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ARTICLE INFO ABSTRACT

Keywords: Smart manufacturing is reshaping the manufacturing industry by boosting the integration of information and
Digitalisation communication technologies and manufacturing process. As a result, manufacturing companies generate large
Bottleneck prediction volumes of machine data which can be potentially used to make data-driven operational decisions using in-
Big data formative computerized algorithms. In the manufacturing domain, it is well-known that the productivity of a
;::gzatfe production line is constrained by throughput bottlenecks. The operational dynamics of the production system

causes the bottlenecks to shift among the production resources between the production runs. Therefore, pre-
diction of the throughput bottlenecks of future production runs allows the production and maintenance en-
gineers to proactively plan for resources to effectively manage the bottlenecks and achieve higher throughput.
This paper proposes an active period based data-driven algorithm to predict throughput bottlenecks in the
production system for the future production run from the large sets of machine data. To facilitate the prediction,
we employ an auto-regressive integrated moving average (ARIMA) method to predict the active periods of the
machine. The novelty of the work is the integration of ARIMA methodology with the data-driven active period
technique to develop a bottleneck prediction algorithm. The proposed prediction algorithm is tested on real-
world production data from an automotive production line. The bottleneck prediction algorithm is evaluated by
treating it as a binary classifier problem and adapted the appropriate evaluation metrics. Furthermore, an at-
tempt is made to determine the amount of past data needed for better forecasting the active periods.

Predictive analytics

1. Introduction

Digital Manufacturing and Industrial Internet of Things (IloT) are
new emerging technologies to increase the productivity in manu-
facturing (Lee, Lapira, Bagheri, & Kao, 2013). Manufacturing compa-
nies collect shop floor data in digital format using Manufacturing
Execution Systems (MES), sensor technologies, etc. (Hedman,
Subramaniyan, & Almstrom, 2016). For example, one of the automotive
manufacturing company in Sweden collects 100 data points of machine
data per hour by MES (Subramaniyan, 2015). This means that, on 8-h
operating shift, 800 data points are collected per machine. This volu-
minous data at a high velocity when scaled up to a production system
level or a factory level can be referred to as big data (Lee et al., 2013).
With the exponential growth in the data acquired from the machines,
new opportunities emerge to leverage data science to enhance the state
of manufacturing and enable more data-driven decision making (Shao,
Shin, & Jain, 2015). To enable such data-driven decision making,

* Corresponding author.

companies need informative analytical algorithms to turn high volumes
of fast-moving data into meaningful insights (Lavalle, Lesser, Shockley,
Hopkins, & Kruschwitz, 2011; Bokrantz, Skoogh, Berlin, & Stahre,
2017). This necessitates research into data analytics which can enable
efficient and effective extraction of information from the raw data to
derive new knowledge and insights, which can further be applied to
introduce intelligence into the control of production processes and can
also improve the system-level operation of manufacturing enterprises
(Wuest et al., 2016).

In the manufacturing domain, throughput is an important indicator
used to evaluate production system performance. The throughput of a
production line depends on the individual throughput of the machines
(Chang, Ni, Bandyopadhyay, Biller, & Xiao, 2007). It is often con-
strained by one or more machines in the production system, which are
usually called as bottlenecks (Goldrat & Cox, 1990). The prioritization
of maintenance and other production improvement activities on bot-
tleneck machines results in substantial improvement in the overall
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Table 1
Literature collection on bottlenecks prediction in production system.
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Predictive Method Inputs

Output Bottleneck Detection Technique

Auto - Regressive Moving Average
(ARMA) (Li et al., 2011)

Adaptive Network Based Fuzzy
Inference System (ANFIS)
(Cao et al., 2012)

Varying buffer levels (Wedel et al.,
2016)

progress inventory (WIP), job types

current buffer levels, MTTR, MTBF

Time series data blockage and starvation of machines

Processing time, utilisation rate, buffer length, mean time
between failure (MTBF), mean time to Repair (MTTR), work in

Machine cycle time, buffer capacity between the machines,

Forecasted value of blockage and
starvation for next production run
Main bottleneck, sub bottlenecks

Turning point method

Work load on the machines
calculated from the input
variables

Downtime bottlenecks for Buffer level before the machines

maintenance purposes

throughput of the production system (Gopalakrishnan, Skoogh, &
Christoph, 2013; Wedel, Noessler, & Metternich, 2016). Therefore, the
bottleneck machines are critical to the production system performance,
especially when there are limited resources.

There are a number of research efforts focussed on developing data-
driven algorithms that use digital historical machine data collected by
MES to detect the bottlenecks at a system level. For example, Li, Chang,
and Ni (2009) proposed an algorithm that uses the online blockage and
starvation data of the machines to detect the bottlenecks, while
Subramaniyan, Skoogh, Gopalakrishnan, and Hanna (2016) proposed
an MES based algorithm that uses the active states of the machine to
detect the bottlenecks. These algorithms are descriptive in nature,
meaning they detect the past bottlenecks in the production system. The
bottlenecks in the production line are dynamic in nature and the cur-
rent bottlenecks may not be the bottlenecks for next period as the
machines’ behaviour changes. This is due to the system performance
degradation caused by random noise and disturbances such as failure
etc. (Li, Qing, Xiao, & Ambani, 2011). This change causes the bottle-
necks to shift which in turn affects the overall throughput of the pro-
duction system. To maximise the throughput of the production system,
it is essential to predict the bottleneck shifts in advance of the pro-
duction run so that those machines can be prioritized for maintenance
(e.g. reactive and proactive maintenance strategies on bottleneck ma-
chines) and other improvement activities. Hence, a system level deci-
sion support tool is required to indicate the bottleneck machines of the
future production run (Jin, Weiss, Siegel, & Lee, 2016). The require-
ment of such a system level decision support for maintenance planning
in digitalized manufacturing environment was also identified by
Bokrantz et al. (2017) in a Delphi based scenario study of the future of
maintenance by 2030. Further, Bokrantz et al. (2017) indicated that the
real-time data analytics will be used as a potential tool by the pro-
duction and maintenance engineers to make decisions on a system
level.

In the past, there have been few research efforts on predicting the
future bottlenecks of the production system. Li et al. (2011) proposed a
time-series based predictive algorithm that predicts the blockage and
the starvation of the machines and thereby detect the bottlenecks using
a turning point method. Cao, Deng, Liu, and Wang (2012) proposed an
algorithm to predict the bottlenecks in semiconductor manufacturing
industries using different variables including the product types, re-
leasing strategies, work in progress, processing times, utilization rate,
and buffer length. Wedel et al. (2016) proposed an algorithm that
predicts the bottlenecks based on the buffer levels. Though there are
various predictive algorithms, these algorithms are developed and
tested in a simulation environment using a discrete event simulation
model of the production system and are limited to the real-world va-
lidation of the algorithms using the online data collected from the
machines on the shop floor. Moreover, the performance of the different
predictive algorithms is not assessed with the standard algorithms like
naive method (Keogh & Kasetty, 2002).

The purpose of the paper is to increase the productivity of the
manufacturing systems by facilitating data-driven decision making
using the real-time MES data. The aim is to propose a data-driven al-
gorithm to predict the throughput bottlenecks in a production system
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using the active periods of the machines and to evaluate the prediction
algorithm. The active period method of bottleneck detection is gaining
more popularity within manufacturing research, as they can detect a
group of potential bottlenecks in the production system and can also be
used in decoupled and coupled systems (Lima, Chwif, & Barreto, 2008;
Roser & Nakano, 2015; Subramaniyan, Skoogh, Gopalakrishnan, &
Salomonsson, et al., 2016). However, there is no reported research
exploring the ways by which the active period method can be used to
predict the bottlenecks.

2. Literature review

In this section, the past research efforts on bottleneck prediction are
presented followed by time series analysis and the evaluation metrics
used to evaluate the prediction algorithms.

2.1. Previous work on bottleneck prediction in manufacturing system

An exhaustive list on the literature of prediction of bottlenecks in
manufacturing is presented in Table 1.

According to the scientific publications presented in Table 1, it can
be understood that there are many unique predictive algorithms to
predict the bottlenecks in the production system. But these algorithms
are tested in a simulation environment i.e. using a discrete event si-
mulation model of the production system. In a simulation environment,
Li et al. (2011) achieves a prediction accuracy 97.38% in predicting the
blockage and the starvation periods of the machines while ANFIS al-
gorithm prediction proposed by Cao et al. (2012) achieves an accuracy
of 92.03% in predicting the main bottlenecks. While simulation is
considered to be a vital development tool in the production analysis,
the input data to the simulation follows well-defined distributions and
therefore, using simulation to predict the bottlenecks can yield higher
accuracy (Amar & Gupta, 1986). Compared to the simulation environ-
ment, real-time data from the machines do not fit any standard dis-
tributions due to the random nature of production disturbances.
Moreover, the simulation models might not truly represent the real-
world dynamics of the production as it is difficult to update the models
with the changes made in the production system and this is time-con-
suming (Skoogh, 2011). Therefore, in order to claim the performance of
the predictive algorithms, these need to be validated on real-world
datasets in order for them to be useful in the real-world operations
(Amar & Gupta, 1986). Validating the algorithms on the real-world
production lines also enables the manufacturing companies to trust and
adopt the algorithm (Jin et al., 2016), thus increasing the use of sci-
entific knowledge in industry. The need to validate the algorithms on
real-world data sets was also emphasised by Liao, Deschamps, Freitas,
and Loures (2017) so as to reduce the widening gap between laboratory
environments and industrial applications. The predictive algorithms
presented in Table 1 lack the real-world validation and moreover, there
are no clear explanations as to whether the data used to construct the
simulation model was from a real-world production line. Also, these
algorithms are not compared with the standard predictive algorithms
such as naive and therefore, it is not possible to evaluate the perfor-
mance of those algorithms compared to standard algorithms (Keogh &
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Kasetty, 2002; Hyndman, 2014).

It can be seen from Table 1, that there are different bottleneck de-
tection techniques used to predict the bottlenecks. When compared to
turning point method and buffer levels methods, the active period
method can detect the primary and secondary bottlenecks more accu-
rately and can be used for coupled and decoupled systems (Roser &
Nakano, 2015). The turning point method is not accurate in detecting
the bottlenecks in a decoupled system especially when there are minor
production disturbances in the machine that doesn’t necessarily cause
the upstream machines to be blocked or downstream machines to be
starved. The buffer method to detect the bottlenecks could be mis-
leading especially when the buffers are shared between the machines or
when the parts transfer devices fail or when the transfer time is more (Li
et al., 2009).

Also, it can be seen from Table 1 that, there is no method found in
the literature for predicting the bottlenecks using the active period
based method. Therefore, this was the motivation to derive a new
bottleneck prediction method based on active periods of the machines.

2.2. Theory on active period method of bottleneck detection

In this method, the machine is in the active state when the machine
is engaged in producing a product, when under breakdown, during set
up, and so on, and considered to be in inactive when the machine is
blocked or starved (Roser, Nakano, & Tanaka, 2001) as seen in Fig. 1.
The active and inactive states are similar to equipment dependent and
equipment independent states respectively as proposed by De Ron and
Rooda (2005). Equipment dependent states are those when the machine
is in a producing state, unscheduled downstate or scheduled downstate.
The equipment independent states include lack of input to the equip-
ment, blocked state etc. By computing the percentage of the time the
machine is active during the scheduled production time and comparing
it with other machines, a group of potential bottlenecks can be identi-
fied. This method also gives an opportunity to obtain diagnostic insights
as these are based on the aggregation of the different machine states to
better understand the nature of bottleneck machines. Moreover, this
method can be used to detect bottlenecks in different types of the
production system, from job shop to flow systems with or without finite
buffers (Roser & Nakano, 2015). Furthermore, the active period of a
machine can be converted into a time series data with time resolution
equal to months, weeks, days, shifts, etc. From such a time series data,
an established time series based prediction methods can be applied to
estimate the future active periods of the machines, and thereby predict
the bottlenecks in the production line.

2.3. Time series analysis using auto regressive integrated moving average
(ARIMA)

Time series is defined as a sequence of data points collected at a
constant time interval. These time series data are analyzed to determine
the trends to forecast the future. The aim of the time series algorithm is
to explore and derive hidden patterns and insights that help in making
decisions (Brockwell & Richard, 2016). The relationship between the
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observed sample values and the underlying stochastic process is ana-
logous to the relationship between sample and population in hypothesis
testing (Keskin, Taylan, & Terzi, 2006). Therefore, the time series is a
sample from the underlying stochastic process that generated the series.
There are different time series forecasting methods available in the
literature and those methods can be grouped as statistical based and
artificial intelligence based (Wang, Wang, Zhang, & Guo, 2012). As the
active period percentages can be expressed as a time series when col-
lected for different production runs and they are dependent on their
own historical data, an ARIMA statistical method in the form of sto-
chastic linear difference equations can explain the dependency in the
active period data of the machines. ARIMA is also proved to be a robust
and an efficient method for short-term time series forecasting, espe-
cially one-step ahead forecasts (Kuvulmaz, Usanmaz, & Engin, 2005).
Moreover, ARIMA has been extensively used in the field of finance for
short-term prediction of stock prices etc. (Wang et al., 2012; Adebiyi &
Adewumi, 2014).

ARIMA model can be represented as ARIMA (p,d,q) where p,d,q are
non-negative integers that represents the order of autoregressive (AR),
integrated (I), and moving average (MA) parts of the model (Ho & Xie,
1998). In practice, most of the time series data are non-stationary.
Therefore, Auto-regressive (AR), moving average (MA) or auto-re-
gressive moving average (ARMA) cannot be applied directly. One way
to convert the data into stationary data is by applying differencing. If
the original data are differenced d times before fitting the ARMA model,
then the model for the original time series data is called as ARIMA
model, where (I) denotes the number of differencing operations (Ho &
Xie, 1998). The ARIMA models not only provide the forecasted value
but also other metrics related to the forecasted values including stan-
dard errors associated with the forecast, confidence and prediction in-
tervals. To compare the performance of the ARIMA model, it can be
compared to a benchmark forecasting technique such as the naive
method, which is a simple technique in which the forecast is the same
as the last observation (Hyndman, 2014).

2.4. Algorithm evaluation metrics

To evaluate the performance of the predictive algorithm with that of
the naive algorithm, different metrics are proposed in the literature by
different authors. The most commonly used metrics are Mean Absolute
Percentage Error (MAPE) (Hyndman, 2014) and accuracy, precision
and recall(metrics derived from confusion matrix) (Bradley, 1997).
More recently, a new informative metric, Intersection over Union (IoU),
was proposed by Microsoft to evaluate the prediction algorithms
(Ahmed, Tarlow, & Batra, 2015).

2.4.1. Mean Absolute percentage error (MAPE)

MAPE is a measure of forecast accuracy, in that it compares the
forecasted value to that of the actual value and is widely used in time
series forecasting (Hyndman, 2014). This MAPE is a scale-independent
statistic and expresses the prediction error as a percentage. For the
series of forecasted values (EEEE) and the corresponding series of
actual values F,F,,F; _F,, MAPE can be calculated according to Eq. (1).

Inactive
1 Active 1 { Active 1 Inactive | Active |
[ '3 < St : d
ProducingCh 7 i mti : <
gChangeover Producing Downtime Producing Producing| Changeover
1} 4 L) t ty t t t tg t

Fig. 1. Active and Inactive states of the machine (adapted from (Roser et al., 2001)).



M. Subramaniyan et al.

Table 2
Confusion matrix.

Predicted Responses

True False
Actual response True True Positive (TP) False Negative (FN)
False False Positive (FP) True Negative (TN)

n
MapE = L D’ I(BE-E)/Fl x 100
nia (@)

2.4.2. Confusion matrix metrics

The confusion matrix summarises the performance of the classifi-
cation prediction algorithm (Bradley, 1997). This matrix is a summary
of results got from a prediction algorithm on a classification problem
type, e.g. a binary classification problem, and is a representation of the
number of correct and incorrect predictions results. Table 2 shows the
confusion matrix. The metrics that can be derived from a confusion
matrix are accuracy, precision, and recall as shown in Egs. (2)-(4).
These metrics give a way of assessing how the predicted responses
obtained from the algorithm align with the actual responses.

TP + TN
Accuracy = —————
Total Population (2)
Precision = _TP X 100
TP + FP 3
TP
Recall = —— x 100
TP + FN 4

2.4.3. Intersection over Union (IoU)

IoU is a metric developed by Microsoft and is widely used for the
evaluation of the image segmentation algorithms in the computer vision
domain (Ahmed et al., 2015). This metric can be used to evaluate the
multi-classifier predictive algorithms and compares the degree of
overlap between the results obtained from the prediction algorithm
with that of the actual objects as shown in Fig. 2. In other words, IoU is
the ratio between the intersection of the predicted and the actual ob-
jects to the union of the predicted and actual objects. The goal of this
metric is to quantify the dissimilarities of the proposed algorithmic
solution with respect to the ground truth in a meaningful way (Ahmed
et al., 2015). The greater the overlapping area, the greater the algo-
rithm performance.

Intersection area of two sets

Predicted set of objects

Actual set of objects

Fig. 2. Representation of Intersection over Union.
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3. Methodology

The methodology adopted was based on the Cross-Industry
Standard for Data Mining (CRISP-DM) (Pete et al., 2000). It provides a
structured methodology for a data mining project and is widely used in
manufacturing (Groger, Niedermann, & Mitschang, 2012). The CRISP-
DM was adapted to design a MES based data-driven predictive algo-
rithm. The methodology can be broadly classified into two categories:
the algorithm development phase and testing phase.

3.1. Algorithm development phase

The algorithm development phase includes literature study, the
study of the MES data collected from a real-world production line and
the interaction with the production domain experts to understand the
operational dynamics of the production system in a detailed manner.
The theory of active period based bottleneck detection method as
proposed by Roser et al. (2001) using a discrete event simulation model
of the production system was studied in detail. In addition to that, the
step by step construction of the ARIMA based time series prediction
algorithm and the evaluation metrics of prediction algorithm was also
studied. ARIMA algorithm was chosen out of other time series algo-
rithms because it is proved to work for short time series data and it can
capture the trends found on the historical data and project future values
(Kuvulmaz et al., 2005). Moreover, it offers the rolling window flex-
ibility which is an enabler to estimate the length of the historical data,
especially when the data is an aggregated data such as active periods
(Hyndman & Yeasmin, 2008; Vafaeipour, Rahbari, Rosen, Fazelpour, &
Ansarirad, 2014). Hence ARIMA based forecasting algorithms can also
be applied to data in constrained data storage environments. A real-
world MES data set from a production line as exemplified in Table 3 is
also studied in detail. This is done to determine the relevant data with
respect to the active period method within the large set of MES data.
The insights gained from the MES data in combination with the lit-
erature studies and production and maintenance domain expert inputs
were used to design and develop the prediction algorithm.

3.2. Testing phase

In this phase, the algorithm is tested on a real-world industrial test
data of a production line. The algorithm is applied to the dataset and
the active periods for future production runs are forecasted. The fore-
cast accuracy, MAPE as explained in Section 2.4.1 is then calculated to
evaluate the performance of the algorithm in terms of forecasting the
future active periods of the machine against the naive method. MAPE is
chosen because it is a better metric to express and communicate the
performance to the industrial community as it is based on percentages
and percentages are easily understandable and interpretable. Moreover,
MAPE being a scale-independent metric enables the opportunity to
compare the active period time series forecasting model performance
with different time scales. Thus, enabling benchmarking of different
algorithms using the same metric. From the forecasted active periods of
the machine, a group of bottlenecks is predicted. The bottleneck pre-
diction algorithm is then evaluated based on the different measures
such as accuracy, precision, recall and IoU, and then compared with
that of the naive approach. The results were then discussed with the

Table 3
Example MES record of a machine.

Machine Red Yellow Green White Duration (s) Date and Time

M1 0 0 1 1 80 01-07-2016 06:02:18
M1 0 0 0 1 997 01-07-2016 06:03:38
M1 0 0 1 1 39 01-07-2016 06:20:15
M1 0 0 0 1 997 01-07-2016 06:20:54
M1 0 0 1 1 39 01-07-2016 06:37:31
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Output — Conveyors b
M13 MI12 MI1 M10 M9
M8 M7 M6 M5 M4 M3
e Conveyors S —
Input —_— Conveyors S
M1 M2

Fig. 3. Layout of the production line.

production and maintenance domain experts. The modeling of the in-
dustrial data and the evaluation of the algorithm was carried out by
uploading the raw MES data into R software, which is a powerful lan-
guage used widely for data analytics and modeling (Hyndman &
Khandakar, 2008).

3.3. Real-world industrial test study description

The algorithm was tested on the MES data of an automotive engine
production line in Sweden. The layout of the production line is shown
in Fig. 3. The production line has 13 machines from M1, M2,....... , M13.
Each machine has an ANDON light and the MES collects and stores the
ANDON information of the machine across a production run as shown
in Table 3. There are four different ANDON lights: Red, Yellow, Green,
and White. At any given time, the machine may have one light or a
combination of lights. These ANDON lights can be grouped to represent
the machine states as shown in Table 4.

The MES system stores not more than 315 production runs data at
any point in time. Each production run is of 17 hours duration. To
understand the degree of the shiftiness in the bottlenecks between the
production runs, the MES data for 215 consecutive production runs
were analyzed. The active period method as explained in Section 2.2
was used to identify the bottleneck machines for each production run.
The bottleneck machines of each production run were checked against
the bottleneck machines of the previous production run, which is the
naive method. The probability of the previous production run bottle-
neck machine being the true bottleneck for the next production run is
20.8%. This indicates that the bottleneck shifts between the production
runs. Therefore, it is necessary to predict the bottlenecks of the future
production run so that the engineers of the production system can plan
and allocate the production and maintenance resources to effectively
manage the bottleneck machines. In addition to that, as MES stores data
no more than 315 production days at any point in time, it is desirable to
find the size of the historical data that should be used to provide a

Table 4
Grouping of different ANDON lights.
ANDON Light States
Yellow Producing
Green Producing
White Producing
Yellow + White Producing
Yellow + Green Blocked/Starved/Idle
Yellow + Green + White Blocked/Starved/Idle
Green + White Blocked/Starved/Idle
Red Down
Red combination with other lights Down
No light Down
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better forecast for the next production run considering the dynamics of
the production system.

4. Proposed bottleneck prediction algorithm based on active
period method

The active period based bottleneck prediction algorithm consists of
three steps. (1) To compute the active periods of the machine from MES
data and then convert it into a time series of desired time resolution of
production runs (shifts, days, weeks etc.). (2) To use time series tech-
niques to forecast the active periods of the machines for the future
production runs. (3) To detect the bottleneck machines in the produc-
tion run from the corresponding forecasted active periods of the ma-
chines. Fig. 4 explains these three steps. The three steps put together is
called as bottleneck prediction algorithm in this paper. This algorithm
takes the machine level MES data to predict the bottlenecks at a system
level.

4.1. Step 1: Time series generation of the active periods of the machine

Let the elapsed time of each active state be a,,;,, where m € {1,...,M}
is the index representing each machine, j € {1,...,I} represents the par-
ticular active of a machine m, and n € {1,...,N} is the production run. Let
b, be the scheduled production hours of a production run n. The active
period percentage (A) for machine m on a given production run n can
then be calculated as shown in Eq. (5).

ZI; Ui
St 100, m e {1, .. ,M}; n € {1, ..,N}
n ®)

For a time horizon T, the historical data of the active period per-
centages of a machine can be divided into N production runs as shown
in Fig. 5 to form a time series. The active period percentages of a ma-
chine are then calculated for N production runs individually. The as-
sumption made during the construction is that the active period per-
centages are dependent on its own historical data i.e. A; depends on A,
etc. (each machine active period percentages during a time t reflects the
system dynamics). The active period percentages are calculated for all
the machines in the production system

Amn =

4.2. Step 2: Time series based forecasting of the active periods of the
machines

This step can be further divided into two steps: the first step is to
determine the size of the historical data that is required to forecast the
active periods of the machine and the second step is to forecast the
active periods of the machines. The first step is carried out only when
designing the algorithm to fix the size of historical data. Once the size of
the historical data is determined it can be used to forecast the active
periods in the second step without changing the size of the historical
data.

4.2.1. Step 2.1: Determination of the size of historical data

As the dynamics of the production in the shop floor often change
due to the continuous improvement activities on the machine, it may
not be valid to assume that the ARIMA model parameters (p, d, and q)
are constant over time. Also, if MES stores data only for limited pro-
duction runs, it is necessary to find the amount of past data that can be
used to provide better forecasts of the active periods. With the one-step-
ahead rolling ARIMA with fixed window size, the model parameters and
regression coefficients are computed for each step forecast to capture
the dynamics of the production system after the improvement activities
are performed on the machines. When rolling forecast has a fixed
number k of the previous observed values as inputs, then it is called a
sliding window technique (Vafaeipour et al., 2014) as presented in
Fig. 6.
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Fig. 4. Proposed bottleneck prediction algorithm structure.

The next step is to determine the optimum size of k. For this, the
data set is divided into two sets: training and testing data set. Training
data set is used to train the algorithm and the testing data set is used to
test the performance of the algorithm (Hyndman, 2014). For a given
sliding window of size k and given the active periods of the machine A,
Ai_1, Ai—a, ..., A at time t, the active duration needs to be predicted
for t+1. ARIMA model is applied over the historical data of active
periods. Box Jenkins methodology of ARIMA application includes three
iterative steps, algorithm identification, parameter estimation and di-
agnostic checking (Brockwell & Richard, 2016). This three-step algo-
rithm building is typically repeated several times until a satisfactory
algorithm is selected. More detailed statistics involved in the three steps
is explained in Brockwell and Richard (2016). The three-steps are
carried out automatically using the time series libraries in R (Hyndman
& Khandakar, 2008). The ARIMA algorithm procedure is applied over
the historical time series data of active periods of the machine to esti-
mate the algorithm parameters and the coefficient which is represented
in Eq. (6).

A1 =@ + DA + A + $A o + . tg—016—0,6_1—036_,

——0g&_q

(6)

where A;,; represents the forecasted active duration of the next pro-
duction run, at ¢, is the random variable for the disturbance and they
are independent and identical distributed, ¢, ~ N (0,6%) and ¢,0 are the
regression coefficient of the auto-regressive and moving average parts
of ARIMA model respectively. Eq. (6) represents the ARMA equation
after the series of data is made stationary. ARIMA models with different
sliding window sizes can be tested on the test data set and can be
compared against each other to select the best size k of the sliding
window. MAPE metric as explained in Section 2.4.1 can be used to
compare the forecasted and actual active periods for different sliding
windows sizes on the test data set. The sliding window size which has a
minimum MAPE value is the optimum window size that can then be

'é‘:l

used as algorithm to forecast the future values of the active duration.
The same procedure is followed for all the machines in the production
line to find the optimum window size that is needed to forecast the
active duration for next production run.

4.2.2. Step 2.2: Forecasting of the active periods

Once the sliding window size is determined, the same window size is
used to forecast the future active periods of the machines and the size of the
sliding window need not be determined every time a new forecast is made.
The output from the ARIMA model is the forecasted value of the active
period for t + 1 period and the associated standard error of the forecast.

4.3. Step 3: Bottlenecks prediction from forecasted active periods of the
machines

The forecasted active duration and the standard error associated
with the forecast of the machines in the production line are compared
against each other to identify the group of bottlenecks. Let K be the
index of the machine with highest active period percentage i.e.
K = argmax (Ay, ¢+1), m € {1,...,M}. To test the statistical significance
of differences in the predicted active period for the all the machines
with respect to the highest active period machine, two-tailed t-tests as
shown in Eq. (7) is performed for all machines m € {1, ..., M} \ K.

tyuar = (Axk—Ax)//SEg? + SEx? 7)

where Ak is the predicted active period percentage of machine K and
A, is the predicted active period percentage of machine m. The esti-
mated standard errors for machines K and X are represented by SEx and
SEx, respectively.

The difference in the predicted active percentage periods of the two
machines is statistically significant if tg, > 1.96 or tg, < —1.96 at 95%
confidence level (Knezevic, 2008) and hence only machine K will be the
bottleneck machine. However, for —1.96 <y, <196 at 95%

Period for which
active period
percentage of the
machines needs to be

i predicted

v

t_nt-u

t+ty Time T

Fig. 5. Time series representation of active period percentage of the machine (adapted from Li et al., 2011).
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Fig. 6. Sliding window with constant window size k.

confidence level the mean difference is not statistically significant and
hence the machines K and X will be judged as bottlenecks in the system.
The rest of the machines are classified as non-bottleneck machines.

5. Proposed measures for algorithm performance evaluation

The bottlenecks prediction algorithm can be treated as a binary
classification algorithm that classifies each machine into bottleneck and
non-bottleneck. Therefore, to evaluate the algorithm performance, the
metrics derived from confusion matrix and IoU as explained in Sections
2.4.2 and 2.4.3 respectively can be used. The adaptation of the metrics
to the bottleneck prediction problem in manufacturing is explained in
this section.

5.1. Metrics from confusion matrix

The confusion matrix for the bottleneck prediction algorithm can be
constructed as shown in Table 5.

The matrix leads to the calculation of the metrics: accuracy, preci-
sion and recall as explained in Section 2.4.2.

® Accuracy is the measure of how often the proposed algorithm pre-
dicts the correct bottlenecks and the non-bottlenecks.

® Precision gives the proportion of the machines that were predicted
as the bottleneck machines were the actual bottlenecks.

Table 5
Adapted Confusion matrix.

® Recall is the proportion of machines that were the actual bottleneck
machines and was also predicted by the algorithm correctly.

5.2. Intersection over union method (IoU Method)

Let the set of predicted groups of bottlenecks in the production
system be represented as set P and the actual bottleneck set be re-
presented as A such as P ¢ {M1, M2, M3...} and A Cc {M1, M2, M3...},
where M1, M2, M3... € M are the machines in the production line. Let
set Z represent the intersection of set P and set A as shown in Eq. (8), in
that it contains the bottleneck machines that were predicted and was
the actual bottlenecks. Let set X represent the union of set P and set A as
shown in Eq. (9), in that it contains the total number of distinct bot-
tleneck machines in the predicted bottleneck set and the actual bot-
tleneck set.

Z=1Pn Al (€)]
X=|PU Al (C)]

IoU determines what percentage is the predicted group of bottle-
necks is the actual number of bottlenecks in the production line. The
IoU for a production run can be calculated as shown in Eq. (10).

Z
IoU = — x 100
U x (10)

This metric penalizes the algorithm performance for prediction of

Predicted bottleneck machines

Predicted non-bottleneck machines

Actual bottleneck machines True Positive (TP)

How many predicted bottleneck machines were actual bottleneck

machines?

Actual non-bottleneck machines False Positive (FP)

How many predicted bottleneck machines were actual non-

bottleneck machines?

False Negative (FN)

How many predicted non-bottleneck machines were actual bottleneck
machines?

True Negative (TN)

How many predicted non-bottleneck machines were actual non-
bottleneck machines?
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wrong bottlenecks in the production system. The higher the IoU metric,
the better is the prediction algorithm performance. This metric can also
be used for comparing different prediction algorithms including naive
and will be helpful for making decisions (e.g. trade-offs) in selecting the
suitable algorithm for implementation. Even though IoU and accuracy
metric from confusion matrix looks similar, there is a distinction be-
tween the two due to the reason that IoU is not influenced by the true
negatives.

5.3. Comparison of the performance metrics of the proposed algorithm and
naive algorithm

If there are N production runs for which metrics accuracy, precision,
recall and IoU are calculated, then the following formula can be applied
to get the mean and standard error for each of the metrics for the
proposed algorithm as shown in Egs. (11) and (12).

Mean Y = Zf\il Y'Y = accuracy, precision, recall, IoU
N ) ) » 11
Standard error (SE) Y= Standard deviation Y
VN 12)

The above metrics of the algorithm can be compared with that of the
naive algorithm to assess the performance of the proposed algorithm.
The two-tailed t-tests as proposed by Knezevic (2008) can be used to
test the statistical difference in the mean values of the proposed algo-
rithm with that of the naive as shown in Eq. (13).

toae = (Py—By)/y/SEp + SEg

where Py and SEp is mean value and the standard error of the metric
for proposed algorithm, By and SEg is the mean value and the standard
error of the metric for the naive algorithm. If tg, is greater than 1.96 or
tagat < —1.96 at 95% confidence level then there is a statistical dif-
ference in the performance of the proposed algorithm with that of the
naive algorithm.

13)

6. Industrial test case results

The description of the industrial test is shown Section 3.3. The MES
data was collected for a period of 315 production runs from 13 ma-
chines. It is assumed that no structural change happened in the pro-
duction system during the 315 production runs, meaning that there is
no change in the production flow.

6.1. Time series generation of the active period percentages of the machine

The ANDON light combinations as shown in Table 3 are grouped
into three states; Producing, Blocked/Starved and Down, based on de-
tailed discussions with the domain experts of the production line in-
cluding the production and maintenance engineers. The Producing and
the Down states of the machine constitutes the active period of the
machine. Thereafter, the active period of each machine is calculated for
each of the 315 production runs to form a time series data according to
the Eq. (5) explained in step 1 in Section 4. The example of the active
period time series data of machine M1 is shown in Table 6.

The data set is thereafter divided into train and test datasets. The
training data set consists of the first 185 production run data and the
test data set consists of 130 production run data of active periods for
each machine. The reason to have a higher amount of test data is to
evaluate the prediction performance over many production runs.

6.2. Forecasting of the active periods
The first step is to determine the sliding window size of the ARIMA

model that can be used to forecast the future active periods of the
machines as explained in step 2.1 in Section 4. Thereafter, the future
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Table 6
Example of time series representation of the active period
data for machine M1.

Production run Active period (%)

1 86.97
2 84.96
3 74.12
315 80.33

active periods of the machines are forecasted using the same sliding
window size of ARIMA model explained in Step 2.2 in Section 4.

6.2.1. Determination of the size of historical data

To estimate how much of the past data can be used for constructing
an appropriate forecasting algorithm which can provide a better fore-
cast, one-step prediction sliding ARIMA as explained in Section 4 with
four different fixed window sizes was carried out. The first window
consists of 50 data points (production run 1 to 50), the second consists
of 100 data points (production run 1 to 100), the third consists of 150
data points (production run 1-150) and the fourth set of data consists of
185 (production run 1-185) data points. The MAPE values from the
sliding window sized ARIMA models tested on the testing dataset (so as
the number of test data points are same across window sizes) using
different window sizes for all machines is presented in Table 7.

The most notable feature of MAPE as presented in Table 7 is that the
values are almost robust among the different window sizes. This in-
dicates there is a strong randomness associated with the active period
percentages of the machines and it is difficult to forecast the random-
ness using only the past active period percentages of the machine data
drawn from MES data with very low error. From Table 7, MAPE for one-
step sliding ARIMA of 100 window size is the better out of the different
window sizes except for the machines M4, M5, and M11. The MAPE for
window size 50 is only slightly better than window size 100 by 0.15%,
0.14% and 0.02% for machines M4, M5, and M11 respectively. Also,
the average MAPE for the production line is less for a window size of
100. A trade-off was made between the MAPE values of 50 and 100
window size for M4, M5, and M11 to have a homogenous forecasting
algorithm across the machines in the production system. Therefore,
sliding ARIMA algorithm with a window size of 100 is selected for all
the machines in the production system.

Table 7
MAPE values of different window sizes.

Different window sizes and their MAPE values from

ARIMA

Machines 50 (%) 100 (%) 150 (%) 185 (%)
M1 8.64 8.50 8.66 8.56
M2 12.45 12.36 12.91 12.98
M3 9.88 9.42 9.87 9.69
M4 10.35 10.50 10.70 10.60
M5 11.13 11.27 11.75 11.69
M6 8.44 8.25 8.83 8.74
M7 8.75 8.75 8.92 8.89
M8 10.01 9.89 10.62 10.07
M9 7.34 7.35 7.38 7.50
M10 8.54 8.43 8.55 8.53
M1l 10.78 10.80 11.32 11.60
M12 17.30 17.21 17.28 17.43
M13 12.24 12.13 12.48 12.35
Average for the 10.45 10.37 10.71 10.66

production line
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Table 8
Forecasted active duration results for 13 machines.
Run Machine M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 Mi11 M12 M13
190 ARIMA (p,d,q) 41,3 0,1,1 0,1,1 41,1 3,1,1 51,2 3,1,2 0,0,1 1,0,1 1,1,0 0,0,3 0,1,0 2,0,3
Forecast (%) 84.08 76.43 77.22 75.93 74.50 83.08 82.08 79.41 79.72 75.71 72.63 63.94 60.87
Standard error (%) 0.84 1.03 0.91 0.94 0.95 0.76 0.88 0.99 0.85 0.86 1.05 1.20 0.91
tstat - 5.74 5.54 6.48 7.58 0.89 1.65 3.59 3.65 6.98 8.53 13.75 18.73
Actual (%) 62.11 61.23 53.41 54.94 53.36 67.13 64.46 63.37 62.25 65.24 54.11 43.19 47.99
191 ARIMA (p,d,q) 1,1,1 2,1,1 0,1,1 4,1,2 4,1,1 3,1,1 3,1,1 3,1,1 4,1,4 0,0,0 2,0,2 0,1,0 1,0,3
Forecast (%) 75.55 73.49 75.41 72.99 72.04 73.35 78.64 74.58 79.55 75.59 66.03 63.72 60.70
Standard error (%) 0.87 1.04 0.94 0.92 0.97 0.78 0.84 0.94 0.87 0.86 1.02 1.22 0.92
st 3.26 4.47 3.25 5.19 5.79 5.32 0.75 3.88 - 3.24 10.09 10.60 14.93
Actual (%) 83.04 82.98 82.41 78.07 79.82 83.65 83.77 83.75 80.03 76.52 71.12 66.12 53.30
24% A - -
B Naive method M Proposed rolling ARIMA with fixed window
22%
20%
18%
16%
T 14%
[
B 12%
g 10%
8%
6%
4%
2%
0%
M1 M2 M3 M4 M5 M6 M7 M8 M9 MI10 M1l Ml12 Ml13

Machines

Fig. 7. MAPE comparison of ARIMA with sliding window size 100 and naive method.

6.2.2. Forecasting of the active periods

The sliding ARIMA model with a window size of 100 is used to forecast
the active periods of the machines in the production system. An example
of the forecasted active duration for all the 13 machines for 190th and
191st production run is summarised in Table 8. The MAPE values of a
sliding window of size 100 ARIMA model over the test data set is com-
pared with the naive method as shown in Fig. 7. From Fig. 7, the MAPE for
sliding ARIMA model with a window size of 100 historical production run
data is consistently lower than that of the naive for all machines the
production system indicating that it is a better forecasting model.

6.3. Bottlenecks prediction by ARIMA algorithm

The machine which has the highest forecasted active period percen-
tage for the next production run is the bottleneck machine. T-tests at 95%
confidence level are run for other machines with respect to the bottleneck
machine to test the statistical significance of differences in the forecasted
active period percentage of other machines with respect to the bottleneck
machine as explained in step 3 in Section 4. From this, a group of po-
tential bottleneck machines for the next production run is estimated. The
t-test results for the 190th and 191st production run are shown in Table 8.
It can be observed that for 190th production run machine M1, M6 and M7
are the groups of bottlenecks and the actual bottleneck for that produc-
tion run is M6. And for a 191st run, M7 and M9 are the predicted group of
bottlenecks and the actual bottleneck for that run is M7.

6.4. Algorithm evaluation
The predicted bottlenecks are compared with the actual bottlenecks

to calculate the accuracy, precision, recall and IoU metrics. When
identifying the actual bottlenecks for a particular production run based
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on the highest active periods of the machines, the bottleneck is one
machine and not a group of bottleneck machines. This is due to the fact
that the standard error cannot be calculated when computing the actual
active period percentage of the machines for a single production run. In
other words, the sample size for calculating the actual bottleneck for a
production run is one. However, the fixed window size sliding ARIMA
computes the variance associated with the forecast based on the his-
torical data and hence group of bottlenecks can be predicted as shown
in Section 4. Therefore, the algorithm is evaluated in two different ways
as esplained below and the metrics accuracy, precision, and recall are
calculated

Method 1: Evaluating the actual bottleneck machine is within the
group of predicted bottleneck machines

Method 2: Evaluating the actual bottleneck machine with the ma-
chine with highest predicted active period percentage (without
identifying the group of bottlenecks)

T-tests at 95% confidence level were carried out to test the statis-
tical significance of the difference in the improvement achieved in each
of the metrics as explained in Section 5.3. The results are summarised in
Table 9.

6.5. Domain experts review of the results

From Table 9, the proposed algorithm has higher and significant
mean accuracy, precision, recall, and IoU compared to a naive method
based on the t-values for method 1. However, in method 2, the algo-
rithm doesn’t yield statistically significant improvement in recall and
IoU compared to naive. Method 1 of predicting the group of bottlenecks
has several advantages for operational reasons when compared to
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Table 9
Evaluation metrics results.
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Method Proposed Algorithm Naive method
Accuracy (%) Precision (%) Recall (%) IoU Metric (%) Accuracy (%) Precision (%) Recall (%) IoU Method (%)

1 Mean 86.13 36.34 62.53 29.89 78.82 29.40 24.69 20.81

Standard Error 0.72 2.14 3.08 1.95 0.59 2.81 2.73 2.98

tsta - - - - 7.85 1.97 9.19 2.54
2 Mean 89.21 39.06 28.54 26.52 78.82 29.40 24.69 20.81

Standard Error 0.57 3.22 2.69 1.63 0.59 3.15 2.81 2.98

ttat - - - - 12.66 2.144 0.98 1.68

method 2. For example, if one of the predicted bottleneck machines
could be a cycle time bottleneck and less prone to production dis-
turbances (e.g. breakdowns, setups, minor stops etc.) and in that case,
the other potential bottleneck machines can be focussed for improve-
ment activities. Out of all the metrics shown in Table 9 ,the domain
experts including the production and maintenance engineers of the test
company were interested in the recall metric as that measures the
proportion of the actual bottlenecks that was also predicted as bottle-
necks by the proposed algorithm. The proposed algorithm has a sta-
tistically significant higher recall than that of the naive method as seen
in Table 9 i.e. the recall of 62.53% against the naive method of 24.69%
i.e. an improvement by 37.84% compared to naive. On the other hand,
the accuracy of the proposed metric is also statistically significantly
higher than the naive method by 9.27% for method 1. Even though the
different performance metrics of the proposed algorithm in detecting
the group of bottlenecks (as shown in method 1 of Table 9) is not 100%,
it has surpassed the naive method of bottleneck detection for this
production system. This indicates that the algorithm provides addi-
tional value in predicting the bottlenecks of the future production run.

7. Discussion

The aim of this paper is to propose a data-driven algorithm to
predict throughput bottlenecks of the future production run. The pro-
posed algorithm was tested on a real-world production line. A wide
range of metrics was used to evaluate the algorithm performance by
comparing it with the naive method. The proposed algorithm when
tested over the real-world production line predicts a group of bottle-
necks with a recall metric of 62.53% compared to the naive method of
24.69%.

7.1. Contributions to the interdisciplinary research field of production and
data sciences

The research work presented on developing a data-driven algorithm
for bottleneck prediction have significant contributions to the inter-
disciplinary field of production and data sciences. Compared to the
existing methods in the literature as shown in Table 1 in which the
different predictive algorithms are developed and tested in a simulation
environment, this paper uses real-world MES data of the machines to
develop and test the algorithm. The simulation environment is a highly
controlled environment where the variables that affect the throughput
are pre-defined as inputs to a simulation model and therefore it is
possible to achieve higher accuracy in predicting the bottlenecks as
shown by Li et al. (2011) and Cao et al. (2012). When predicting the
bottlenecks in a real-world scenario as presented in Section 6, it wasn’t
possible to achieve higher accuracy level than simulation. Hence, this
suggests a note of caution that the total dependence on the results from
the simulation is risky without those algorithms being tested on the
real-world production data sets. Also, using the real-world production
data sets to develop and test the bottleneck prediction algorithm will
enhance the credibility of the results among the practitioners and
manufacturing companies (Amar & Gupta, 1986; Jin et al., 2016; Liao
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et al., 2017). Moreover, the existing methods in literature were limited
to evaluating the performance of the bottleneck prediction algorithm
whereas the proposed algorithm is evaluated based on a wide range of
metrics including accuracy, precision, recall, and IoU. Thus, engineers
in manufacturing companies can easily understand the algorithm per-
formance based on these metrics. Moreover, this enables the optimi-
sation of the algorithm based on the selected metrics that is more im-
portant to the type of decision support that the engineers need about
the production line. This facilitates the integration of data sciences
domain with the production for making informed decisions. The overall
evaluation framework can also be used as a benchmarking tool by re-
searchers to assess the performance of the different algorithms and to
select the more appropriate metric.

The production improvements in the machines or other production
resources are continuous in the production system (Roser & Nakano,
2015). Due to these changes, the data from very old production runs
can no longer be representative of the current conditions and dynamics
of the production system, and the usage of that data increases the
chance of the predictive algorithm to cover the dynamics of more
production runs than it can accurately represent. Moreover, as it is
presented in the real-world industrial test study, the MES stores the data
only for 315 past production runs. In such cases, the determination of
the size of historical data that needs to be used in forecasting the active
period is essential. In the test study presented, MAPE for sliding win-
dows of different sizes were estimated using ARIMA model and it is
found that the past 100 production run data is slightly better in pre-
dicting the performance of the machines for the next production run
compared to other window sizes for the time unit of interest. Compared
with the current prediction algorithms in the literature, this is the first
approach to determine how much of the past active duration data is a
good representative to predict the future active durations of the ma-
chines.

7.2. Potential impact on management decisions of manufacturing
companies

The proposed algorithm can have a significant impact on the pro-
duction and maintenance management decisions. The algorithmic
predictions of the potential group of bottlenecks will help engineers to
understand where the production bottlenecks will be in the production
line for the next production run and can thereby frame effective stra-
tegies to mitigate it. The algorithm not only gives indications on the
probable future bottlenecks but also gives valuable information on the
possible non-bottlenecks of the production system. The alerts given by
the algorithm on bottlenecks and non-bottlenecks can be evaluated by
the production and maintenance domain experts who have years of
experience in their production system to decide whether they are lo-
gical and actionable to frame strategies for mitigating the bottleneck.
The aim of the predictive algorithms is to complement their efforts to
manage the true bottlenecks more effectively. The combined insights
can then be used in the production planning and management meetings
before the production run (e.g. morning meetings before the start of the
production) to effectively plan proactive actions. For example, the
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strategies for reducing speed in the non-bottlenecks could be made
which can increase the tool life etc. (Roser & Nakano, 2015) and
prioritize the bottleneck machines for reactive maintenance. In this
way, the engineers’ knowledge of production systems can be combined
with data sciences to get more transparency on the expected dynamics
of the machines for the future production run and plan strategies.
Hence, this type of system level decision support tool helps the en-
gineers to focus more on bottleneck machines in the production system
by which the throughput and the productivity can be increased (Jin
et al., 2016; Bokrantz et al., 2017).

7.3. Methodological discussions

The active period method used in this study detects the bottlenecks
using only the states of the machine. Quality parameters, which factors
the scrapped manufactured products or rework is not taken in account
when detecting the bottlenecks. Hence the active period method is a
method that focuses on determining the bottleneck from an utilisation
perspective. This perspective is still important for improving the pro-
duction flow and maintenance planning on bottleneck machines (Wedel
et al., 2016).

The intention of this research work is to provide an algorithm to-
wards the bottleneck prediction in a production system using real-world
MES type of data and to provide a generic framework to evaluate the
algorithm based on different metrics. The strength of the proposed al-
gorithm has been demonstrated using a real-world test study. In that
test study, the MES data set is divided into training and testing data and
the algorithm is tested on the testing data set. This type approach
prevents the data bias (Keogh & Kasetty, 2002). Though the proposed
algorithm is not tested on the MES data sets of multiple production
systems, the authors are convinced that the algorithm works in an en-
vironment where MES records the different active states of the ma-
chines and their timestamps during the production runs and across
different production runs. These are the only inputs to the proposed
algorithm. The same algorithm can also be used for modeling the active
periods for transportation resources if the information on the states and
the corresponding timestamps are available in MES. For example, when
the transportation resources move to a pickup location or a drop of
location, then the state of this resource is comparable to the producing
state of the machine and hence it can be classified as an active state.
Similarly, when the resource is waiting for the parts to be picked up,
then it could be classified as an inactive state (Roser et al., 2001). This
when analyzed in combination with the machines active period, it can
be investigated whether the transportation resources act as bottlenecks
or not. Also, though the proposed algorithm is demonstrated for a time
resolution of a complete production run, the same algorithm can also be
used for different time resolutions by aggregating the active period data
based on the required resolution.

7.4. Future work

The proposed bottleneck detection algorithm was developed, tested
and validated with the historical data of a real-world production system
and evaluated its performance. On the other hand, the algorithm also
needs to be evaluated in a real-time scenario and potential effects need
to be studied further. This will allow the institutionalization of pre-
dictive analytics by manufacturing companies to enable data-driven
decisions at the shop floor level to be more effective.

Also, as this paper is focused towards predicting the bottlenecks in
the production system using MES data, the future steps will be to get
diagnostic insights on the predicted bottleneck to understand the rea-
sons of the machine disturbances. Trying other time series algorithms
such as neural networks etc. can be used to compare the prediction
accuracies with that of the based ARIMA algorithm for bottleneck de-
tection. Moreover, variety based analytics including the quality para-
meters of the machine etc. can be combined with the active period
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information to predict the bottlenecks which ensures the fact that im-
proving the throughput from the bottlenecks also ensure high quality.
The results from the prediction algorithm can be augmented with the
expert opinions and can be embedded into the system to improve
prediction accuracy.

8. Conclusion

In this paper, a data-driven algorithm is proposed to predict the
throughput bottlenecks in a production system based on the active
periods of the machines. The inputs to the algorithm are the states of
the machines and the corresponding time stamps of those states across
different production runs. The algorithm is tested on MES data sets of a
real-world production system and the performance of the algorithm is
evaluated over a wide range of metrics, thus enbaling the manu-
facturing companies to trust the algorithm. In the test study, the recall
metric of interest for the engineers of the proposed algorithm out-
performed the naive method with an improvement of 37.84%.
Compared to the current techniques in the literature, an attempt is
made to determine how much of the historical data is used to predict
the bottlenecks. The approach presented was developed with active
involvement from the domain experts from machine learning and
production field. Appropriately formulating the problem by considering
the nature of the data and the real-world constraints and incorporating
the appropriate metrics for evaluation are the lessons learned. In ad-
dition, this paper provides a generic framework for the evaluation of
the different algorithms. Thus, this framework can be used as a
benchmarking tool by other researchers and engineers to compare and
evaluate the performance of different algorithms. From the indications
on predicted bottlenecks combined with the knowledge of the pro-
duction and maintenance engineers, fact-based decisions can be made
to mitigate the bottlenecks and thus increasing the throughput and
productivity of the system. This research work contributes to the cross-
disciplinary field of production and data sciences.
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