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A reference model for driver attention in
automation: Glance behavior changes during lateral

and longitudinal assistance
Alberto Morando, Trent Victor, and Marco Dozza

Abstract—This paper introduces a reference model of glance
behavior for driving safety assessment. This model can improve
the design of automated and assistive systems. Technological
limitations have previously hindered the use of unobtrusive eye
trackers to measure glance behavior in naturalistic conditions.
This paper presents a comprehensive analysis of eye-tracking
data collected in a naturalistic field operation test, using an eye
tracker that proved to be robust in real-world driving scenarios.
We describe a post-processing technique to enhance the quality of
naturalistic eye-tracker data, propose a data-analysis procedure
that captures the important features of glance behavior, and
develop a model of glance behavior (based on distribution fitting),
which was lacking in the literature. The model and its metrics
capture key defining characteristics of, and differences between,
on- and off-path glance distributions, during manual driving and
driving with adaptive cruise control and lane keeping aid active.
The results show that drivers’ visual response is tightly coupled
to the driving context (vehicle automation, car-following, and
illumination).

Index Terms—ADAS, attention, eye tracker, glance distribution,
naturalistic driving, vehicle automation, visual behavior.

NOMENCLATURE

ACC Adaptive cruise control
ADAS Advanced driver assistance system
CDF Cumulative distribution function
FOT Field operational test
LKA Lane keeping aid
PDF Probability density function
PEORT Percent eyes off-road time
PGDoff Percent off-path glance duration
PGDon Percent on-path glance duration
PRC Percent road center
THW Time headway
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96 Göteborg, Sweden (e-mail: alberto.morando@chalmers.se).

T. Victor is with Volvo Cars Safety Center (Volvo Cars Corporation), 405
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I. INTRODUCTION

HUMAN error due to inattention has been identified as the
major crash-contributing factor by large-scale naturalistic

studies [1], [2] and in-depth crash investigations [3]. Demand
for advanced driver assistance systems (ADASs) to counteract
human errors is increasing, as is evident from the growth of
ADAS functionality and market penetration. The effectiveness
of these systems at detecting abnormal behaviors depends on
the existence of a reference model of normative behavior, which
must be able to interpret the driver state (e.g., attentiveness)
in relation to the driving context (e.g., level of automation and
characteristics of the driving environment) [4].

ADASs that monitor the state of the vehicle and the driving
environment are now available on the market. ADASs that
monitor the state (e.g., attentiveness) of the driver are still
in their infancy [5], but interest in their development is
accelerating. There are many practical challenges to be resolved
before a driver attention monitor can become a reality, however.
These challenges are primarily related to data quality issues and
the identification of relevant and robust indicators of attention
(taking into account feasibility and equipment cost) [5]. Early
indicators relied on vehicle control metrics (e.g., headway and
lane keeping quality) to measure driver attention [5]–[7]. These
indirect measures, although easy to collect, are not sufficient to
capture the detrimental effects of inattention [8]. A significant
disadvantage of vehicle control metrics is that, in automated and
autonomous driving—hands off wheel, feet off pedals—such
metrics would not be available.

A potential approach is to supplement driving metrics with
physiological metrics [5]. Driver’s attention could be inferred by
a wide spectrum of physiological signals (for a review see [6]);
this paper focuses on measuring eye movements because they
are a strong indicator of where attention is directed [9]. Visual
attention is essential for guiding the vehicle as well as detecting
and avoiding hazards on the road [10], [11]. Eye movements
can be described at different levels of detail. Although it is
possible to measure fixations, saccades, and smooth pursuit
movements [4], [5], [8], this places high demands on eye-
tracker performance. Therefore, an aggregate level of measure
is typically used—the glance, which is the transition of the
eyes to an area of interest followed by one or more continuous
fixations within that area, until the eye moves to another area
of interest (ISO 15007-1:2014). Several glance-based metrics
can be derived (see e.g., ISO 15007-1:2014), but there is no
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general agreement on the features that best describe attention
and inattention (for an overview see [4]). Further, a model
of visual behavior for normative driving in the real world is
lacking.

Research has shown that drivers look towards the future
path (road center region) about 80–90% of the time (see [12]).
Hence, a coarse measure of attention based on whether a glance
is on-path (as used in this paper) may be sufficient. Frequency
and duration of off-path glances have traditionally been central
metrics of interest. In fact, driving requires short periods of
off-path glances to scan the surroundings and safety-critical
in-vehicle information. However, long off-path glances (about
2 s) in single or aggregated form, have been shown to be
a sensitive indicator of increasing crash risk, in real-world
driving [1], [13] and simulator studies [14]. off-path glance
duration has also been included as an assessment criterion for
in-vehicle electronic devices [15]. However, off-path glances
that lead to crashes do not necessarily have to be long, because
timing in relation to driving context matters more than duration
per se [2]. To capture context dependencies, off-path glance
duration can be complemented with percent road center (PRC)
[12]. PRC, a simple metric that combines glance duration and
frequency to quantify the percent of glances directed at the
road center, has been shown to be sensitive to changes in
driving demand in simulated [12] and real-world driving [2].
Moreover, PRC inherently takes into account the amount of
time the drivers spend looking on-path. on-path glance behavior,
often discounted but included in our analysis, was found to
be an important indicator of safety and crash risk by a recent
study [16].

Remote (i.e., unobtrusive) eye trackers can be the perfect
companion to ADASs. Distraction detection algorithms that
incorporate eye-tracking data have been proposed (for a
comparison of the different algorithms see [5], [17]), and
some solutions are also available on the market [5]. The
main issue is that remote eye trackers, while accurate in
constrained laboratory settings, are too expensive and unreliable
(due to quality issues) to be used in naturalistic settings [5],
[18]–[20]. Therefore, large-scale naturalistic driving studies
have been relying on the manual annotation of glances from
video recordings of the driver’s face [1], [2]. This method
is cumbersome, limiting the size of the dataset available for
analysis, and it is not suitable for real-time system development.
Recent advances in technology and machine vision algorithms
now enable the robust and extensive measurement of glance
behavior in real-world driving with simpler setups (for a review
see [21], [22]); the dataset used in this paper is an example of
this.

The aims of this paper are fourfold: first, to describe a novel
post-processing technique to remove noise and artifacts from
eye-tracker signals collected in naturalistic settings; second,
to propose a comprehensive data analysis procedure that
captures the important features of glance behavior, and offers
a more nuanced interpretation of eye tracking data; third, to
develop a reference model of visual behavior for real-world
driving (including driving with ADASs) that would enable a
comprehensive assessment of glance behavior and supplement
previously used glance-based metrics; and lastly, to assess how

visual behavior adapts to automation and driving context.

II. METHODS

A. Data source

The data used in this study are from the EyesOnRoad
naturalistic field operational test (EOR-FOT). The EOR-FOT
project was conducted by Volvo Cars and Autoliv to test a new
eye tracker system [23], [24]. Data were collected from ten
Volvo cars (2014 V60 model) in the region of Västra Götaland,
Sweden, from December 2014 to September 2015. Most of
the data were collected in Göteborg, the second-largest city in
Sweden. The cars were equipped with full-range adaptive cruise
control (ACC) and lane keeping aid (LKA). ACC automated
the longitudinal control by modulating the speed when the
vehicle approached a lead car. LKA supported lateral control
at speeds above 60 km/h by providing steering torque when
the vehicle approached the lane markings.

Vehicle data were continuously collected at 60 Hz from the
controller area network (CAN) bus and three in-car cameras.
The cameras recorded the forward and rearward views from
the vehicle and the face of the driver. Eye movements were
recorded by an eye-tracking system that automatically classified
glances as either on-path and off-path, depending on whether
they were inside or outside an ellipse 20◦ wide and 14◦ high
with the center reference point being drivers’ eyes [23]. When
the eye tracker was not able to classify a glance sample, the
location was coded as unknown.

In total 19 drivers participated in the FOT (10 males and
9 females). The subset of data used for this paper—extracted
according to the criteria explained next—included a total of 17
drivers (9 males, 8 females) with an average age of 50 years
(SD 12 years). The manual driving group contained 8 drivers
(3 males, 5 females) with an average age of 52 years (SD 7
years). The ACC+LKA driving group contained 12 drivers (8
males, 4 females) with an average age of 49 years (SD 12
years). Because only 3 drivers (2 male and 1 female, IDs: 3,
11, 14) belonged to both groups, we considered the manual
and ACC+LKA driving groups independent.

B. Driving segment extraction and classification

A segment is an interval of continuous driving data that
fulfill specific inclusion criteria. Several signals recorded from
the CAN bus were used for segment selection. Overall, the
inclusion criteria constrained the analysis to non-safety-critical
driving on straight roads (rural roads and highways). The
inclusion criteria were as follows:

• Curve radius greater than 1500 m, to exclude winding
roads and lane changes;

• Speed above 60 km/h, to exclude urban driving and match
the LKA operating conditions;

• Absolute value of longitudinal acceleration less than
1.5 m/s2, to remove harsh braking and unusually high
acceleration;

• No ADAS warnings issued (e.g., forward collision warn-
ing), to exclude potential safety-critical events;

• Segment longer than 20 s, to ensure steady state driving.
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Furthermore, each driving segment was classified according
to three binary categorical variables: Automation level, Car-
following, and Illumination. If the driving segment could not
be assigned to any of the categorical variables, it was discarded.
The variable Automation level has two levels: Manual, when
the assistance systems (i.e., ACC and LKA) were turned off,
and ACC+LKA when the assistance systems were turned on
and operational. In ACC+LKA driving, the segments were
excluded if the driver overrode the ACC by accelerating or
braking, or changed the settings of the system (speed and time
gap) in the segment. The category Car-following had two levels:
CF yes, when the distance to the lead vehicle was less than
50 m, and CF no otherwise. The category Illumination was
either Day or Night, which was inferred from the current time,
date, and position of the vehicle (derived from the GPS signal).
Together, the three categories provide eight combinations, all
of which were considered in the analysis. A total of about 163
hours of driving time were available for the analysis.

C. Data filtering

Figure 1. Example of data filtering of the eye-tracking signal. The numbered
labels identify the steps of the filtering procedure. Details of the filtering
procedure are found in the text.

A multiple-step procedure, based on previous research on
glance quality assessment [20], began by verifying the eye-
tracking glance classification before analysis. Although the
eye-tracker itself provided a real-time data quality assessment,
and the EOR-FOT project reported on data reliability [23],
we developed a novel and more comprehensive procedure to
verify glance data quality. A number of studies have proposed
techniques to classify raw eye-tracking data into a binary glance
on- and off-path signal [20], [25]; however, previous studies
did not produce a post-processing technique to ensure that
1) the filtered signal complies with physiological constraints
on human eye motion, and that 2) fragmented glances are
discarded as low quality. Our procedure addresses these two
issues to improve glance analysis.

First, the quality of the eye-tracking data for individual
glances was verified by visual inspection of a sample of 45
driving segments that were 20 s long. The inspection was
performed frame by frame with the support of FOTware [26]
by comparing the eye-tracker signal with the video of the
face of the driver. Second, the eye-tracking signal was post-
processed to reject questionable data (e.g., unrealistic glance
durations) in the extracted driving segments according to a
novel filtering strategy. The filtering strategy consisted of six
steps (as depicted in Fig. 1). First, fragmented glances at the

beginning or end of the segment were discarded. Second, on-
path and off-path glances that were nonconsecutive (because
of loss of tracking in between) were discarded altogether if the
transition between them was unknown. Third, a brief (less than
0.3 s) loss of tracking between glances of the same category
(on-path or off-path) was interpolated. Fourth, glances shorter
than 0.15 s were interpolated, as they were shorter than the
physiological minimum fixation time [27]. Fifth, a brief—less
than 0.1 s—loss of tracking between an on/off path glance
transition was appended to the subsequent dwell time on the
next glance location. Sixth, off-path glances shorter than 0.3
s were interpolated to remove blinks (as suggested in ISO
15007-1:2014).

D. Description of visual behavior

1) Empirical glance distribution: Glance data were analyzed,
at aggregate level, as empirical probability density functions
(PDFs), so that the histogram has a total area of one; 500
equally spaced bins, 0.1 s wide, centered at every 0.1 s were
used (i.e., the bin centers spanned the interval 0.1–50 s starting
from the lowest bin edge at 0.05 s).

As the dataset was unbalanced (because some drivers had
more driving time than others), the aggregate distributions were
built upon glance distributions weighted per individual driver.
This approach was chosen so that drivers with more driving
time would not unduly affect the aggregate distribution. The
weighting procedure was as follows. First, for each driver, the
histogram of glance data was normalized as a relative frequency
histogram. That is, the height of each bar of the histogram
is the probability of each bin, which is obtained by dividing
the count in each bin by the total count (so that the sum of
the bin heights sums to one). Then, each corresponding bin
probability was summed across drivers. Finally, the aggregate
histogram was normalized to a density.

Measures of location (e.g., percentiles and mean) were
computed over the aggregate, weighted glance distribution
as follows. Each bin’s center value was replicated by a factor
proportional to the height of each bar, essentially discretizing
the range of glance duration at 10 Hz. Because the height of
the bar represents a probability, the height can be close to zero.
Therefore, the height of each bar was multiplied by a weight
(w), chosen to ensure that the observation with minimum non-
zero bar height (p) had unitary frequency: w = 1/min(p) with
p > 0 . Afterwards, each bin center value was replicated w
times.

2) Modelling of visual behavior: The glance distributions
were parametrized by fitting a PDF, in order to obtain an
analytical model of glance behavior. The fitting used maximum
likelihood estimation, given a class of continuous distributions
with unknown parameter values. For the on-path glances, an
inverse normal distribution was selected. The PDF is given in
(1):

f (x; µ, λ) =

√
λ

2πx3
exp

(
λ (x− µ)2

2xµ2

)
(1)
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For the off-path glances, a lognormal distribution was chosen.
The PDF is given in (2):

f (x; µ, σ) =
1

xσ
√
2π

exp

(
− lnx− µ2

2σ2

)
(2)

3) Glance metric: Percent road center (PRC): The PRC is
the proportion of time that glances fall within a road center area
(i.e., on path glances) [12]. This metric does not require that the
eye-tracking signal to be segmented into glances. Hence, the
eye-tracking signals used to calculate PRC included fragmented
and nonconsecutive glances; Steps 1 and 2 of the filtering
process were not performed. PRC is equivalent to percent time
on the area of interest—essentially, the on-path inverse of
the percentage of eyes off road time (PEORT) defined in ISO
15007-1:2014. The PRC of each segment was computed via the
chunking technique [28] to increase the robustness of measures
and facilitate the comparison between driving segments.

Chunking was applied as follows. Each segment was
uniformly partitioned into non-overlapping 10 s intervals. If
the segment duration was not an integer multiple of the length
of the intervals (chunks), the residuals were discarded. To
compute the median PRC on a time series, first the median
PRC was computed for each chunk in the segment, then the
median of the chunks’ PRC medians was used as a measure
of the driving segment. As the distribution of PRCs is usually
skewed toward one, the median was chosen as a more suitable
measure of location than mean.

4) Glance metrics: Percent glance duration: The metric
quantifying percent off-path glance durations exceeding 2 s
(PGDoff≥2) is comparable to Percentage of extended duration
glances (included in ISO 15007-1:2014) which quantifies
long glances—previously associated with increased crash risk.
Percent on-path glance durations shorter than 1 s (PGDon≤1)
is a novel metric, with a newly discovered association with
crash risk (see [16]). This metric is intended to quantify on-
path information uptake deficiencies when glancing on-path
between off-path glances, because short on-path glances may
not provide enough information for proper accumulation of
information about looming or path trajectories (e.g., see [29],
[30]). Together, PGDoff≥2 and PGDon≤1 identify safe visual
scanning, which is characterized by off-path glances that are
not too long and on-path glances that are not too short.

5) Statistical analysis: A two-sided Wilcoxon rank sum
test was used to test the null hypothesis that the samples are
from continuous distributions with equal medians. A multi-way
analysis of variance (ANOVA) was used to test the interaction
of the categorical variables with the mean of the dependent
variable (if the dependent variable was not normally distributed,
an arcsine data transformation was applied first). If the results
from the ANOVA were statistically significant, the Tukey’s
honest significant difference post-hoc was carried out. A chi-
square test was used to compare sample proportions and assess
the goodness of fit. All tests were run at the 0.05 level of
significance. Correlation between the on-path and the following
off-path glance duration at aggregate level was assessed with
the Spearman’s correlation coefficient ρ.

III. RESULTS

A. Data quality

Figure 2. Comparison of the empirical probability density functions (PDFs)
of the glance duration for manual driving from this study with the 100car and
SHRP2 studies. Panels (a-b) show, respectively, the comparison to the on-path
and off-path glances of the baseline segments from the 100car study [31],
[32]. Panel (c) shows the comparison to the off-path glances of the baseline
segments from the SHRP2 study.

The glance distribution data for manual driving were
compared to data from two naturalistic driving studies to verify
the data quality and the filtering procedure detailed in section
II-C (Fig. 2). The data were compared to the manual driving
baseline from 100car [33] (data available in [32] and further
processed in [31]) and SHRP2 [2] (data available as additional
material in [34]). The glance data in 100car and SHPR2 were
manually labelled. In (a) and (b) the glance distributions were
truncated at 6 s, to match the length of the segments in the
100car baseline dataset. The comparison shows good agreement
(Fig. 2). Hence, the data used in this study was deemed to be
of high quality.

Figure 3. Comparison of the empirical probability density functions (PDFs,
left), and empirical cumulative distribution functions (CDFs, right) of the
on-path (top row) and off-path (bottom row) glances for manual driving and
driving with ACC+LKA.

1) Empirical glance distributions: Fig. 3 shows that the
on-path and off-path glance distributions for manual and
ACC+LKA driving have similar shapes. The on-path glance
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Figure 4. Glance distributions in manual driving. Panel (a) shows the empirical
probability density function (PDF) of the on-path glance duration. Panel (b)
shows the PDF for the off-path glance duration. The measures of location
of the distributions are reported in (a) and (b); the subscript and superscript
indicate the min and max value over the individual drivers, respectively. Panel
(c) shows the empirical cumulative distribution function (CDF) at aggregate
level and for the individual drivers. The proportion of on-path glances shorter
than 1 s (PGDon≤1) and the proportion of off-path glances exceeding 2 s
(PGDoff≥2) are pinpointed in (c) (the subscript and superscript indicate the
min and max value over the individual driver, respectively). Panel (d) displays
the median percent road center (PRC) per driver (circles in the chart), with
the error bars indicating the 95% confidence interval. The horizontal line in
panel (d) indicates the median of the median drivers’ PRC with the grey area
indicating the 95% confidence interval. The bars in (d) indicates the glance
data proportion per driver.

distribution matches an inverse-normal distribution, whereas the
off-path glance distribution matches a lognormal distribution
(more details will be given in section III-A2). The cumulative
distribution functions (CDFs) in panels (b) and (d) in Fig. 3
illustrate a tendency to longer glances in ACC+LKA compared
to manual driving, especially on path. There was a weak
correlation (ρ = −0.12) between the duration of an on-path
glance and the following off-path glance in both manual and
ACC+LKA driving.

Fig. 4 and Fig. 5 show the glance distributions (for manual
and ACC+LKA driving, respectively) in more detail. The
figures also report the results of individual drivers to show the
variability between drivers. Panels (a) and (b) in both figures
show longer on-path glances in ACC+LKA and a tendency
towards longer off-path glances in ACC+LKA. Panel (c) in both
figures show that the proportion of off-path glances exceeding

Figure 5. Glance distributions in ACC+LKA driving. Panel (a) shows the
empirical probability density function (PDF) of the on-path glance duration.
Panel (b) shows the PDF for the off-path glance duration. The measures
of location of the distributions are reported in (a) and (b); the subscript
and superscript indicate the min and max value over the individual drivers,
respectively. Panel (c) shows the empirical cumulative distribution function
(CDF) at aggregate level and for the individual drivers. The proportion of on-
path glances shorter than 1 s (PGDon≤1) and the proportion of off-path glances
exceeding 2 s (PGDoff≥2) are pinpointed in (c) (the subscript and superscript
indicate the min and max value over the individual driver, respectively). Panel
(d) displays the median percent road center (PRC) per driver (circles in
the chart), with the error bars indicating the 95% confidence interval. The
horizontal line in panel (d) indicates the median of the median drivers’ PRC
with the grey area indicating the 95% confidence interval. The bars in (d)
indicates the glance data proportion per driver.

2 s (PGDoff≥2) in manual and ACC+LKA driving was not
statistically different (χ2(1) = 3.54, p = 0.06, φ = 0.004).
However, the proportion of on-path glances shorter than 1 s
(PGDon≤1) was significantly higher in manual driving than in
ACC+LKA driving (χ2(1) = 39.08, p < 0.001, φ = 0.014).
Panel (d) in both figures displays the median PRC at aggregate
level and per individual driver (the analysis of PRC values is
presented in section III-A3). Panel (d) also shows the proportion
of data per driver.

2) Modelling of visual behavior: Fig. 6 shows the fitting of
empirical glance distributions via maximum likelihood estima-
tion. The parameters of the distributions given in the figure can
be used in (1) and (2). The fit was assessed with the chi-square
goodness of fit test. The fit agrees well with the experimental
data for both manual driving (on-path glance distribution:
χ2(497) = 0.84, p = 0.999; off-path glance distribution:
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Figure 6. Fitting of the glance distributions in manual (top row) and ACC+LKA
driving (bottom row). The fitted probability density function (PDF) is displayed
by the thicker line in the chart, whereas the empirical PDF is displayed in
gray.

χ2(497) = 1.76, p = 0.999), and for ACC+LKA driving (on-
path glance distribution: χ2(497) = 0.68, p = 0.999; off-path
glance distribution: χ2(497) = 0.99, p = 0.999).

3) Visual response to driving context: Fig. 7 presents a series
of boxplots showing the distribution of the median PRC with
respect to the variables Automation level, Car-following, and
Illumination. The upper and lower limits of the notch on the box
plots approximate the 95% confidence interval for the median
[35], [36]. The notch was computed as M ± 1.57 · IQR

√
n ,

where M is the median, IQR is the inter-quantile range (i.e.
the range between the 25th quantile [Q1] and the 75th quantile
[Q3]), and n is the size of the sample [35]. The whiskers
extend from Q1–1.5 IQR to Q3 + 1.5 IQR.

Fig. 7a shows the comparison of samples grouped with
respect to the levels of Automation level (Manual and
ACC+LKA). The comparison indicates that the median PRC
when driving with ACC+LKA is significantly lower than in
manual driving (W = 1.11 · 107, p < 0.001, r = 0.09). Fig.
7b shows the dataset grouped with respect to Automation
level and Car-following. In general, the trend is towards a
significant increase in median PRC when there is a lead
vehicle compared to when there is not, in both manual
(W = 7.28·105, p < 0.001, r = 0.34) and ACC+LKA driving
(W = 1.07·107, p < 0.001, r = 0.10). The increase of median
PRC seems to be stronger in manual driving than in ACC+LKA
driving, and a 2-way ANOVA (followed by the post-hoc test)
confirmed this significant interaction between Automation level
and Car-following (F (10653; 1) = 99.5, p < 0.001). Fig. 8a
shows that the median THW was longer in manual driving than
in ACC+LKA driving (W = 1.65 · 106, p < 0.001, r = 0.19).
The boxplots also suggest that THW variation was larger in
manual driving than in ACC+LKA driving. In both conditions,

the THW was longer than the safety-critical value of 0.5 s
[37].

Fig. 7c shows the dataset split with respect to Automation
level, Car-following, and Illumination. In general, the trend is
towards an increase of the median PRC at night, compared to
during the day. The median PRC in manual driving without any
vehicle in front at night was significantly higher than in daylight
(W = 2.26 · 105, p < 0.001, r = 0.9). However, during
car-following, the effect of Illumination was not significant
(W = 1.38 · 105, p = 0.11, r = 0.06). In ACC+LKA driving,
the effect of Illumination was significant whether there was
a vehicle in front (W = 8.26 · 105, p < 0.001, r = 0.36) or
not (W = 1 · 107, p < 0.001, r = 0.45). A 3-way ANOVA
(followed by the post-hoc test) confirmed the interaction
between Car-following and Illumination (F (10649; 1) =
3.92, p < 0.05). Fig. 8b shows that drivers kept a sig-
nificantly longer THW to the lead vehicle when driving
at night compared to driving in daytime, for both manual
(W = 7.80·104, p < 0.001, r = 0.16) and ACC+LKA driving
(W = 8.28 · 105, p < 0.001, r = 0.12).

IV. DISCUSSION

A. Analysis and modelling of glance behavior

The key strength of the present study is the large amount
of eye-tracking data collected in naturalistic settings. The
data used in this study were consistent with the naturalistic
datasets 100car [33] and SHRP2 [2] (created from manual
video reduction, see fig. Fig. 2). The eye-tracking signal was
shown to be reliable and robust in real-world driving, and the
quality of the data were improved with a sophisticated filtering
procedure. This accomplishment has major implications for the
real-time assessment of glance behavior in naturalistic settings.
The amount of data at our disposal allowed us to set strict
inclusion criteria for the analysis and focus on normative visual
behavior, excluding safety-critical events. Thus in this paper
we were able to overcome a common limitation of naturalistic
studies—the lack of control over driving scenarios.

In the literature, the statistical description of glance data
usually consists only of mean and standard deviation [14], [38].
However, the mean does not accurately describe the population
if the distribution is skewed (as is the case with glance data),
which can lead to misinterpretation. In this study, median and
other quantiles were considered better choices for describing
glance distributions. We sought to establish a method to give
a deeper understanding of the data, and facilitate comparisons
with other datasets. This paper makes use of extensive graphical
representations, to provide a better perspective on the empirical
data. Furthermore, this paper displays trends, patterns, and
uncertainties in the dataset, instead of limiting the analysis to
inferential tests comparing groups. Weighting procedures to
deal with an unbalanced dataset were also applied.

To our knowledge, this is the first comprehensive study
that also provides an analytical model (via parameter fitting
of PDFs) of visual behavior in normal real-world driving,
including on- and off-path glances. off-path glance data have
been shown to follow a lognormal distribution [38], but the
parameters have not been published; ours is the first reference
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Figure 7. Boxplots of the percent road center (PRC) distribution, grouped according to the values of the categorical variables Automation level, Car-following
and Illumination. In panel (a) the data were grouped solely with respect to the values of Automation level. In panel (b) the categorical variable Car-following was
included. In panel (c) the categorical variable Illumination was also incorporated. The thick median line in the boxplot indicates that the pairwise comparison
of the medians is significantly different. The value of the grand median is indicated next to the boxplot. Outliers are shown as dots.

Figure 8. Boxplots of the median time headway (THW) for each driving
segment in car-following. The thick median line (value at right) in the boxplot
indicates that the pairwise grand medians are significantly different. Outliers
are shown as dots.

model for on-path glance behavior to date. The use of analytic
formulas to describe the generative distribution of visual
behavior has several benefits. First, each glance distribution
can be described by a minimum set of parameters (in this case
two). Second, the model can compute any descriptive statistics
of choice, which simplifies the comparison between studies.
Third, the model could be used in counterfactual simulations
(e.g., see [34]) and in the development of real-time monitoring
systems. Because of the weak correlation between on-path

glances and subsequent off-path glances, random samples from
the marginal distributions (on-path and off-path) may be used
to mimic drivers’ visual behavior in normal driving.

To our knowledge, this is also the first study that documents
the effects of ACC and LKA on glance behavior. Although
there were no striking differences in the aggregate glance
duration distributions, the effect of vehicle automation was
evident in the analysis of PRC (more details in the following
section), particularly in response to driving context.

Up to now, few studies have investigated on-path glance
behavior in a systematic way. Therefore, there is much more
qualitative and quantitative information about off-path glances.
However, a recent study highlighted the relevance of on-path
glance behavior for evaluating safety and crash risk [16]. on-
path glance behavior is important because this is when the
uptake of information about the driving environment occurs,
which is then used to control the vehicle [29], [30]. The
study [16] found that drivers who ended up in a safety-
critical situation had shown reduced glance duration to on-path
locations and an increase in glance frequency between on- and
off-path locations in the approach to the precipitating event.
Although the present study excluded safety-critical events,
the findings suggest that on-path glances may actually be
more sensitive to the driving context than off-path glances.
For example, the comparison between manual and ACC+LKA
driving indicates that the major difference in glance distribution
was in the on-path glances rather than in the off-path ones;
ACC+LKA driving was characterized by longer glances on
path, and fewer on-path glances less than 1 s (PGDon≤1).
Notably, no striking difference was found in the off-path glance
distributions. As mentioned in the introduction, off-path glances
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exceeding 2 s (PGDoff≥2) have been associated with increased
crash risk. Interestingly, the results from this study show an
average percentage of 4% of naturally occurring long glances
in normal driving. The safety implication of this finding is not
clear; the interaction between glance length and timing with
regard to unexpected changes in the driving environment [2]
requires further research.

B. Visual response to driving context

1) The effect of automation: The significant decrease of PRC
(eyes on path) when using ACC+LKA compared to manual
driving (Fig. 7a) is consistent with previous studies on the
real-world effect of ACC [37], [39], [40]. The lower PRC
is interpreted as a symptom of a reduction in driving task
demand when using vehicle automation, because of vehicle
allocation of some of the control tasks—longitudinal and lateral
control. Note that Morando, Victor and Dozza’s 2016 work
[39] showed that this PRC reduction effect occurs in steady-
state driving with ACC, and that glances do return on-path in
response to vehicle deceleration regulation if the lead vehicle
brakes. A difference in PRC in the off-path glance distribution
between manual and ACC+LKA driving was also expected.
Although the comparison of the glance distributions suggests a
tendency towards longer off-path glances when using vehicle
automation, this result was not significant. Surprisingly, there
were longer on-path glances while driving with ACC+LKA
than in manual driving. We found higher PRC in manual driving
than in ACC+LKA, yet longer on-path glances while driving
with ACC+LKA. That is, more time was spent with eyes on
path in manual driving, but while driving with ACC+LKA
the on-path glances are longer. This result could be attributed
to the fact that PRC embeds glance duration and frequency,
whereas the glance distributions do not take into account the
aggregate effect. This observation confirms the claim that there
is not a single metric able to describe the attentiveness of the
driver [4]. In fact, frequent short glances and infrequent long
glances may yield the same PRC value [12].

The decrease of attention to the forward path when using
automation may be considered potentially unsafe. However, it
is important to distinguish between eyes off-threat and eyes
off-path; for example, drivers look back at the road in response
to vehicle deceleration from ACC (see [39]). The detrimental
effects of taking the eyes off path are somewhat dependent on
whether there is a lead vehicle, which poses a potential threat.
The next section substantiates this claim.

2) The effect of car-following: Because a lead vehicle is a
potential threat, drivers need to attend to the vehicle in front
and assess whether the safety margin—which may be based on
the drivers’ expectation that the lead vehicle will not suddenly
brake—is enough to control the crash risk. Previous studies
have shown that, in manual driving, drivers change their visual
scanning pattern in car-following. The lead vehicle becomes the
focus of attention, and the spatial distribution of eye fixations
is narrower [38], [41], [42].

The results from this study are consistent with this previous
research. Normal (baseline) driving PRC values seem to range
between about 0.70 and 0.89 in the literature, depending on

context [12], [42]. In a 2004 paper by Tijerina, Barickman,
and Mazzae [41], the mean PRC was 0.86 in car-following. Al-
though they gave no values for other scenarios, they mentioned
a lower PRC in open road driving. Note also that their on-path
study was carried out during the day; the same trend was found
in our study (Fig. 7b). The value of PRC, however, was higher
(in daylight, the median PRC was 0.96 and the mean was
0.91—computed here for sake of comparison). This difference
in PRC between studies could be attributed to different car-
following scenarios. In their study the median THW was 1.71
s and the median THW in daylight was lower, 1.36 s. A lower
THW probably requires a higher level of attention, which
could explain the higher PRC in our study. In [42] the median
PRC was 0.89 with lead vehicle vs. 0.87 without lead vehicle
(which was found to be a non-significant difference). Most
of the trips described in 2014 by Tivesten and Dozza [42]
took place in clear weather, without taking illumination into
account. As before, the difference in PRC between studies
is probably related to different car-following scenarios and
road curvatures, among other contextual factors. Unfortunately,
the THW was not reported in their paper. However, as the
car-following segments were identified when the car ahead was
within 150 m—greater than the criterion used in this study (50
m)—it can be assumed that the average THW in their paper
was longer than the one in the present study.

The effects of the lead vehicle on glance behavior in manual
and ACC+LKA driving are similar, but not identical. In manual
driving, the increase in attention in response to a vehicle
ahead was greater. A possible explanation is that when driving
manually, to keep a safe headway to the lead vehicle, the driver
predominantly uses visual cues, such as looming—the optical
expansion of the lead vehicle in the eyes of the driver [39],
[43], [44]. Because looming perception is impaired at the eye
periphery [45], [46], an increase in glances to the forward path
is expected.

During manual driving, the driver is fully responsible for
adjusting the speed to keep a safe headway to the vehicle
in front. These adjustments are automated when the ACC is
activated. The driver, however, is still required to supervise the
system and take control if needed. Although the results show
a general decrease of PRC when using ACC+LKA, the results
also indicate an increase in visual attention to the forward
path when following a lead vehicle. These results suggest that
drivers were responsive to the change in driving demand due
to the increase of crash risk exposure. Despite the automation
of longitudinal control, drivers may proactively increase their
attention in order to be able to respond promptly in case of
sudden changes in the traffic environment (e.g., harsh braking
of the lead vehicle or sensor failures). These findings agree with
results from our previous studies of safety-critical events with
the use of ACC [39], [40]: drivers proactively increase their
attention to the forward path in anticipation of a lead-vehicle
conflict.

The median THW when using ACC+LKA was lower than
in manual driving, which is not consistent with the findings
from on-path studies on the use of ACC (see, for example,
[37]). The study by Malta et al. [37] showed that the average
THW increased with ACC compared to manual driving; for
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example, in motorways the average THW in manual driving
was 3.51 s, compared to 4.08 s when using ACC. These values
are considerably higher than the median THW of 1.38 s in
manual driving and 1.12 s in ACC+LKA driving found in
this study; the discrepancy could be explained by the different
driving-segment inclusion criteria. The inclusion criteria in their
study were vehicle speed above 50 km/h and THW > 0 [37].
These criteria are looser than the ones used in this study (see
section II-B). Their study [37] also showed that ACC reduced
the occurrence of critical time gaps (defined as THW < 0.5 s).
Although in this study no median THW was shorter than 0.5
s, Fig. 8a shows a tendency towards shorter THW in manual
driving than in ACC+LKA (note that 1 s corresponds to the
minimum time-gap setting available to the driver). Although
this shorter THW could be considered unsafe, it needs to be
interpreted taking into account the perception-reaction time
of the human compared to an automated system. The average
perception-response time for an attentive driver is about 1.5 s
[47], but the time varies greatly for different driving situations,
with driver expectation being the most important variable [47],
[48]. The response time of the ACC is arguably faster in
certain situations. Moreover, on-path studies have found that
in manual driving, drivers tend to maintain a headway that is
not sufficient to avoid a collision (less than 1 s) if the lead
vehicle brakes suddenly [49]. Surprisingly, it was found that
drivers were not aware that the headway was unsafe, because
they greatly underestimate the THW (by an average of 1.6
s) [49]. Commonly, in manual driving, a THW of about 2 s
is recommended; in particular, a Swedish regulation sets the
minimum safe THW at 1 s [50]. ACC has the potential to
compensate for these perceptual limitations.

3) The effect of illumination: The results from this study
indicate a general increase of PRC toward the forward path at
night compared to daytime, in both manual and ACC+LKA
driving. The interpretation is that, at night, the preview distance
of the road ahead is shorter, and the detection and response
to obstacles on the road is degraded [38]. In addition, there
is less to fixate on in darkness. Therefore, eye fixations tend
to be more concentrated on the forward path, near the area
illuminated by the headlamps [38], [51], [52]. Moreover,
the lead vehicle—in particular the taillights—may provide
additional guidance support for lane keeping. Fig. 8b shows
that there is also a general increase in THW at night compared
to daytime in manual and ACC+LKA driving.

Unfortunately, a literature search revealed little quantitative
information regarding the associations between PRC, car-
following, and illumination. In manual driving, specifically
when following a lead vehicle, the effect of illumination
on visual behavior was less noticeable. This result may be
explained by the fact that the presence of the lead vehicle
already caused the median PRC to be 0.96 in daylight; therefore,
a further increase would be hard to detect. This result seems
to be in agreement with what was found in the 1989 paper by
Olson, Battle, and Aoki [51]. They found that the mean percent
time that the drivers’ eyes are directed toward the center road
(comparable with PRC) at night appears to be unaffected by
the presence of a lead vehicle (around 80% in both conditions).

In ACC+LKA, the effect of illumination was more notice-

able; the effect was similar whether or not there was a lead
vehicle. These results suggest that the shorter preview of the
road ahead due to darkness generally increases the need for
higher alertness—whether or not a lead vehicle is present.

C. Limitations

Naturalistic studies have a limitation intrinsic to their design:
lack of control over participants and driving scenarios. This
limitation was addressed by weighting the glance distribution
with respect to the driver and defining clear inclusion criteria for
the driving segments. However, the heterogeneity of the drivers
sampled made a between-subject analysis unfeasible. Another
limitation in our study is that the eye-tracker did not provide
detailed information about the off-path areas of interest that
the eyes were directed to, or the glance eccentricity (i.e., the
radial angle between the forward path and the glance location).
For example, some off-path glances (e.g. those to the right or
left mirrors) may be critical for safety, but off-path glances
further away from the forward pathway may be dangerous.
This study did not distinguish between these different off-path
glances.

D. Future directions

In our future research, we intend to:
• Identify and quantify naturally occurring distraction events

by identifying time-sharing sequences [20], [53]. Visual
time-sharing sequences can overcome semantic task types
(e.g., as in [1]) by focusing on the visual behavior
associated with a distracting task;

• Investigate “check” glances, off-path glances that are
normally about 0.3 s long. They are usually filtered out
because they cannot be easily separated from blinks. Check
glances, however, are interesting because they are part of
the vision-for-action cognitive mechanism, and presumably
are used at the initiation of each new action [11] (e.g.,
to guide the hand movement before interacting with the
infotainment system).

V. CONCLUSIONS

Real-time inattention countermeasures can enhance driving
safety by providing feedback to the driver and adapting the
functionalities of ADASs to the driver state. Unfortunately,
previous attempts to develop real-time driver monitoring
algorithms have been hindered by limitations in eye-tracking
technology, particularly data quality issues. In this paper, we
presented a reference model for driver attention based on data
collected as part of a naturalistic FOT with vehicles equipped
with a prototype eye tracker that is well suited to real-world
applications.

There are four major outcomes from our research. (1) We
derived a novel post-processing technique to enhance the quality
of eye tracker data collected in real world environment and (2)
we proposed a new data analysis procedure that captures the
important features of glance behavior. Further, (3) we proposed
the first reference model of visual behavior, which was lacking
in the literature. This model and its metrics capture key defining
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characteristics and differences in the distribution of on- and
off-path glance distributions while driving manually compared
to driving with ACC+LKA, showing that (4) drivers’ visual
response is tightly coupled to the driving context (use of vehicle
automation, car-following, and illumination).

This research has several practical applications. The analysis
of visual behavior presented in this paper—in particular, the
analytical model—can be valuable for developing driver models
that can be used in computer simulations (e.g., counterfactual
analyses) for designing and evaluating the safety benefit of
ADASs. Further, the results can support the definition of
guidelines for in-vehicle electronic devices and improve the
rulemaking process. Finally, the findings could inform the
design of driver-state monitoring systems based on eye tracking.
These systems are becoming increasingly important due to
the increased focus on vehicle automation and the need for
automated vehicles to cooperate with the human driver.
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and D. Sandberg, “Semifot task report - visual behavior analysis,” Report,
2009.

[21] D. W. Hansen and Q. Ji, “In the eye of the beholder: A survey of models
for eyes and gaze,” ITPAM, vol. 32, no. 3, pp. 478–500, 2010.

[22] E. Ohn-Bar and M. M. Trivedi, “Looking at humans in the age of self-
driving and highly automated vehicles,” IEEE Transactions on Intelligent
Vehicles, vol. 1, no. 1, pp. 90–104, 2016.

[23] J. Karlsson, C. Apoy, H. Lind, S. Dombrovskis, M. Axestål, and
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