious pulses that
occur after the transition. Such large negative pressures can influence the noise
prediction and erosion estimation of a cavitating flow and if they occur near the
hydrofoil, the hydrodynamic force estimation may be affected as well; in the worst
case the numerical stability of the solver may be compromised. In Figure 3.31,
the local vapour volume as well as the number of Lagrangian bubbles around the
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3. Results

(a)

(b)

Figure 3.27: (a) Initial cavities with different length scales over a hydrofoil; (b)
Initial pressure field, where the line indicates the iso-contour of
vapour fraction α = 0.5

transition area are depicted for 75 time steps after the transition. For the realizable
model, the Eulerian-Lagrangian transition occurs once and after that no Eulerian
vapour cavity is seen in the region and the number of bubbles stays constant.
However, for the original model, new vapour cavities are generated in the area
several times. As stated above, this vapour generation is due to the mass transfer
source term in Equation 2.15 and the large negative pressure after each transi-
tion. As the new cavities are small, they are transformed to Lagrangian bubbles
instantaneously which in turn leads to new spurious pulses and yet again vapour
generation. Also, the number of Lagrangian bubbles increases in the domain. It
should be noted that these bubbles are larger than the corresponding ones in the
realizable model. The new bubbles increase the vapour content of the flow and
interact with the earlier generated bubbles; both of these effects are unrealistic.

To show the overall performance of the improved multi-scale hybrid solver,
the transport of various cavity structures over the 2D hydrofoil is shown in Figure
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3.3. Eulerian-Lagrangian transition in a 2D cavitating flow

(a)

(b)

Figure 3.28: Pressure field (the line indicates the iso-contour of vapour fraction
α = 0.5) of the original model (a) one time step after transition; (b)
a few time steps later

3.32 for a time period of about 1 ms. During this time period multiple transition
of Eulerian cavities to Lagrangian bubbles and vice versa occur, and three of them
are explained as examples. The two Eulerian cavities in Figure 3.32a, are the
same structures of Figure 3.27a. As stated before, the smaller cavity, named E1,
cannot be resolved by enough number of computational cells, and therefore it is
transformed to the a group of Lagrangian bubbles. The bubbles are seen in Figure
3.32b, named as L1 and enclosed by a dashed lined.

A few time steps later, Figure 3.32c, due to the surrounding pressure varia-
tions, a small part of the large Eulerian cloud, named E2 is detached from the
main part and starts to collapse. Meanwhile, a sheet cavity starts to develop at
the leading edge of the hydrofoil. Also, a new group of Lagrangian bubbles are
growing downstream of this structure, named L3. Later, the Eulerian sheet cav-
ity develops further, and as it reaches the Lagrangian group (L3), the bubbles are
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Figure 3.29: Pressure contour after the Eulerian-Lagrangian transition of the re-
alizable model; the line indicates the iso-contour of vapour fraction
α = 0.5

Figure 3.30: Minimum pressure after the first transition

transformed to Eulerian framework and become a part of the sheet cavity, since
the combined cavity can be resolved by sufficient number of cells, Figure 3.32d.
At the same time, the E2 cavity continues its collapse and a smaller detached part
of it is transformed to a bubble group. In Figure 3.32e, E2 is completely trans-
formed to the Lagrangian group of bubbles, L2. The E2 cavity collapses at a fast
rate, as the time interval between Figures 3.32d and 3.32e is about 2 µs. Finally,
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3.3. Eulerian-Lagrangian transition in a 2D cavitating flow

Figure 3.31: Vapour volume and number of bubbles after the first transition

in Figure 3.32f, it is seen that the old Eulerian cloud grows again and some of
the Lagrangian bubbles of L2 are transformed to Eulerian framework as they hit
this cloud. Meanwhile, the leading edge sheet cavity develops further and absorbs
more Lagrangian bubbles.
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(a)

(b)

(c)

Figure 3.32: Eulerian-Lagrangian transition over a 2D hydrofoil
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3.3. Eulerian-Lagrangian transition in a 2D cavitating flow

(d)

(e)

(f)

Figure 3.32: Eulerian-Lagrangian transition over a 2D hydrofoil (cont.)

65



3. Results

66



4
Conclusions and future work

In this study, a hybrid mixture-bubble model in OpenFOAM was developed. This
model is supposed to calculate cavitating flows with an extensive range of length
scales from large sheet and cloud cavities to sub-grid micro bubbles. To under-
stand the behaviour and limitations of different commonly used cavitation models
and to find the potential area of improvements in the hybrid model, at first, three
different cavitation models were compared in the simulation of two benchmark
test cases. The models were the well established EoS and FMT models as well
as a discrete bubble model that was implemented in the current study. From this
comparison we conclude that:

• Eulerian models estimate a diffusive liquid-vapour interface and to have a
more precise representation they need finer grids as compared to the La-
grangian model. The interface diffusivity can have considerable effect in
the estimation of local pressure on the interface (as in the case of single
bubble collapse) and the shape of cavity structure (as in the case of bubble
cluster), especially in the last stages of the collapse.

• Some numerical pulses are detected in the estimated pressure profiles of
the Eulerian models for the single bubble collapse problem, and this can
be significant in collapse pressure calculation for special situations. From
the comparison of the finite mass transfer and Lagrangian results, it is con-
cluded that when the sharp bubble interface is estimated precisely, these
numerical issues are solved.

• The numerical pulses are augmented when the grid lines are aligned with
the bubble interface and there is a simultaneous phase change in several
neighbouring cells. For the more complex case of bubble cluster, the Carte-
sian grid was used. Therefore, the pulses are not augmented, and they are
negligible as compared to the high pressure in the farfield and large physical
pressure peaks from individual bubble collapses.
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4. Conclusions and future work

• The Lagrangian models can give satisfactory results with larger time steps
and coarser grids as compared to the Eulerian approaches.

Therefore, using a Lagrangian bubble model for the small scale cavity struc-
tures can reduce the computational cost through larger time steps and grid size,
and at the same time improve the collapse pressure estimation around each single
bubble.

Also, the Lagrangian bubble model was improved by derivation of a new form
of the well-known R-P equation, in which the bubble size variation is calculated
based on the local pressure value around the bubble. In the bubble cluster test
case, the flow field around each bubble was unsymmetric and the correct estima-
tion of the local pressure plays a more important role. It was shown in this case
that using the local form of the R-P equation improves the model behaviour signif-
icantly. Other improvements of the bubble model include correcting the bubble-
wall boundary condition in OpenFOAM as well as considering the bubble-bubble
interaction on bubble dynamics. The other important parameter that causes differ-
ence in models behaviour is the fluid compressibility. From the bubble cluster test
case, it was shown that considering the (pure phase) compressibility is effective
in the estimation of the flow pressure and to have a reliable study of the cavity
collapse pressure it is necessary to consider this parameter. However, from the
comparison of the cavity structures of the compressible (EoS) and incompressible
(FMT and bubble) models simulation, it is seen that even by ignoring the fluid
compressibility, the collapse rate and vapour distribution can be predicted with
reasonable accuracy. From this point, it can be concluded that the hybrid mixture-
bubble model should be capable of representing the cavity dynamics even when
ignoring the pure phase compressibility. However to calculate the erosion risk
assessments, where the collapse pressure pulses are taken into account, either the
liquid compressibility effect should be implemented in the model, or another ero-
sion indicator based on the mixture and bubble dynamics should be implemented
in the solver.

After understanding the characteristics of the models, the hybrid model was
implemented in OpenFOAM by coupling the FMT mixture model with the La-
grangian bubble model. The initial implementation of the solver is similar to
the earlier study of Vallier [35]. However, it was shown that using the initial al-
gorithm leads to spurious numerical pressure pulses, as well as spurious vapour
generations and insufficient consideration of bubble contribution in the mixture
behaviour. Therefore, a remedy to these issues was presented by reformulating
the coupling between the bubbles and the Eulerian governing equations to more
accurately include the effects of bubbles on the Eulerian flow, as well as improv-
ing the Eulerian-Lagrangian transition algorithms. This amounts to considering
the total vapour in the flow, and not only the Eulerian mixture vapour fraction.
Also, the generation of Eulerian cavities in the bubbly cells was avoided by re-
vising the source term of Eulerian vapour transport equation. In addition, during
the Eulerian-Lagrangian transition process, several discrete bubbles are inserted
to achieve a better representation of the spatial distribution of the Eulerian mixture
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during the transition. Finally, the overall improvements were verified through a
qualitative simulation of the 2D cavitating flow around a hydrofoil.

In future, the hybrid model will be improved further. The non-condensable
gas effect will be implemented in the Lagrangian library. There are special prob-
lems in which the non-condensable gas content should be considered as it can be
effective during the bubble collapse / rebound and implementing this parameter
is expected to improve the hybrid model in the simulation of collapsing cavities.
Also, the Eulerian-Lagrangian transition algorithm will be enhanced further to
consider more flow physics, especially in complex real case problems. In some of
the earlier developed hybrid models, a newly injected bubble is assumed to have
a zero rate of collapse and to be in equilibrium condition with the surrounding
liquid. However, as in our hybrid solver, a new bubble is a transformed Eulerian
collapsing cavity, it has an initial rate of collapse that should be considered in ini-
tializing the Ṙ value in the R-P equation. Besides that, individual bubbles will be
replaced by parcels to reduce the computational cost. In Lagrangian modelling,
each parcel represents a group of bubbles and the parcel contribution in the mix-
ture flow is similar to the contribution of the related bubble group. Therefore,
instead of tracking a specific number of bubbles in each group, only a parcel of
them is tracked which decreases the computational cost of the Lagrangian sim-
ulations considerably. Also, the multi-scale model performance will be verified
quantitatively with real case cavitation phenomenon. For this purpose, the cav-
itating flow around a cylindrical bluff body is simulated numerically. Recently,
the experimental tests of this problem have been done as a part of this PhD thesis,
and the obtained results will be available in the near future. The tests include an
extensive range of different conditions from cavity inception to fully developed
cavitating flows, which provides a suitable test case for numerical model valida-
tions. Furthermore, it will be tried to extend the model applicability to be used in
erosion risk assessment as well. It may be done by incorporation of the radiated
acoustic pressure wave due to bubble collapse and rebound or implementing the
liquid compressibility effect in the solver, but a certain approach in this regard has
not been decided yet.
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