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Abstract 

 
In the effort to fight climate change, the electricity systems around the world are undergoing a 

transformation towards being based on renewable sources of energy.  The criterion of one 

hundred per cent renewables can, however, be satisfied in several radically different ways, 

varying from global or continental super grids via local smart-grids to self-sufficient off-grid 

communities and households of electricity prosumers. At this point, the eventual system design 

is not a given. 

  

The purpose of this research is to follow the emergence of new system configurations that 

satisfy the criterion of hundred per cent renewables globally, to identify possible development 

pathways, and to study the critical factors that influence the different directions of 

development.  This thesis takes a step towards fulfilling this objective by answering the 

question of what determines the direction of the electricity system transition. While Article 1 

presents findings about these directions and comprehensively describes them, Article 2 answers 

questions related to the causal relationships and buildup processes that influence the transition 

to take a specific direction. It takes the Multilevel Perspective (MLP) and Technological 

Innovation System (TIS) frameworks, as a theoretical starting point and places technological 

change, especially the emergence and diffusion of novel technologies, at the core of the 

analysis.  

The research presented in this thesis contributes to the literature by clearly defining three 

alternative electricity futures, i.e., the Super-grid, Smart-grid, and Off-grid systems, that can be 

monitored in the form of structural components currently emerging and accumulating. Our 

findings show that all three alternatives have gained notable momentum over the last 15 years 

and provide evidence that a transition is underway. However, the emerging systems are not 

exclusive to the electricity sector, but instead, create links with and borrow components from 

other sectors, discourses, and societal trends. In addition, the results contribute to a better 

understanding of the causalities that may lead to a future of complete interconnectedness, i.e. 

the Smart-grid system by analysing important factors and processes determining the successful 

innovation processes leading to a development in this direction.  

This thesis makes conceptual contributions by combining a number of socio-technical concepts 

and methodologies to clearly define a number of future configurations and their key structural 

components. Moreover, for the analysis of the Smart-grid scenario, this thesis proposes a 

variation of the conventional TIS framework, by integrating a categorization of the innovation 

system context and the role of entrepreneurial activities to better analyse developments at the 

micro-level.  

 
Keywords: electricity system, socio-technical transition, technological innovation system, 

future configurations, transition pathways, innovation system context, entrepreneurial activities 
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1 Introduction 

The conventional electricity system built around central utilities is facing problems of aging 

grid infrastructure and plants, fossil fuel dependency, and environmental impact. These issues 

put pressure on the existing electricity system, which is consequently undergoing a 

transformation towards being based on renewable sources of energy.  

 

As of 2018, one thousand gigawatts (GW) of wind and solar electricity generation capacity has 

been installed around the world. While it took several decades to get to this point, some 

predictions say that reaching another thousand GW will take only five years and will be about 

50 per cent cheaper. Alongside falling prices for renewable electricity generation, more 

efficient power lines, grid balancing technologies such as batteries and smart meters, as well as 

digital grid solutions are becoming cheaper and more advanced (New Energy Outlook 2018).  

 

 
 

While a strong consensus exists about the need to accelerate the transition towards an electricity 

system based on renewables, it is less clear what such a system will look like. In fact, given the 

modular character of renewable technologies, there are several radically different ways to build 

an electricity system that could satisfy the criterion of one hundred per cent renewables. Will 

we move towards a global Super-grid, distributed networks of Smart-grids or Off-grid 

communities? At this point, the eventual system design is not a given. 

 

It is the uncertainty of this transition that motivates this research. Based on our understanding 

of the electricity system as a socio-technical system in transition, we set out to explore what the 

future system might look like. 
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1.1 Research domain 

Electricity infrastructures as we know them today developed over a long time period into large 

socio-technical systems (Hughes 1987, Loorbach, Frantzeskaki et al. 2010, Markard 2011). 

Such large socio-technical systems consist not only of physical artefacts but also of social, 

economic, institutional, and organizational structures (Hughes 1987, Geels 2002, Loorbach, 

Frantzeskaki et al. 2010, Verbong and Geels 2010). Still, existing research into the future of the 

renewable electricity system predominantly focuses on the technical and economic aspects of 

the transition. While these perspectives are important, they often downplay the role of the 

closely interlinked socio-cultural, organizational, and institutional factors that often pose 

barriers to the transformation of the electricity grid and market structures. It is therefore useful 

to bring a social science perspective to studies of the ongoing transformation of electricity 

systems through the lens of socio-technical system-oriented concepts and frameworks, to create 

a more holistic understanding of the complex nature of technological innovation and change 

(Hughes 1987, Carlsson and Stankiewicz 1991, Geels 2004, Bergek, Jacobsson et al. 2008a). 

While there are multiple perspectives that can be identified as socio-technical, we apply the 

Multilevel Perspective (MLP) and Technological Innovation System (TIS) frameworks, which 

were formulated to analyse the dynamics of technological innovations related to large-scale 

systemic change. These perspectives are accordingly used as a theoretical point of departure for 

this research.  

 

1.2 Empirical focus 

Empirically, this thesis examines alternative future electricity system configurations that 

represent possible ways to build an electricity system powered by renewable energy 

technologies. While there are multiple ways to define the possible configurations, this research 

investigates three popular visions: the Super-grid, Smart-grid, and Off-grid systems, which 

point in very different directions (further described in Chapter 5). Although a renewable 

electricity system may eventually be a mainstream global system, the developments leading to 

this end are still in their early stages, emerging in the form of projects and experiments in 

different parts of the world, slowly gaining momentum, being scaled up, and working their way 

towards a complete system based on renewables. Consequently, the alternative configurations 

can at present be empirically analysed only as sets of local, national, or regional projects 

creating system prototypes intended to manifest certain versions of the future global system. 

This thesis is concerned with the empirical cases of the technologies, actors, and institutions 

that have emerged, accumulated, and co-developed, materializing in experiments and 

supporting the transition in specific directions given by three scenarios.  
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1.3 Research aim  

The general purpose of the research is to explore different pathways the electricity system 

transition can take. As a step towards achieving the general purpose of this thesis, we aim to 

better understand what determines the direction of the electricity system transition. This aim is 

fulfilled by answering two research questions and related sub-questions: 

 

1. In which direction(s) is the electricity system currently developing? 

a. What directions could this development take? 

b. How can development in a certain direction be monitored? 

c. What does such monitoring reveal? 

2. What factors and processes support or block electricity system development in a certain 

direction?  

 

Given the aim of this thesis, we intend to make an empirical contribution by better 

understanding various aspects of the transition towards a future renewable electricity system. 

We also aim to make a conceptual contribution by borrowing concepts from, developing and 

critically assessing the MLP and TIS frameworks, as well combining them with scenario 

methodologies. 

 

Our research is presented in two appended articles. Article 1 is about scenarios that identify 

different directions the studied transition can take. It answers the first research question by 

identifying three idealized alternative system configurations, i.e., the Super-grid, Smart-grid 

and Off-grid systems, which then guide the monitoring of key structures, by describing the 

structures that support the transition towards different future systems. Furthermore, it reveals 

the structural overlaps between the existing dominant system structures and the new alternative 

systems. Article 2 then builds on the descriptions of the future scenarios and studies the 

processes and factors that determine the success of the transition towards one of the alternative 

configurations, the Smart-grid system, empirically represented by P2P electricity trading 

experiments.  

2 Theoretical starting points 

The foundations of this thesis are in the socio-technical understanding of innovation and 

societal change, which sees society and technology as co-evolving and shaping each other via 

a process characterized by uncertainty and complexity, in contrast to perspectives that 

understand technology as simply the material result of the human mind or deterministic views 

that see technology as controlling humans (Feenberg 1991). Following Feenberg (1991: 14), 

we see technology as an “ambivalent process of development suspended between different 

possibilities”. The “ambivalence” of technology opens a space for multiple future 

configurations, while technological development is not neutral, but a space for contestation.  

 

Socio-technical perspectives place technological change, especially the emergence and 

diffusion of novel technologies, at the core of the analysis. These perspectives build on 

evolutionary economics, innovation studies, history of technology, sociology, and society, and 
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technology studies, which together propose a view of technological change as a social 

phenomenon, i.e., a process in which social and technological aspects are interrelated and co-

evolving (Geels 2004, Cherp, Vinichenko et al. 2018). Within the larger socio-technical 

domain, we operate within the smaller field of socio-technical transition and innovation studies, 

in which, over the past two decades, two major approaches have been developed and applied to 

study large-scale system transitions and their underlying innovation processes: the Multilevel 

Perspective (MLP) and Technological Innovation System (TIS) frameworks. 

 

These frameworks are suitable considering the empirical object of this research: ongoing 

transition in electricity systems around the world. In the first part of the research, these 

perspectives are complemented by scenario methodology, used as a tool to explore different 

directions the transition in the electricity sector could take. While “the transition” is referred to 

in the singular, we do not assume that the future will give rise to a single dominant model or to 

different systems developing in parallel; instead, we are aware that hybridization is equally 

possible. The following chapter serves as an introduction to the above-mentioned approaches 

used in answering our research questions and conducting the chosen type of analysis. While 

this chapter reviews and synthesizes the state of the art and points to limitations, the concrete 

application and conceptual contributions are captured in Chapter 5.  

 

2.1 A systems approach to understanding the transition and innovation processes 

The components of large, mature socio-technical systems are numerous and mutually aligned, 

creating inertia and lock-in (Unruh 2000). While the process typically takes several decades, 

history shows that even such locked-in systems can and will be replaced, a phenomenon termed 

“socio-technical transition” (Rip and Kemp 1998, Geels 2002). Such transitions can be 

triggered by new discoveries that offer new opportunities, by efforts to address major problems 

with the old system, or, more likely, by both processes in combination (Rip and Kemp 1998, 

Geels 2002, Sandén and Jonasson 2005, Geels and Schot 2007). 

 

The MLP and TIS frameworks that we build on here initially developed independently but they 

share theoretical origins and analyse similar phenomena, and there has been an ongoing effort 

to combine their strengths in order to better understand socio-technical system transitions 

(Markard and Truffer 2008). This research, borrows various elements and concepts from both 

these frameworks.  

 

MLP was formulated to study how technological innovation induces complex large-scale 

structural change (Geels 2002, Geels 2004, Geels 2005, Geels 2011). This perspective describes 

transitions as non-linear processes that unfold through interaction among three analytical 

“levels”. The mature socio-technical system exists at the regime level, where a well-established 

set of institutions is shared by a large number of actors utilizing mature technologies to deliver 

certain goods or services. Second is the niche level, where new configurations emerge, grow, 

and gain momentum, and third is the landscape level, where broad societal trends unfold beyond 

the reach of actors at the regime and niche levels. From the landscape level, exogenous forces 
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can put pressure on the existing regime, opening windows of opportunity for novel technologies 

to break through and initiate a transition (Geels 2004, Geels 2011).  

 

Instead of studying the possible future system’s end-states, MLP was developed to analyse the 

non-linear, evolutionary processes of transition from one socio-technical system to another 

conceptualized as transition pathways (Geels and Schot 2007). As defined by Turnheim et al. 

(2015), transition pathways are patterns of change unfolding over time in socio-technical 

systems that lead to new ways of realizing specific societal functions. Based on historical 

studies undertaken with the guidance of the MLP perspective, authors have argued that 

transitions entail reconfigurations at the three levels, changing the dominant set of technologies, 

market models, supply chains, as well as consumer preferences and behaviour, and occur only 

when developments at all three levels become aligned and mutually reinforcing (Verbong and 

Geels 2010). Geels and Schot (2007) developed a typology of transition pathways1 based on 

how they differ in terms of the origins of the innovation processes and the nature of the multi-

level interactions that lead to different transition dynamics and outcomes (Geels and Schot 

2007). The motivation to study transition pathways comes from efforts to capture and 

understand ongoing transition processes and seize opportunities to intervene (Turnheim, 

Berkhout et al. 2015). 

 

In an effort to better understand how to influence transition processes and open up space for 

alternative systems to influence system transitions, MLP scholars have identified two strategies 

(Raven 2007): niche accumulation and hybridization. Niche accumulation starts as radical 

innovation (e.g., new markets, technologies, actors, and institutions) at the niche level and from 

there strives for improvement, builds internal momentum, and prevents early rejection by 

keeping experimentation at the niche level until the system is strong enough to compete with 

the existing regime. Hybridization starts near the dominant regime but ultimately aims to 

achieve radical transformation by diverging from existing trajectories towards more desired 

ones. However, as Raven (2007) pointed out, the two strategies should be understood as 

extremes, and transitions often include a combination of both.  

 

While MPL serves as a useful tool for studying large-scale systemic transitions resulting from 

interaction between the three levels, it does not pay particular attention to the dynamics that 

support new socio-technical systems in niches, helping them grow and mature into new 

dominant socio-technical regimes. More attention has been paid to these dynamics in the 

Innovation Systems (IS) literature, which applies a systems perspective to innovation and 

conceptualizes the development of system structure as a process of the reconfiguration and co-

emergence of system components (Carlsson and Stankiewicz 1991). Within the field of IS, 

various models have been developed having different analytical foci and boundary settings: the 

national innovation system (NIS) and regional innovation system (RIS) perspectives define 

spatial boundaries (Lundvall 1988, Cooke, Uranga et al. 1997), while the sectoral innovation 

system perspective pertains to the sector of a particular product or product group (Malerba 

                                                 
1 This typology is based on previous work on transitions and regime change by (Smith, Stirling et al. 2005). 
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2002). The TIS framework then developed as a response to existing IS perspectives, focusing 

more on the technology-specific processes and less on the geographical or sectoral boundaries 

to give more technology specific policy advice (Carlsson and Stankiewicz 1991, Bergek, 

Jacobsson et al. 2008a, Van den Bergh, Truffer et al. 2011, Binz and Truffer 2017). In TIS, a 

transition process is conceptualized as resulting from innovation buildup processes that 

gradually grow and replace the established socio-technical system (or parts of it). This approach 

is intended to better assess the prospects and development of a particular technology or 

configuration of technologies assumed to be a more sustainable alternative to existing 

technological solutions (Markard and Truffer 2008).  

 

A TIS study combines analyses of key structural components and of the innovation processes, 

i.e., functions (Bergek, Jacobsson et al. 2008a). While several ways to define the structural 

components exist, these all generally distinguish between technology, actors, networks, and 

institutions (Bergek, Jacobsson et al. 2008a, Sandén and Hillman 2011, Wieczorek and Hekkert 

2012). Technology here refers to physical artefacts that make use of natural phenomena to 

produce a service (Arthur 2009), and to descriptions of the same process, commonly referred 

to as technical knowledge (Bergek, Jacobsson et al. 2008, Sandén and Hillman 2011). Actors 

and networks refers to an organizational dimension populated by people (Sandén and Hillman 

2011), where actors refers to individuals or groups of individuals hierarchically linked in 

organizations, and networks to more loosely linked groups of actors. Organizations include not 

only firms but also knowledge institutions, industry associations, and governmental or non-

governmental organizations. Institutions refers to rules that regulate interaction, mainly 

between actors, but sometimes also between artefacts (Bergek, Jacobsson et al. 2008a, Bergek, 

Jacobsson et al. 2008b). The category includes cognitive, normative, and regulative institutions 

(Scott 2001), i.e., commonly held positive and normative ideas about what is true, reasonable, 

good, and allowed, including beliefs and expectations about how the world works and develops, 

norms and attitudes concerning what is desirable, and hard regulations controlled by the 

juridical systems.  

While traditional IS studies concentrate on the structure of the innovation system, in an effort 

to generate more insight into the dynamics of innovation, the TIS perspective complements this 

approach with a set of functions believed essential for a well-performing innovation system. 

Mapping these underlying processes (i.e., functions) serves to identify system weaknesses and 

give technology-specific advice to policy makers and other system actors. There is no single 

list of functions but rather various interpretations of a set of supporting innovation processes 

(Hekkert, Suurs et al. 2007, Bergek, Jacobsson et al. 2008a, Hekkert and Negro 2009, Perez 

Vico 2014). In this thesis, we start by using existing lists as analytical heuristics in constructing 

a list that fits our research purpose. The list of functions used in this thesis is presented in Table 

1. 
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Table 1 TIS functions (Bergek, Jacobsson et al. 2008a, Hekkert and Negro 2009, Hekkert, Negro et al. 2011, Perez 

Vico 2014). 

FUNCTION DESCRIPTION 

Entrepreneurial experimentation This function captures the process of experimenting and implementing new 

technologies and business models to learn and improve and thus reduce 

uncertainty. 

 

Knowledge development and 

diffusion 

 

Process of creating new knowledge in the innovation system buildup through 

‘learning by searching’ and ‘learning by doing’. However, in a successful 

innovation process, knowledge further develops via diffusion and exchange 

across actor groups through processes of ‘learning by interacting’, at 

technology-specific conferences or workshops, or in case of user—producer 

networks, through ‘learning by using’. 

 

Network formation    

(Social capital development2)  

 

 

This function captures the process of building networks and coalitions, in 

which social relations are created and maintained. Social relations in these 

networks are built and maintained through trust, mutual recognition, 

dependence, authority and shared norms.  

 

Legitimation  

 

Process of creating formal and informal institutions to overcome resistance 

to change. An innovation is accepted and perceived as a relevant and 

appropriate new technology, application or business model or as a solution 

to an existing technological bottleneck or business crisis.  

Guidance of search  This function accounts for the process of attracting and motivating new 

actors to enter the innovation system, providing a favourable selection 

environment for the focal novel configuration buildup, influencing market 

formation etc.  

Market formation 

 

At the stage of experimentation and early buildup, this function captures 

formation of demand that often takes place by creating niche markets with a 

competitive advantage for specific applications of the focal technology. 

 

Resource mobilisation 

 

Function that represents the process of accessing necessary resources, in the 

form of physical, financial and human resources. 

 

 

 

                                                 
2 This function has been added by Perez Vico (2014) as social capital development. We chose to name the function 

as ‘network formation’, which we find more appropriate as the focus is on the creation of a network of relationships 

instead of social capital as an asset. 
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Socio-technical perspectives on innovation are appreciated by a wide range of scholars from 

different fields and have mostly been used for historical studies, with a few examples of future-

oriented studies. In fact, these frameworks are not well suited for prospective work, as socio-

technical transitions are inherently complex and uncertain and cannot be addressed by a set of 

well-defined solutions (Andersson and Törnberg 2016). We contribute to the literature by 

combining these frameworks with scenario methodology to complemented them with other 

approaches developed specifically for prospective studies. 

 

2.2 Scenario-making to explore the future of the electricity system 

To say something about what determines the direction of the transition, one first needs to define 

what the different directions and possible future end-states can be. It is therefore useful to 

engage with the field of scenario-making. 

 

While the scenario-making field is extensive, there is little agreement on the exact definition 

and typology of scenarios. This research adopts the typology of scenarios suggested by 

(Börjeson, Höjer et al. 2006), who define scenarios as descriptions of probable, possible, and 

preferable futures, corresponding to the predictive, explorative, and normative types of 

scenario-making.  

 

This research takes a step towards predictive scenario-making, typical in forecasting, as we 

define a set of scenarios likely to happen based on the present situation and trends. However, 

forecasting that focuses on short-term, linear, step-wise causality is not suitable for studying 

the electricity system transition, which is inherently complex and uncertain and requires long-

term thinking. The scenario-making method used here is closer to backcasting, a normative 

type of scenario method that uses as its starting point a desired future end-state, which is often 

deemed unreachable under the current status quo and serves as a tool for encouraging searches 

for solutions with no restrictions on what factors are internal and what are external (Robertson 

2016). However, this research does not have such a normative starting-point and instead 

explores scenarios based not on what is likely, as in forecasting, or on what is desirable, as in 

backcasting, but on what is theoretically possible. This means that our interest is not in a specific 

target and how it can be reached, but instead in what various targets might be. Here the 

explorative scenario-making is productive in identifying a number of clearly defined alternative 

futures as starting points (Börjeson, Höjer et al. 2006).  

 

The importance of scenario methods has also been acknowledged by scholars from the field of 

socio-technical transition studies, who claim that scenarios are a useful method that advances 

the exploration of large-scale systemic change, such as in the electricity system. However, as 

(Hofman, Elzen et al. 2004) pointed out, the prevailing scenario methods lack clear conceptual 

framing that would guide our understanding of how transition occurs. To better reflect the 

complexity of system innovations, they developed a new tool: socio-technical scenarios. Socio-

technical scenario-making begins with the empirical analysis of aspects and processes that 

directly influence the focal object of study, and use MLP to conceive and write narratives about 
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alternative scenarios in order to identify more generalisable patterns and mechanisms (Hofman, 

Elzen et al. 2004).  

 

While socio-technical scenarios have previously been used to construct narratives about a 

course of events, patterns, and mechanisms, this research has taken a different approach and 

starts the scenario-making process by identifying future end-point systems that are used to 

organize and sort data on the current development. The method employed in our research is 

further discussed in Section 5.1.  

 

3 The transformation of the electricity system is under way 

In most places around the world, existing electricity grid architectures are built in a centralized, 

hierarchical, and one-directional fashion (Figure 1). Power is generated in large-scale power 

plants located far from the electricity demand points, transmitted over long distances, and then 

distributed to the end-users, i.e., customers (Hammons 2008).  

 

 
Figure 1 The electricity grid of today (source: US Department of Energy 2015). 

 

This dominant structure of the electricity system is now being transformed under growing 

pressure to shift towards electricity systems based on renewable sources of electricity. In fact, 

it is anticipated that the future electricity grid will be restructured to incorporate a wide range 

of renewable energy (RE) sources. Although the push for renewable technologies is 

incentivized by the global effort to reduce reliance on fossil fuels, electricity production from 

renewables is intermittent and weather dependent, causing uncertainties about how to operate 

the grid to maintain stability of supply (Walker and Cass 2007, Hammons 2008, Swedish 

Agency for Growth Policy Analysis 2014, U.S. Department of Energy 2015). While a strong 

consensus exists about the need to restructure the electricity system to accommodate renewable 

electricity technologies and achieve grid stability, much less agreement exists about the actual 

design of such a system. Thanks to rapid innovation in grid-balancing technologies such as 

storage, efficient high-voltage cables, and smart meters, future electricity system structures may 

differ fundamentally from those we know today. Some believe that the future renewable 

electricity system will be dominated by centralized global transmission, some imagine a future 

of local electricity distribution, while others advocate self-sufficiency without the need for 

conventional electricity grid infrastructure (Battaglini, Lilliestam et al. 2009, Khalilpour and 
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Vassallo 2015, Funcke and Bauknecht 2016, Lilliestam and Hanger 2016). Though various 

terms are being used to describe the future electricity system, in the literature these ideas are 

often associated with the concepts of the Super-grid, Smart-grid, and Off-grid systems. 

Research interest in these future alternatives can be observed in the increasing knowledge 

production related to these concepts, especially in the last 15 years (see Figure 2). 

 

Figure 2 Relative growth of research interest in the three emerging systems. Annual number of articles was 

normalized with the number of articles in 2015. (source: Scopus). 

 

The concept of building a large global system based on the transmission of renewable electricity 

around the world is often referred to as the Super-grid (Battaglini, Lilliestam et al. 2009, 

Dauncey 2009, Blarke and Jenkins 2013, Shuta Mano, Bavuudorj Ovgor et al. 2014, FOSG 

2015, MacLeod 2015). The rationale underlying the Super-grid is the fact that RE sources are 

unevenly allocated around the world. While the Sahara Desert has an abundance of solar 

energy, the North Sea has enough wind to generate all of Europe’s electricity. The Super-grid 

would be built around large-scale renewable electricity installations and plants located in areas 

with abundant RE, while the variability of this power supply would be dealt with by optimizing 

transmission and distribution around the globe, without reliance on storage technologies 

(Meeuwsen J.J 2008, Battaglini, Lilliestam et al. 2009, Foxon 2013, Liu 2015). The logic 

underlying the Super-grid is similar to that of the current electricity system and can be described 

as the “greening of centralized production”. Constructing a secure and stable global electricity 

system requires international coordination and the experience of dominant actors in the 

electricity sector, especially incumbent utilities, transmission system operators, and energy 

companies such as ABB and Siemens (Foxon 2013, Liu 2015). In the Super-grid, existing 
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electricity system actors are assumed to maintain their position, while electricity consumers 

remain a passive part of the system (Verbong and Geels 2010).  

 

Another way to design the future electricity system is possible thanks to the modular character 

of renewable electricity technologies, which can be implemented in different physical sizes and 

generation capacities (Walker and Cass 2007). While conventional sources of electricity, such 

as coal power plants, cannot be installed on residential roofs, solar panels can. The great size 

range of RE technologies creates new opportunities for distributed electricity generation, in 

what is often referred to as the Smart-grid system (Battaglini, Lilliestam et al. 2009). A Smart-

grid is based on small-scale RE technologies and the electricity is delivered over shorter 

distances (Foxon 2013). The idea is to build a “bi-directional electric and communication 

network that improves the reliability, security and efficiency of the electricity” (Hertzog 2010). 

In such local and information-centric electricity grid infrastructure, renewables need to be 

complemented with information and communication technologies (ICTs), smart meters, 

sensors and appliances, as well as storage technologies (Blarke and Jenkins 2013). By installing 

small-scale RE technologies, an increasing number of electricity consumers are becoming 

“prosumers” who both produce and consume electricity. This trend is not only changing the 

physical infrastructure but also destabilizing dominant organizational structures and regulatory 

frameworks, as direct customer participation in the system triggers changes in market design 

(Zinaman, Miller et al. 2015). While the incumbent actors currently operating the electricity 

system play an important role in building the Smart-grid, various new actors from other sectors 

as well as non-sectoral actors such as local governments and community groups are increasingly 

getting involved in electricity system development and operation (Foxon 2013). Compared with 

the centralized design, the Smart-grid suggests a flat organizational hierarchy in which 

everyone has the chance to contribute to the new electricity future. Consequently, values and 

expectations not typically related to electricity are created, such as local resilience, community 

ownership, sharing, and consumer empowerment (Verbong and Geels 2010).  

 

While the Super-grid and Smart-grid systems are new ways to restructure the conventional grid 

infrastructure, some suggest that leaving the grid behind is the future of electricity systems 

(Zinaman, Miller et al. 2015). In fact, leaving the conventional grid to live off-grid has recently 

become a feasible option due to rapid declines in the prices of distributed energy technologies, 

in particular storage technologies that make self-sufficiency possible (Khalilpour and Vassallo 

2015). Off-grid systems can range from living in self-sustaining residential units to small 

community microgrids (Zinaman, Miller et al. 2015). The ability to self-generate, store, and 

consume electricity makes the “prosumer” the key actor in this electricity system, making the 

existing organizational structure of the electricity sector irrelevant. Instead, private companies 

that provide solar plus battery packages for prosumers, already active on the market, would 

become important in building new Off-grid systems. Off-grid scenarios are often perceived as 

relevant to developing countries, where most of the people who still live without access to 

modern energy infrastructure are found, especially in remote rural areas (Doig 1999). 

Importantly, Off-grid solutions offer the opportunity to leapfrog conventional means of 

providing electricity and overcome the carbon-intensive, centrally controlled energy system by 

building electricity systems from the bottom up based on clean technologies.  
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Compared with the existing electricity system structure, Off-grid systems are often associated 

with expectations of achieving consumer- or community-level independence. In countries with 

well-developed electricity systems, striving for such independence is often driven by frustration 

with existing grid operators and utilities or, in some cases, by the desire to unplug from the grid 

that provides fossil-fuel based electricity (Bronski, Creyts et al. 2014). In many developing 

economies, on the other hand, Off-grid systems can represent a faster, cheaper, and more 

reliable alternative to the under-developed large-scale grid infrastructure (Ahlborg and Sjöstedt 

2015). 

4 Research design 

This thesis is based on two studies presented in the form of appended articles. Although both 

studies are framed within the research project’s general aim and explore the future of renewable 

electricity systems from a socio-technical perspective, they differ in research focus, use 

different aspects of the same analytical concepts, draw different system boundaries, and use 

different sources of data. This is because the analysis in Article 1 served as the basis for the 

research aim and empirical focus of Article 2, which represents the next stage of a research 

process addressing the same underlying phenomenon. This thesis is a synthesis of what was 

learned from both studies, learning that informs the conclusions and suggestions for future 

research (see Figure 3). 

 

 
 

Figure 3 Relationship between articles 1 and 2 (appended) and with the thesis as a whole.  

 

The general purpose of this research project is to follow the emergence of new system 

configurations that satisfy the criterion of 100 per cent renewables globally, to identify possible 

development pathways, and to study the critical factors that influence the different directions 

of development. Both appended articles partially address the overall project aim. Article 1 

focuses on the first part of the project aim and identifies several alternative pathways towards 

future electricity configurations by combining scenario methodologies. The scenario-making 
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analysis

Findings and conclusions
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trading configurations
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technical transitions towards 
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architectures 

Article 1

Article 2

General research project purpose and aim
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exercise outlined three idealized end-states of future electricity systems (i.e., the Super-grid, 

Smart-grid, and Off-grid systems) that, using the TIS structural framework, were described in 

terms of key components that are currently emerging, accumulating, and co-evolving. Mapping 

the structures of the envisioned futures also guided our understanding of how these are linked 

or decoupled from the existing electricity system, other sectors, and trends. The scope of Article 

1 was kept spatially open, with boundaries set at the global level, to allow explorative mapping 

of structural components directly involved in electricity generation, storage, and transmission. 

Building on the empirical findings in Article 1, the scope of Article 2 was narrowed in order to 

study one specific scenario and to analyse the causal relationships and processes that may lead 

in a particular direction: the Smart-grid system, empirically represented by two local technology 

demonstration projects. While Article 1 borrowed various socio-technical concepts to describe 

the three alternative futures, Article 2 exclusively applied the TIS functional framework, which 

was further developed to better account for the importance of the context and entrepreneurial 

agency that became apparent when studying the emergence of small, local experiments. Table 

2 summarizes the research purposes, system boundaries, analytical strategies, and contributions 

of the appended articles.  
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Table 2 Summary of the research purposes, system boundaries, concepts, and contributions of the appended articles.  

 

Research aim Article 1: Three electricity futures Article 2: P2P electricity trading configuration 

Empirical Identify alternative pathways leading towards future electricity configurations and 

map technological artefacts, actors, networks and institutions that characterize them 

and accumulate at present and how these are linked or decoupled from the existing 

electricity system.  

Better understand the processes may influence the prospects for a radical Smart-grid scenario, and shape its 

trajectory by investigating two empirical cases of P2P electricity trading projects as two socio-technical 

transition efforts.  

Conceptual Use existing socio-technical and scenario methodology to monitor complete sets of 

socio-technical components identified in relation to a number of scenarios leading 

towards idealized forms of alternative futures. 

Contribute to the existing TIS literature by (i) developing and testing a conceptualisation of influential 

contextual structures; and (ii) analysing how entrepreneurs utilize the context to stimulate structural buildup, 

overcome blocking factors and how this—in turn—affects their encounter with the local incumbent sector.  

System boundaries 

Socio-technical Technologies, actors and institutions that are directly involved in electricity 

generation, storage and transmission.  

Peer-to-peer electricity trading via blockchain that lead to the construction of the future ‘Smart-grid’ system. 

Spatial Global innovation system related to the electricity sector. The geographical boundaries have a starting point at the local level development projects and from there we 

explore a variety of contextual factors whereof some may become internalized locally.  

Temporal 2000-2016 2016-2018 

Analytical strategy 

Concepts used TIS Structural components, MLP: niche accumulation and hybridization, socio-

technical scenarios 

TIS functional framework extended with conceptualization of the context and entrepreneurial activities. 

Contributions 

Empirical contributions Typology of idealized scenarios: the Super-grid, Smart-grid and Off-grid and related 

components emerging and accumulate at present and their relation to the electricity 

sector, other sectors and trends.  

A better understanding of a P2P electricity trading system buildup in two exemplary local developments 

projects studied as novel system configurations.  

Conceptual contribution The MLP and socio-technical scenarios are used as a tool to clearly define extreme 

end-points (future alternatives) in combination with the TIS structural framework to 

map the specific set of components supporting these end-points.  

By using and further developing the TIS ‘functions’ framework by analysing the innovation system buildup 

while proposing a typology of contexts and accounting for the special role of entrepreneurial activities in this 

process.  
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4.1 Data collection and methods 

The research presented here applies a qualitative methodology based on a case-study approach 

(Flyvbjerg 2006, Yin 2017). While the credibility of quantitative research rests on the objective 

quality of the research, in qualitative research, the researcher him or herself is the instrument 

affecting the results via his or her own subjective views (Kvale 1994, Brinkman and Kvale 

2015). Therefore, the reliability and validity of the data collected using qualitative techniques 

in this research was improved by adopting a systematic analytical procedure, triangulating the 

different data sources, and continuously discussing the results with fellow researchers.  

 

While both articles appended to this thesis are qualitative in nature and contribute to the same 

overarching research aim, they differ in the specific research designs, scales of observation, 

data collection techniques and sources, and analytical methods applied. They also differ in their 

analytical focus. While Article 1 answers the first research question by mapping the complete 

structures of alternative future electricity systems, Article 2 answers the second research 

question by analysing the important aspects of the innovation system buildup of smart-grid-

related developments in different parts of the world.  

 

4.1.1 Article 1: Descriptive study of the direction of future electricity systems 

The first paper appended to this thesis presents the first stage of the research process, with the 

objective of getting an overview of developments related to the future of the electricity sector. 

The article was designed as a descriptive study and was intended to uncover new facts and 

meanings related to possible pathways towards future electricity systems. This approach can 

answer “what is” and “what was” questions and describe variables rather than analyse 

relationships between them (Yin, Bickman et al. 1998). The data for Article 1 were collected 

from secondary data sources, including scientific literature, websites, reports, newspaper 

articles, and online datasets. The process of data analysis was qualitative content analysis, 

following the traditional steps in qualitative research going from data selection, through 

understanding the data, and eventually clarifying the larger meaning of the data (Creswell 

2013).  

 

In Article 1, the conclusions were reached in three steps. First, several alternative future 

electricity systems repeatedly mentioned in the literature were identified, clearly defined, and 

labelled as follows: the Super-grid, Smart-grid, and Off-grid systems. These alternative systems 

were then conceptualized as visions that do not yet exist in reality but can be traced as emerging 

sets of new technologies, actors, and institutions (Bergek, Jacobsson et al. 2008a). As suggested 

by Bergek, Jacobsson et al. (2008a), a bibliometric analysis was carried out to determine how 

much scientific knowledge has been amassed in recent decades in relation to the concepts of 

the super-grid, smart-grid, and off-grid systems (Figure X). In the second step, the distinctions 

between the three alternatives were used to construct three idealized system scenarios that can 

be positioned in a two-dimensional design space as three extreme future system end-points. In 

the third step, after outlining the systems of interest, we reviewed the socio-technical transition 

literature and conceptualized the three extreme systems as alternative socio-technical systems, 

i.e., structures of novel systems developing at the niche level. Here, we used MLP to position 
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the alternative systems in relation to the regime and landscape levels in the context of the 

ongoing transitions in global electricity systems. After gaining a deeper understanding of the 

potential future electricity systems, we characterized the main structural components of the 

alternative systems using the structural analysis borrowed from the TIS framework. We looked 

for the actual actor constellations, novel technologies, and driving institutions paving the way 

towards alternative future electricity systems in a range of websites, reports, newspaper articles, 

and online datasets in order to find “what is out there”. By doing this, we expected to find 

patterns of structural accumulation indicating the direction of the ongoing transition in 

electricity systems around the world.  

 

4.1.2 Article 2: Comparative case study analysis of the important factors and processes 

supporting a specific scenario 

The second paper presents the next stage in our research processes. Based on the findings of 

Article 1, Article 2 set out to analyse one of the directions: the Smart-grid scenario. Here, the 

research was designed as a comparative case study analysis, based on a qualitative research 

design in order to analyse the innovation processes leading to the build-up of a potential future 

Smart-grid system. The strategy of inquiry in Article 2 was based on a case study approach 

intended to explore “a program, event, activity, process of one or more individuals” (Creswell, 

2009: 13). More precisely, Article 2 presents a comparative analysis of two local development 

projects for P2P electricity trading, an innovation driving the transition in the direction of the 

Smart-grid scenario. Comparative analyses are undertaken to find “puzzles” that can be difficult 

or even impossible to identify without making a comparison (Pennings et al. 2006).  

 

In this study, we used the TIS framework as part of the research design to advance the empirical 

research, as an analytical scheme to guide the data collection, analysis, and interpretation, as 

well as to retain analytical coherence and clarity. The conventional TIS analytical framework 

used in Article 2 was further developed to incorporate the important role of the wider TIS 

context and agency, better reflecting our empirical observations from the field. 

 

We based the analysis on data from interviews, participatory observations, and desktop 

research. Interviews were chosen as a primary source of data to ensure good control over the 

relevance and quality of the data, which is not always possible for secondary data such as 

documents, reports, and statistics (Palm and Glad 2011). In total, 28 semi-structured interviews 

were conducted with various participants directly involved in the P2P electricity trading 

demonstration projects, including entrepreneurs, researchers, representatives of large energy 

companies and small technology companies, and other key informants. The number of 

interviews was limited by the researcher’s time in the field and the ability to access key 

informants involved in the studied projects. 

 

The interview questions were open ended, framed in accordance with the key themes based on 

the “functions” defined in the TIS framework. We selected semi-structured interviews to allow 

for flexibility. This way we could build on the initially selected themes but also react to 
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unexpected and interesting answers by asking further questions and encouraging reflection 

(Mikkelsen 2009).  

 

The data gathered in the field were divided according to the case studies and treated separately 

in the analysis. Data collection in the field was followed by data analysis, which was an iterative 

process of transcription, reflection, pattern seeking, data categorization, drawing causal maps, 

as well as sharing findings with relevant stakeholders and research fellows, to refine the analysis 

based on the input gained from them. Visual Understanding Environment (VUE) software was 

used as a coding tool to categorize the data into structures and functions while also making 

causal connections and noting relations developing over time. The data analysis was based on 

deductive coding, in which themes were identified based on tracing the innovation process, 

actor motivations and capabilities, the encounter with the regime, and contextual factors. The 

data analysis process involved recurrent triangulation between the interviews, observations, and 

various case-related documents. Finally, the data were conveyed using a retrospective narrative 

approach (Clandinin and Connelly 2000). 

 

While the methodological choices in Article 2 supported our analysis, it is important to note 

that these choices entail certain limitations. An important limitation comes with studying 

systemic innovation processes over short time periods, as analysing developments paving the 

way to different future alternative systems requires research over longer time periods. Even 

though Article 2 presents a narrative of the system buildup related to the Smart-grid, it assesses 

only the very early stages of the transition towards a future Smart-grid system and considers 

only two cases of experimentation. The time horizon captured in this study is too short to enable 

us to draw conclusions about the actual impact of the development of P2P electricity trading on 

the transition in the electricity sector and how that relates to other alternatives. Furthermore, 

using open-ended interviews as the primary data source limited us to collecting data from fewer 

respondents in the form of key individuals. Semi-structured interviews can lead to accidentally 

omitted topics and reduced comparability of responses compared with more quantitative data 

collection methods. Therefore, combining qualitative and quantitative methods would be 

beneficial to strengthen the empirical findings in Article 2.  

 

4.1.3 Case selection 

Before conducting the comparative analysis, significant effort was put into reflecting on the 

relationship between the compared cases. The two cases were selected as relevant to the 

research questions, meaning that they have more in common than they differ from each other 

in relation to the research questions. The selected cases are homogeneous in that both use 

blockchain technology to enable P2P electricity trading, yet heterogeneous in the geographical 

location and institutional environment in which the P2P trading was being developed. 

Specifically, we chose two local demonstration projects: the Brooklyn Microgrid in New York, 

USA, and the White Gum Valley demonstration project in Fremantle, Western Australia. These 

projects were selected based on their similarities and differences, similarities being: (1) 

blockchain-based trading platforms for P2P electricity trading, (2) the set of technological 

components required for this technology to function, (3) the key role of small entrepreneurial 
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firms, (4) size and year started, and (5) vision of the future electricity system. The cases differ 

in (1) their political, institutional, and geographical contexts, (2) the existing physical setting in 

which they have developed, and (3) the actors actively engaged in the projects.  

 

The decision to study P2P electricity trading supported by blockchain relates to the definition 

of the Smart-grid system presented in Article 1. Blockchain has been identified as the 

technological component that can enable an idealized form of Smart-grid in which every 

consumption unit is also a production unit and all units interact within a perfectly 

interconnected grid without relying on a third party or intermediary. Theoretically, in such a 

P2P trading network, small-scale producers act as both electricity prosumers and traders on a 

free market. Individual households can become small energy suppliers and every consumer has 

the chance to switch suppliers on a near to real time basis (Murkin J., Chitchyan R. et al. 2016).  

 

Several existing energy companies have created “peer-to-peer” marketplaces, though these still 

involve retailers that mediate the market and interact between the customers, making them 

“peer-to-retailer-to-peer” systems. For example, Open Utility in the UK, PowerPeers in the 

Netherlands, and P2Power in New Zealand are facilitating virtual markets that match existing 

RE suppliers with buyers. Individual electricity suppliers at the household or commercial level, 

however, cannot directly act as sellers or buyers in these platforms (Engerati 2016, P2Power 

2017).  

 

A grid in which prosumers can trade electricity in a direct P2P fashion could be enabled by 

blockchain, which would provide a suitable digital infrastructure that supposedly allows a 

network of decentralized actors to reach consensus around a shared data state (e.g., transaction 

data) without the need for a central coordinator or the involvement of an intermediary, such as 

a utility or energy retailer (Burger, Kuhlmann et al. 2016, Murkin J., Chitchyan R. et al. 2016, 

PwC 2016, Sousaa, Soaresb et al. 2018). At the inception of the study in 2016, there were only 

two demonstration projects of blockchain-based P2P trading systems in the world, i.e., the 

Brooklyn Microgrid in New York, USA and the White Gum Valley demonstration project in 

Fremantle, Western Australia; these were accordingly selected to serve as cases.  

5 Results and discussion 

Based on their theoretical starting points and methodological approaches, the appended papers 

address the overall research aim proposed in this thesis and provide partial answers to the same 

overarching question: What determines the direction of the electricity system transition? While 

Article 1 presents findings about these directions and comprehensively describes them, Article 

2 answers questions related to the causal relationships and buildup processes that influence the 

transition to take a specific direction. This chapter summarizes the empirical results and 

conceptual contributions of the appended papers, synthesizing them in relation to the overall 

aim of this thesis.  
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5.1 Findings in Article 1 

Article 1, “Three electricity futures: Monitoring the emergence of alternative system 

architectures”, establishes a foundation for the research process. The empirical findings in this 

paper are based on a mapping process providing insights that address the aim of the paper: to 

systematically monitor key structural system components that constitute building blocks of 

differently configured future electricity systems. Addressing the aim of this paper resulted in 

the identification of three idealized electricity futures, i.e., the Super-grid, the Smart-grid, and 

the Off-grid systems, that not only shaped our understanding of the transition pathways but also 

created a basis for subsequent research endeavours.   

 

While much has been written about how the future electricity system will or should be 

constructed (see Chapter 3), the research in Article 1 contributed to the literature by clearly 

distinguishing and describing a number of theoretically possible alternative future systems that 

are mutually exclusive in their extreme forms, and each of which could become the ultimate 

global electricity renewable electricity system architecture. Based on reviewing the literature, 

we found that the level and type of interconnectedness can be decisive in differentiating future 

alternative electricity systems into systems of dependent, interdependent, and independent 

electricity consumers (Figure 4), corresponding nicely with visions of the Super-grid, Smart-

grid, and Off-grid systems articulated in the literature.  

 

 
Figure 4: Different system organizations of electricity consumers and producers representing the Super-grid, 

Smart-grid, and Off-grid scenarios. 

 

Such categorization can be taken further and a clearer distinction can be made by creating a 

design space (Stankiewicz 2000) described by two variables, i.e., the number of production 

units and the number of independent grids in the world, related to a constant, which is the 

number of consumers (see Figure 5). In this design space, the three alternative systems can be 

positioned at the very corners, making them mutually exclusive. 

 

Dependent Interdependent Independent
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Figure 5: Three scenarios in one design space, where the letter X stands for the current electricity system, A for 

the Super-grid scenario, B for the Smart-grid scenario, and C for the Off-grid scenario. 

 

The Super-grid scenario represents a global electricity grid architecture interconnected with 

high-voltage transmission lines delivering electricity from large-scale centralized renewable 

sources of electricity far from the consumer centres. The Smart-grid system also represents a 

globally interconnected electricity grid infrastructure, yet the renewable electricity generation 

is small in scale and installed at the demand level, making every consumer a prosumer. The 

Off-grid system is a configuration in which consumers around the world defect from the 

conventional grid infrastructure and instead build self-sufficient units or microgrids.  

 

While we are aware that the future system may combine these alternatives, creating clarity by 

defining three extreme system configurations is analytically interesting, enabling a clear focus 

in monitoring and trend analysis, which can be used to determine which of these systems are 

starting to materialize at present. Table 2 presents an overview of the socio-technical 

components of the three systems identified in an extensive desktop data collection process. 
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Table 2: Socio-technical components of the three idealized scenarios.  

 
Super-grid Smart-grid Off-grid 

Key technical 

components 

Large-scale RE 

technology installations or 

plants 

HVDC cables 

Voltage source converters 

Large-scale storage 

Small-scale RE technology 

Flexible AC transmission 

systems 

ICT, smart metering, and 

smart sensors 

Small-scale storage 

Electric vehicles 

Small-scale RE technology 

Small-scale storage  

Microgrids 

Main actors National governments & 

international organizations 

Transmission system 

operators 

Large, often state-owned 

vertically integrated utility 

companies  

Incumbent power system 

companies 

Regional & national 

governments 

Distribution system 

operators 

Incumbent firms and new 

entrants from other sectors 

(e.g., the ICT and automotive 

sectors) 

Prosumers 

Prosumers 

Private device developers and 

maintenance providers 

 

Supporting 

institutions 

Collaboration and 

harmonization between 

governmental, regional, and 

international projects 

Multilateral agreements 

Tenders  

Vision statements and 

roadmaps 

 

Collaboration along the new 

supply chain 

Standardization 

Feed-in tariffs 

Expectations translated into 

demonstration projects 

Mistrust in existing electricity 

market actors 

Norms related to 

independence, self-

sufficiency, and direct 

contribution to climate 

neutrality 

Innovative financing practices 

(e.g., microfinance and pay-as-

you-go) 

 

In addition to describing alternative systems and tracing the emergence and accumulation of a 

range of socio-technical components developing at the niche level, we found that having 

complete sets of components provided insights into how these structures relate to the incumbent 

electricity regime, other sectors, and trends. For this purpose, we used the concepts of niche 

accumulation and hybridization (Raven 2007) when interpreting our observations.  

 

Accordingly, we found that the Super-grid system develops close to the existing electricity 

system, encompassing predominantly hybridization processes. The transition towards a Super-

grid seems to involve replacing large-scale fossil fuel-based plants with plants and installations 

based on renewable electricity generation and incremental technological innovation in 

transmission. The Super-grid is supported by the actors dominating the existing electricity 

system, such as the national governments, research institutions, and dominant energy firms with 

the capabilities to coordinate such a megaproject. In this centralized, border-crossing transition, 

the actors rely on comprehensive visions and roadmaps that create the basis for their 

collaboration as the global Super-grid is being constructed. The motivations driving the 

transition towards a global Super-grid closely relate to those dominating the existing electricity 

system: top–down system control, efficiency, economies of scale, and the idea of globalizing 

the electricity sector.  
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The Smart-grid scenario seems to be emerging out of a combination of hybridization and niche 

accumulation processes bringing the dominant electricity sector together with niche 

developments, mostly in other sectors and supporting systems. The Smart-grid deviates from 

the existing system by creating a distributed grid configuration enabled by small-scale 

renewables and innovations in communication, metering, and storage technologies, developed 

in other sectors, discovering niche market applications in Smart-grid-related developments. 

Additional examples of important smart-grid components from other sectors are the blockchain 

from the financial sector and electrical vehicles from the automotive industry. While incumbent 

actors such as distributed system operators, local utilities, and large power system companies 

are often in charge of carrying out and financing demonstration projects in collaboration with 

research institutions, new entrants are increasingly contributing a variety of innovative Smart-

grid technologies and solutions. Furthermore, private, public, and commercial building owners 

are becoming increasingly important in this scenario, initiating and participating in smart-grid 

experiments. The vision of the Smart-grid system seems to be inspired by other systems based 

on networks of users, such as the Internet, and by ideas about the free market and the sharing 

economy. 

 

The Off-grid system has developed away from the existing electricity sector. We found that the 

transition towards the Off-grid system involves leaving the conventional electricity grid and 

related markets. We observed that this system is enabled by niche developments in small-scale 

and storage technologies that historically found a niche and developed economic strength in 

remote areas of developing countries, but also in applications in satellites, mobile phones, and 

electrical vehicles. Prosumers become the key actor in this system, choosing to leave the grid 

to avoid reliance on the conventional grid and utilities as well as to achieve individual 

independence and environmental responsibility. 

 

The key result related to the electricity system transition reported in Article 1 is the evidence 

that the different scenarios have gathered momentum over the last 15 years through the 

development of new technologies, actors, and institutions and by creating links and borrowing 

from other sectors, discourses, and societal trends. We also found that to get closer to 

understanding in which direction the transition will develop, each direction needs to be further 

studied in terms of causal relationships between the structural components and by analysing the 

processes that support or hinder the success of the specific alternatives.  

 

In summary, Article 1 suggests that the possible pathways taken by the electricity system 

transition can be better described by creating a new combination of complementary concepts 

borrowed from the neighbouring fields of socio-technical innovation and transition, namely, 

MLP and TIS, and from scenario methodology. After mapping the conceptual background, we 

chose those concepts that gave value to the explanation of the phenomena of interest. The MLP 

framework served as a heuristic mind map that supported our thinking about how regime 

change comes about, and about the interaction between incumbents and new actors challenging 

the established structures. In contrast, the TIS structural framework was used to zoom in on and 

specify the alternative socio-technical systems emerging in niches, by mapping complete sets 
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of future system structures. Such use of the concepts is rather unusual, considering that the MLP 

framework is commonly used to create narratives and identify patterns and mechanisms in order 

to provide insight into why certain transition dynamics occur. Even more uniquely, this research 

has taken a different approach and started the scenario-making process by identifying a number 

of future end-point systems and identified a set of socio-technical system components existing 

at present instead of telling a narrative about a course of events or about patterns and 

mechanisms. The same is the case for the TIS framework, in which the structural analysis is 

not usually employed to map the structure of a future system but instead establishes the 

groundwork for analysing innovation processes and for identifying what is missing or is 

impeding system development in a certain direction.  

 

5.2 Findings in Article 2 

Article 2, “ Entrepreneurial use of contexts in technological innovation systems: the case of 

blockchain based Peer-to-Peer electricity trading systems”, builds on the empirical findings of 

Article 1 and aims to improve our understanding of how the early buildup of innovation systems 

influences the prospects and problems of a radical Smart-grid scenario and shapes its trajectory 

(Hojčková, Sandén et al. 2017). This aim is fulfilled by investigating two empirical cases of 

P2P electricity trading projects as two socio-technical transition efforts, both using the same 

innovative technology – the blockchain – with the common goal of promoting the radical 

“Smart-grid”, then existing only in the form of local demonstration projects. The analysis was 

conducted by employing the TIS framework as a lens for studying novel system developments 

as small socio-technical systems in the process of becoming. Beside the empirical contributions, 

Article 2 also suggests a variation of the TIS framework that better accounts for innovation 

processes in micro-level developments, where context and entrepreneurial agency play key 

roles in the system buildup. Consequently, Article 2 also has the conceptual aim of contributing 

to the TIS literature by i) developing and testing a conceptualization of influential contextual 

structures and ii) analysing how entrepreneurs utilize the context to stimulate innovation system 

build-up and how this affects the encounter with the local incumbent electricity sector.  

 

The conceptual contributions of Article 2 integrate a number of concepts important for the 

system buildup, concepts lacking in the conventional TIS framework. First, despite the fact that 

the context appears to be crucial for early TIS development, for the “shaping” (Andersson et al. 

2018) and overall prospects of a novel configuration, it has been under-theorized in the TIS 

framework, lacking a nuanced conceptualization of the geographical and socio-technical 

context of emerging configurations (Coenen and Díaz López 2010, Coenen, Benneworth et al. 

2012, Bergek, Hekkert et al. 2015, Hansen and Coenen 2015, Truffer, Murphy et al. 2015).  

 

The context was elaborated on to better understand why certain innovations develop 

successfully in some contexts while failing in others. After reviewing the existing context-

related debate in the literature, we found many different ways of understanding the context and 

sorted these along two dimensions: the spatial dimension of the context and the socio-technical 

dimension of the context, which were integrated into the two-dimensional matrix presented in 

Figure 6.  
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Figure 6: A two-dimensional conceptualization of the context of emerging configurations. 

 

In addition to the important role of the context, entrepreneurial agency seemed particularly 

important when considering innovation processes, i.e. functions (Table 1) at the level of the 

local demonstration project, where the role of individual actors in utilizing available resources 

and mobilizing collective action becomes more apparent. Therefore, the micro-level foundation 

is often neglected and too little attention is paid to entrepreneurial activities (Alkemade, Negro 

et al. 2011). Hence, at the micro level we position entrepreneurial activities as the micro 

embodiment of the functions, navigating supporting factors from various contexts (see Figure 

7). 

 

While both the role of the context and the importance of entrepreneurs have previously been 

described as crucial for successful system building, these have been kept analytically separate 

here. Article 2 makes a conceptual contribution to the TIS framework by bringing a more 

nuanced definition of TIS context and entrepreneurial agency together, to gain a deeper 

understanding of why certain innovation systems succeed while others fail when encountering 

the incumbent sector that they are trying to transform. The version of the TIS framework that 

guides the analysis in Article 2 is represented in Figure 7.  
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Figure 7: Process of the TIS build-up that incorporates various contexts and accounts for the role of agency in 

utilizing them to support the internal momentum. 

 

Given the analytical framework used in Article 2, the analysis provides a number of findings 

related to the important factors and processes that support or hinder development towards P2P 

electricity trading systems. First, we found that a favourable local electricity sector-related 

context, such as favourable policies or a large rooftop solar market, matters for innovation but 

does not automatically lead to a successful local demonstration project when encountering the 

locally embedded incumbent sector. To challenge the locally embedded incumbent electricity 

sector, finding opportunities in the context of other sectors, such as the housing sector in the 

case of the White Gum Valley project, appears to be particularly helpful in building a sufficient 

basis for a P2P electricity trading system as a way to create an opportunity for initial real-world 

application and experimentation. We also found that while strategic utilization of contextual 

aspects outside the local level, at the global and national levels, can serve as a means to mobilize 

resources and support legitimacy, these aspects are insufficient for achieving a productive 

encounter with the local incumbent sector. Instead, building a local actor network and creating 

a local supply chain that combines local and global knowledge can confer a better competitive 

position at the point of the encounter.  

 

We also found that the role and positioning of the entrepreneurs matter. Our empirical cases 

provide evidence that entrepreneurs with local connections, with the ability to access the tacit 

knowledge, and familiar with the local context had an easier time translating their ideas into 

innovation processes. In the White Gum Valley project, the pre-existing local connections of 

the key entrepreneur proved to be crucial in building the local advocacy coalition that managed 

to realize the ambition to innovate the electricity market. On the other hand, in the case of the 

Brooklyn Microgrid, New York’s electricity sector-related context seemed open to external 

entrepreneurs but de facto prioritized the local utilities, perceived as more credible in managing 

the local transition. 
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It also appears that the importance of the contexts outside the local level, at the national and 

global levels, may be utilized by key entrepreneurs for different reasons. While the 

entrepreneurs in the White Gum Valley project decided to go global as a result of being 

successful locally, in the case of the Brooklyn Microgrid, the move to the global level was 

triggered by the unsuccessful negotiations with the local incumbent sector. Consequently, some 

entrepreneurs use the global and national contexts to move and replicate their innovation 

systems in another context to cope with the local inertia, while others use them to grow their 

businesses from being local to being global solutions.  

 

5.3 The three electricity futures revisited and potential future research 

The findings presented in this thesis have implications for the overall purpose of this research, 

for the original categorization of the three alternative future scenarios, as well as for the initial 

assumptions about the Smart-grid system in Article 1, suggesting interesting avenues for future 

research. 

 

Related to the initial description of the smart-grid scenario in Article 1, Article 2 provides 

evidence confirming that the Smart-grid scenario involved a combination of niche accumulation 

and hybridization processes, as its successful buildup relied on collaboration between 

incumbents and new entrants, especially from other sectors. The incumbents contributing to the 

Smart-grid system buildup, did not have to come from the electricity sector but instead came 

from another sector, such as the housing sector, that provided a niche for an innovation that was 

likely to fail in encountering the regime it was aiming to transform. In other words, 

entrepreneur-driven Smart-grid-related developments need to find a niche opportunity for 

initial testing and experimentation in order to build their strength before engaging with the 

incumbents from the electricity sector.   

 

Furthermore, the analysis in Article 2 confirms the important role of local governments and 

entrepreneurs from novel firms in developing the Smart-grid system, though we also found that 

they played different roles in the system buildup process. Our cases show that local and national 

governments are important in providing legitimacy, in the form of favourable policies and 

financial resources, but that it is the entrepreneurs who can navigate the contextual 

opportunities and mobilize collective action to build actor networks that support the system 

buildup. While the incumbent utilities seem to be supporting Smart-grid-related innovation in 

an effort to better accommodate distributed renewables in the existing grid, they tend to 

hybridize the innovation to maintain their position in the transition process, potentially 

hindering developments towards the idealized Smart-grid configuration that fundamentally 

questions dominant practices and routines.  

  

Consequently, our analysis shows that the Smart-grid scenario, which at first glance could be 

envisioned as the most realistic path, supported by both existing and novel structures, in fact 

leads to considerable friction as it requires complex restructuring processes, often imagined 

differently by the dominant actors and new entrants involved in Smart-grid related 
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development. More research attention should therefore be directed to the individual 

expectations and roles within actor networks supporting Smart-grid-related developments, to 

better manage the complex negotiation process. While the Smart-grid system requires complex 

negotiations, these processes are assumed to differ in the case of the Super-grid scenario, which 

is mostly about incremental changes in electricity generation and transmission supported by 

incumbents, or in the Off-grid scenario, which is about new actors leaving the existing system 

behind and building a new one instead.  

 

Related to our findings in Article 2, more empirical work is needed to better understand the role 

of the prosumers, who are expected to play a key role in the transition towards the idealized 

Smart-grid scenario. Quite paradoxically, the P2P electricity trading developments analysed in 

Article 2 had very little direct involvement of prosumers, who are seen as the core of this 

distributed system. The involvement of prosumers will become increasingly important as 

development projects scale-up to real-world applications across the regulated electricity 

network, directly affecting the first P2P network participants. The characteristics of prosumers 

who are willing to contribute to experiments, learn about P2P electricity trading, or even 

become co-designers of the technology will be important determinants of the success of the 

transition towards the Smart-grid system.   

 

Moreover, it is important to realize that the empirical findings in Article 2 are specific to the 

selected local demonstration projects. Although they are likely to have some more general 

validity, especially for similar projects, the results could be improved by studying other focal 

technologies than blockchain-based P2P electricity trading and in different parts of the world, 

driven by different actors. Furthermore, while the results might be generalizable to other small 

demonstration projects, this might not be the case as systems grow and mature. Additional 

studies are therefore needed to reassess our conceptualization of the TIS framework for 

studying system build-up processes at other levels of aggregation and maturity.  

 

To this point, the empirical findings presented in this thesis are largely limited to the 

determinants of the transition towards the Smart-grid scenario. A more robust understanding of 

the ongoing transition processes could be achieved by studying the important factors leading to 

Super-grid or Off-grid-related developments, to learn whether these confirm or contradict the 

initial assumptions made in Article 1. Furthermore, comparing the results of studies analysing 

alternative future systems would constitute a next step in exploring what determines the 

direction of the transition. 

 

Finally, the present findings are based on the conceptualization of the three alternative future 

systems formulated in Article 1, which differentiates between systems with different levels and 

types of interconnectedness. In the future, the original two-dimensional matrix could be further 

developed, complemented by a third dimension. After gaining more insight into existing 

projects, especially at sector-specific and industrial conferences, we noticed that large-scale 

technological components can be owned by small-scale actors or groups of them, and that the 

reverse can also be true, that small-scale systems can be centrally owned by a big investor. A 

third dimension could therefore be related to system ownership. A promising area for research 
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would then be to study directions of the transition based on the kind of technology ownership 

in these systems.  

6 Conclusions 

This thesis aimed to improve our understanding of what determines the direction of the 

electricity system transition. Conceptually, the research takes socio-technical transitions and 

innovation frameworks as the theoretical starting point for studying innovation in the electricity 

system as a transition from the dominant fossil-fuel based system to a new system based on 

renewables. The appended papers both apply a socio-technical perspective to studying 

empirical phenomena and provide partial contributions to the aim stated in this thesis: What 

determines the direction of the electricity system transition? Article 1 provides a categorization 

and descriptions of the different directions the transition might take, while Article 2 analyses 

the processes and important factors that determine a specific direction.  

 

Empirically, the present research contributes to the literature by clearly defining three 

alternative electricity futures, i.e., the Super-grid, Smart-grid, and Off-grid systems, that can be 

monitored in the form of structural components currently emerging and accumulating. This 

research shows that all three alternatives have gained notable momentum over the last 15 years 

and presents evidence that the transition is underway. The emerging systems are not exclusive 

to the electricity sector, however, but instead create links with and borrow components from 

other sectors, discourses, and societal trends. Moreover, the Smart-grid system was not only 

defined in terms of key components but also analysed in terms of important factors and 

processes, to gain a better understanding of the causalities that lead to a future of complete 

interconnectedness. For a more comprehensive understanding of the direction this transition 

might take, the alterative scenarios need to be further analysed and compared. This opens up a 

number of interesting avenues for future empirical research.  

 

This thesis has made several conceptual contributions. First, a unique combination of socio-

technical concepts was created and used to clearly define a number of future scenarios. Second, 

the TIS framework was further developed by emphasizing the role of the contexts and 

entrepreneurial agency in innovation system buildup to better suit analyses of context-

dependent developments at the micro level. These contributions can inform future applications 

of the TIS framework, but also suggest new interesting areas for further conceptual 

development.  

 

Though the present research is predominantly explorative, its findings are of general relevance 

for people interested in the transformation of the electricity sector, such as researchers, 

entrepreneurs, policy-makers, prosumers, and many others who hope to find more clarity amidst 

the messy changes that affect everyone as electricity systems around the globe change.  
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