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ABSTRACT

In a conventional multitarget tracking (MTT) scenario, the
sensor position is assumed known. When the MTT sensor,
e.g., an automotive radar, is mounted to a moving vehicle with
uncertain state, it becomes necessary to relax this assumption
and model the unknown sensor position explicitly. In this pa-
per, we compare a recently proposed filter that models the un-
known sensor state [1], to two versions of the track-oriented
marginal MeMBer/Poisson (TOMB/P) filter: the first does not
model the sensor state uncertainty; the second models it ap-
proximately by artificially increasing the measurement vari-
ance. The results, using real measurement data, show that in
terms of tracking performance, the proposed filter can outper-
form TOMB/P without sensor state uncertainty, and is com-
parable to TOMB/P with increased variance.

Index Terms— multi-target tracking, localization, Kalman
filter

1. INTRODUCTION

Automated and autonomous vehicles need to be provided
with accurate position information, not only of the vehicle
itself, but also of the environment they operate in. Location
of static features, e.g., road segments and street lights, can be
provided by a pre-recorded local dynamic map (LDM). The
presence and state of dynamic features such as a pedestrian
or a cyclist, need to be estimated using the vehicles’ on-board
sensors. Typically, the environment can be observed by an
on-board radar or LIDAR, and the vehicle location can be
determined by a global navigation satellite system (GNSS)
receiver. Tracking the state of multiple dynamic features in
the environment can be addressed by an MTT filter. Gener-
ally, MTT filters consider the sensor state to be known [2].
However, when the tracking sensor is mounted on a mov-
ing platform with uncertain state, the uncertain ego-position
needs to be considered in the MTT filter, in order not to
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Fig. 1: Measurement scenario, with a vehicle with uncertain
sensor state tracking a moving pedestrian.

deteriorate tracking performance. An MTT filter which ex-
plicitly models the uncertain sensor state was proposed in [1],
extending the TOMB/P filter from [3].

In this paper, we present results on the evaluation of [1]
with real measurements collected by a Volvo XC90 with
on-board Applanix POSLV GNSS receiver and stereo vision
camera system from Autoliv, as shown in Fig. 1.

2. RELATION TO PRIOR WORK

Many MTT filters have been proposed to track dynamic
features using radar-like sensors, when the sensor state is
known [2]. For example, the multi-hypothesis tracker (MHT),
whose complexity grows exponentially due to the unknown
measurement-to-feature data association (DA), and the joint
probability data association filter (JPDAF), which approxi-
mates the posterior using marginal association probabilities.
More recent developments involve MTT filters based on ran-
dom finite set (RFS) and finite-set statistics (FISST). See
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Fig. 2: A single vehicle equipped with GNSS and V2F sensor
is driving in an urban environment.

[4] for more details about RFSs and FISST. For instance,
the probability hypothesis density (PHD) filter propagates
the first moment of the RFS density forward in time, and
the TOMB/P filter approximates the posterior density by
a Poisson multi-Bernoulli (PMB) multi-object density [3].
Mapping the environment when the sensor state is unknown,
belongs to the topic of simultaneous localization and map-
ping (SLAM) [5]. It was also stated in terms of RFSs, e.g., in
[6], where a particle filter to estimate the sensor trajectory is
combined with a PHD filter to estimate the map. Differently
in [7], the uncertain sensor state was considered to track at
most one feature. Joint estimation of sensor and features
state was addressed in [8], where an unknown sensor bias is
estimated through MTT. A multi-sensor PHD filter for joint
state estimation was proposed in [9, 10]. For the case, that the
feature presence is known, the joint estimation problem can
be solved via message passing on a factor graph as done in
[11] centrally; and distributed in [12], where measurement-
to-feature DA was additionally known. Methods to overcome
those restrictions and relations between message passing and
RFS based MTT filtering are discussed in [13].

3. PROBLEM STATEMENT AND SYSTEM MODELS
3.1. Problem statement

Consider the scenario illustrated in Fig. 2. The vehicle is
equipped with a GNSS and vehicle-to-feature (V2F) measure-
ment sensor. On the vehicle, a MTT filter is run, which should
track the mobile features as accurately as possible consider-
ing the vehicles’ own location uncertainty. We are therefore
interested in the joint posterior distribution of the feature and
vehicle states at every time step t.

3.2. Vehicle and feature dynamics

The time-varying vehicle state xt ∈ RNx is statistically mod-
eled by the state transition probability density function (PDF)
p(xt|xt−1), with linear state-space model

xt = Atxt−1 + wt, (1)

where At denotes the state-transition matrix and wt ∼
N (0,W t) with error covariance matrix W t. Since there
is potentially more than one feature present, we model the
features by an RFS F with multi-object density f(F ). A
single time-varying feature, e.g., a pedestrian, with state
f ∈ RNf survives in the next time step with survival prob-
ability pS, and, if it survives, its state motion is statistically
modeled by the state transition PDF p(f t|f t−1), with linear
state-space model

f t = Btf t−1 + vt, (2)

where Bt denotes the state-transition model and process
noise vt ∼ N (0,V t) with error covariance matrix V t.

3.3. Measurement models
A vehicle collects measurements from two types of sensors.
A GNSS sensor obtains measurements related to the abso-
lute vehicle state xt, described by the likelihood function
p(zG,t|xt) with linear observation model

zG,t = HG,txt + rt, (3)

where HG,t is the linear observation matrix and rt ∼
N (0,Rt) with error covariance matrix Rt. The second type
of sensor is capable of observing features, e.g., a camera,
radar or LIDAR. This V2F sensor is susceptible to measure-
ment noise, missed and false detections. A feature is detected
(and thus produces a measurement zt) with detection proba-
bility pD(xt,f t) depending on the sensor field-of-view (FoV)
and hence on the states xt and f t. The V2F measurement
likelihood function `(zt|xt,f t) is described by the linear
observation model

zt = H1,txt + H2,tf t + qt, (4)

where H1,t and H2,t denote the observation matrices, and
qt ∼ N (0,Qt) with error covariance matrix Qt. In one scan,
the V2F sensor obtains multiple V2F measurements from pos-
sibly multiple features present in the scene, as well as false
alarm measurements due to clutter. The clutter is modeled by
a Poisson point process (PPP), and all accumulated measure-
ments, both feature detections and clutter, are modeled by the
set ZF

t . We assume the standard point target measurement
assumptions: each feature can generate at most one measure-
ment per scan, and each measurement is the result of at most
one feature [14]. Note that it is not known which feature is
responsible for which measurement in ZF

t .

3.4. Reference methods
We consider an unknown sensor state with mean µxt

and
covariance Σxt , obtained from, e.g., a Kalman filter. MTT
methods such as the TOMB/P filter ignore such uncertainty,
though for a linear model, we can replace xt in (4) by its
mean µxt

, and Qt is increased by H1Σxt
HT

1 , which we de-
note variance inflation.



4. PROPOSED METHOD
The proposed MTT filter was derived in [1], and the reader
is referred there for additional details. It belongs to the class
of Bayesian filters calculated through altering prediction and
measurement update steps, operating on the joint vehicle-
feature density. Here, we summarize only the key ideas be-
hind this filter. At time step t, the prior joint vehicle-feature
density is given by

f(xt−1,F t−1) = p(xt−1)f(F t−1), (5)

where p(xt−1) denotes the vehicle state PDF described by a
Gaussian distribution with mean vector and covariance ma-
trix. The prior feature RFS density f(F t−1) is PMB consist-
ing of detected and undetected features, i.e., features which
are hypothesized to exist but have never been detected (c.f. [1]
or [14, Def. I] for a general description on undetected fea-
tures). Under the assumption that the vehicle and features
move independently1, we can predict the joint vehicle-feature
density to the current time step t, denoted f(xt|t−1,F t|t−1).
This is done via the Chapman-Kolmogorov equation applied
separately on the vehicle state and on the feature RFS [4].
The prediction preserves the factorized form of the density
(5). Updating the predicted joint vehicle-feature density by
GNSS measurement zG,t results in

f(xt,F t|t−1|zG,t) = p(xt|zG,t)f(F t|t−1), (6)

where p(xt|zG,t) is computed through a standard Kalman up-
date step influencing only the vehicle state [1, Sec. IV-B],
[15]. Updating (6) (or the predicted joint vehicle-feature den-
sity in the absence of a GNSS measurement) by a V2F mea-
surement set ZF

t is more involved, and includes approxima-
tions to ensure that the updated joint density is in the same
form as the prior joint density (5). By applying suitable ap-
proximations, the complexity of the MTT filter will not in-
crease over time. The details of the involved approximations
are given in [1]. The updated joint density is then of form

f(xt,F t|ZF
t ) ∝

∑
Fu]F d=F t

f̂u(F u)

×
∑
A∈A

wApA(xt|ZF
t )f̃d,A(F d|ZF

t ), (7)

where the operator ] denotes the disjoint set union, A is a
DA hypothesis with weight wA :

∑
A∈A w

A = 1, belong-
ing to the set of possible hypotheses A, f̂u(F u) is the un-
detected feature density, which depends only on RFS F u.
For a given association A, f̃d,A(F d|ZF

t ) is the approximate
detected feature density, and pA(x|ZF) is the vehicle state
PDF. It can be seen that (7) is a Poisson multi-Bernoulli mix-
ture (PMBM) density, which can be reduced to a PMB den-
sity of the form (5) using, e.g., the variational approximation

1This assumption is valid either when the vehicle and features are spa-
tially well separated and hence do not influence each other, or when the sam-
pling time is short enough, such that any feature interactions are negligible.
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Fig. 3: The estimated feature tracks using the proposed MTT
filter are compared with the true filter tracks. Feature 1 is
denoted f1, and similarly for feature 2.

presented in [16], or based on marginal DA probabilities [3]
known as the TOMB/P step. Due to space constraints, we
refer the reader to [1] for a more detailed explanation of (7).

5. NUMERICAL EXAMPLE
We investigate feature tracking performance of the proposed
MTT filter and the TOMB/P filter (c.f. [3]) using real mea-
surement data.

5.1. Setup

Measurement data was recorded using the COPPLAR project
test vehicle, a Volvo XC90 equipped with different kinds of
automotive sensors. The filters were then run offline. The
GNSS sensor is a high-precision Applanix POSLV, and the
onboard V2F sensor is a stereo vision camera from Autoliv.
Measurements were considered as ground-truth and measure-
ment noise was artificially added to the GNSS measurements
with variance σ2

G = 0.9216 m2 corresponding to a differen-
tial GNSS (D-GNSS) receiver2 and with variance σ2

V2F =
0.42 m2 for the V2F measurements, corresponding to the
worst-case performance of the used V2F sensor. For the test
recording, the vehicle was standing still and a pedestrian was
walking in front of the vehicle resting at approximately 10,
20, and 30 m distance. The measurement scenario is outlined

2Note that this is the x/y position accuracy of a likewise GNSS receiver
RT3000 from OXTS using D-GNSS according to [17] and [18].
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Fig. 4: Feature OSPA over time.

in Fig. 1. Additionally, a static feature was placed at around
50 m distance of the vehicle (not visible in Fig. 1). The total
simulation time was t = 1461 time steps.

In the filters, the state of the vehicle (sensor) at time step
t is described by x = [pT,vT]T, where p ∈ R2 denotes the
position and v ∈ R2 the velocity. Similarly, we describe the
state of a feature f by its two dimensional position and veloc-
ity. Vehicle and feature dynamics follow the linear constant
velocity (CV) model described by (1) and (2) with

At = Bt =

[
1 Ts
0 1

]
⊗ I2, (8)

where the sampling time Ts = 0.1 s, the operator ⊗ denotes
the Kronecker product, and I2 is an identity matrix of dimen-
sion two. In (1), the error covariance matrix W t = S with

S = s

[
T 3
s /3 T 2

s /2
T 2
s /2 Ts

]
⊗ I2 (9)

with s = 0.1 m2, and in (2) the error covariance matrix
V t = S with s = 0.5 m2. The GNSS measurement ma-
trix in (3) is HG,t = [1 0] ⊗ I2, and the error covariance
matrix is Rt = σ2

GI2. The V2F measurement matrices in
(4) are H1,t , HG,t and H2,t , −HG,t, and the error
covariance matrix is Qt = σ2

V2FI2. We set the initial un-
detected feature intensity to Du

−(f) = 10N (0,P ), where
P = diag([1002, 1002, 1, 1]T), the feature birth intensity
to Db(f) = 0.05N (0,P ), the average number of false
alarms per scan to λc = 10, with uniform distribution on
(−200 m, 200 m)2, the probability of survival to pS = 0.7,
and the probability of detection to pD(x,f) , pD = 0.9.
Feature tracking performance is assessed in terms of optimal
sub-pattern assignment (OSPA) metric with cut-off parame-
ter c = 20 m and order p = 2 [19]. MATLAB is used as a
simulation tool.

5.2. Results
In Fig. 3a and Fig. 3b, the true and estimated position of the
two features are plotted over time for x and y dimensions,
respectively. We observe that feature 1 (static) is present
throughout the whole experiment. Feature 2 (pedestrian) en-
ters the scene at time step t = 208 and leaves the scene at

time step t = 1330. Furthermore, the x position of feature 2
remains unchanged (pedestrian standing still) for some time
at approximately x ≈ {10 m, 20 m, 30 m}. The proposed
MTT filter correctly detects the presence of feature 1 and 2,
as well as the disappearance of feature 2. Furthermore, the
feature state estimates fluctuate around the true feature posi-
tions. These fluctuations come from the noisy measurements
(GNSS and V2F), as well as from the noise in the motion
models (feature and vehicle).

In Fig. 4, the feature OSPA is plotted over time for the
proposed MTT filter as well as the TOMB/P filter, which does
not model the present sensor state uncertainty. This filter uses
the GNSS measurement as the true sensor location (c.f. (3)).
We observe that the proposed MTT filter achieves a lower
feature OSPA. There is a cardinality mismatch resulting in
an increase of OSPA when feature 2 (pedestrian) enters and
leaves the scene. In contrast, with the TOMB/P filter, the fea-
ture OSPA jumps between high and low values indicating the
filter has problems detecting correctly the presence of the fea-
tures. The feature OSPA of the proposed MTT filter averaged
over the whole runtime is 0.87, and 2.61 for the TOMB/P fil-
ter.

Since the observation and motion models are all linear,
we are able to incorporate any sensor state uncertainty in
the TOMB/P filter by inflating the V2F measurement noise
variance Qt by the GNSS measurement noise variance Rt.
In this way, a V2F measurement acquired by a sensor with
uncertain state is interpreted as a V2F measurement with in-
creased V2F noise variance and deterministic sensor position
at the GNSS measurement location. For this case, the average
feature OSPA reduces to 0.99. We can conclude that in a
single vehicle (sensor) scenario incorporation of sensor state
uncertainty, either in the way of the proposed MTT filter or
by inflating the V2F measurement variance in the TOMB/P
filter, enables to accurately track the features over time. The
proposed MTT filter allows to explicitly distinguish between
different sources of uncertainty and enables to track (and
hence reduce) the uncertain sensor state. Note that further
performance results including real measurement data from
two moving vehicles are shown in [1].

6. CONCLUSIONS

A MTT filter that incorporates sensor state uncertainty was
evaluated for a single sensor scenario. Two different kind
of measurements, absolute GNSS measurements and relative
V2F measurements were incorporated. The proposed MTT
filter has low computational complexity due to its paramet-
ric implementation. Experiments with real measurement data
showed the benefit of modeling sensor state uncertainty, quan-
tified in terms of the OSPA distance. The proposed MTT
filter can naturally incorporate different sources of state un-
certainty, whereas in the TOMB/P filter this needs to be in-
corporated by inflating the measurement noise variance, both
leading to comparable performance.
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[10] Murat Üney, Bernard Mulgrew, and Daniel E Clark,
“Distributed localisation of sensors with partially over-
lapping field-of-views in fusion networks,” in 2016 19th
International Conference on Information Fusion (FU-
SION), July 2016, pp. 1340–1347.
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