
Intersection crossing with reduced number of conflicts

Downloaded from: https://research.chalmers.se, 2024-03-13 07:19 UTC

Citation for the original published paper (version of record):
Karlsson, J., Sjöberg, J., Murgovski, N. et al (2018). Intersection crossing with reduced number of
conflicts. IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC: 1993-1999.
http://dx.doi.org/10.1109/ITSC.2018.8569797

N.B. When citing this work, cite the original published paper.

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained
for all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, or reuse of any copyrighted component of this work in other
works.

This document was downloaded from http://research.chalmers.se, where it is available in accordance with the IEEE PSPB
Operations Manual, amended 19 Nov. 2010, Sec, 8.1.9. (http://www.ieee.org/documents/opsmanual.pdf).

(article starts on next page)



Intersection crossing with reduced number of conflicts

Johan Karlsson, Jonas Sjöberg, Nikolce Murgovski,
Lowisa Hanning, Susan Luu, Vanessa Olsson and Alexander Rasch

Abstract— In this paper, an optimization based algorithm
for safe and efficient collaborative driving in intersections is
formulated. The problem is to determine the optimal order
in which vehicles should travel through an intersection under
the assumptions that the longitudinal velocity of all vehicles
can be controlled along a predefined path. In the original
formulation one quadratic optimization program was solved for
each possible crossing order of the vehicles and collisions were
avoided by formulating constraints that only allowed one vehicle
at the time inside the intersection. To make this algorithm
more effective, we formulate less restrictive collision avoidance
constraints by introducing one critical zone for each point where
two predefined paths cross. It is shown that this formulation
leads to a decrease in the number of quadratic optimization
programs that need to be solved to find the best crossing
order. Further, an algorithm is provided that finds the number
of crossing sequences which yield unique formulations of the
optimization program. The results show that when simulating
more complex scenarios, like four vehicles traveling through
an ordinary intersection, the reduction of computational time
and the total time it takes for all vehicles to make it through
the intersection can be significantly reduced using these less
restrictive constraints.

I. INTRODUCTION

The development of Intelligent transportation systems
(ITS) has been a major subject for both the automotive
industry as well as governmental institutions in recent year
[1]. This due to its potential for safer, smarter and greener
solutions [2]. Autonomous driving and active safety devel-
opments are two directions undergoing extensive research.

In this paper we will study cooperative autonomous driv-
ing in intersections. Intersections are interesting from the
perspective of autonomous driving and active safety since
the risk for accidents are high. In Europe, intersection-related
accidents are responsible for 21% of traffic related deaths and
43% of non-fatal injuries [3]. Similar numbers have been
reported for the U.S. [4]. Due to this high accident risk,
intersections are highly regulated by traffic lights, signs and
road markings. This might decrease the number of accidents,
but instead turn intersections into bottlenecks which increase
congestion.

The problem of autonomously controlling a fleet of ve-
hicles through an intersection is two-fold. In which order
should the vehicles drive through the crossing and what
speeds and accelerations should the vehicles have when
doing so. Several cooperative conflict resolution techniques
have been suggested, including scheduling formulations [5],
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[6], multi-agent approaches [7], [8] and model predictive
control (MPC) both centralized [9], [10] and desentralized
[11], [12], [13]. In this paper we will build upon the
collaborative driving approach presented in [9], [10], in
which a centralized MPC coordination strategy is formulated
to solve the intersection problem. In this formulation the
optimal control programs is a quadratic program (QP) for
all permutations of crossing sequences. In each of these QPs
collision avoidance is assured by introducing constraints that
allow only one vehicle to reside within a critical zone at a
time. In [9] the critical zone is simply chosen to be the full
intersection. In this paper we will, based on the same idea
as in [11], focus on modifying the optimal control problem
to use less conservative constraints for collision avoidance.
However, as we shall see, doing so using the approach in
[9] compared to in [11] will provide a convex optimization
program instead of a non-convex one.

Further, in [9] the crossing order of vehicles was decided
by solving a QP for every possible crossing order and
choosing the one that gave the smallest cost. In this paper,
we will show that when introducing less restrictive collision
avoidance, it is, for many scenarios, enough to solve a subset
of the QPs to find (one of) the optimal crossing orders. An
algorithm is presented which calculates such a subset of QPs.

The paper is organized as follows. In Section II the
QP formulation, first presented in [9], is given. Then, in
Section III, we present the QP suggested in this paper,
which includes a reformulation of the collision constraints.
Section IV continues to explore this new formulation by
showing that it is enough to solve a subset of the optimization
programs, to guarantee the optimal crossing sequence. It also
introduces an algorithm to find this subset of optimization
programs. Section V proves that the algorithm introduced in
the previous section in fact results in the minimum possible
number of crossing orders that guarantee a solution. Then,
a case study is presented in Section VI which compare the
novel approach with the original one, before conclusions are
drawn in Section VII.

II. PROBLEM FORMULATION

Consider N > 1 number of autonomous vehicles ap-
proaching an intersection. The aim is to decide the crossing
order and longitudinal acceleration of each vehicle. This will
be done via a centralized MPC algorithm which is assumed
to have the data of all vehicles available. The algorithm
operates under the assumption that vehicle i

1) has a position trajectory is given and known;
2) has a given path is perfectly followed;
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3) has a clock synchronized with the other vehicles;
4) is located within the radius of a circle centered at the

intersection.
The case where several vehicles approach or leave the
intersection on the same intersection leg, i.e, following each
other outside of the are of intersection, is for readability, not
considered in this paper.

A. Vehicle dynamics

Each vehicle i, following a known path p, is modeled as
a point mass using the state vector xi(p) = [ti(p), zi(p)]T ,
where ti(p) is the traveling time of vehicle i and zi(p) is
the inverse of vehicle i’s velocity along the path. from here
on zi(p) is refered to as the lethargy of vehicle i. If we
choose the input signal to be the spatial derivative of the
lethargy, ui(p) = z′i(p), the vehicles dynamics are described
by the linear system

x′i(p) = Axi(p) + Bui(p), ∀i ∈ N = {1, . . . , N},

where

A =

[
0 1
0 0

]
, B =

[
0
1

]
.

B. State and actuator limits

The state and control variables are subject to lower and
upper bounds. To account for curves, the maximum velocity
of the ego vehicle is set to vimax = min(vl,

√
aiymaxri(p))

where vl is the speed limit of the road, ri(p) is the radius
of vehicle i’s planned path and aiymax(p) is the maximum
lateral velocity along the path. The minimum and maximum
bounds of the states are then written as

ximin(p) =

[∫ p

0
1

vimax(s)
ds

1
vimax(p)

,

]
, ximax(p) =

[∫ p

0
1

vimin(s)
ds

1
vimin(p)

]
where vimin(p), vimax(p) > 0 is the minimum and maximum
longitudinal velocity of vehicle i, respectively. For the limits
on the control signal we choose the linearized bounds derived
in [9], which read

umin(·) = aimax(p)(2− 3vir(p)zi(p))/v3ir(p),

umax(·) = aimin(p)(2− 3vir(p)zi(p))/v3ir(p),

where vir is the reference velocity of vehicle i and the
velocity around which the bounds are linearized.

C. Collision avoidance

In [9] it is proposed to impose non-collision constraints by
treating the intersection as a critical set, meaning that only
one vehicle is allowed to reside within the intersection at any
given time. The set of positions for vehicle i ∈ N inside the
critical zone, is called the critical set and can be formulated
as

Ci = {pi(t) ∈ [0, pif]|pi(t) ∈ [Li, Hi]},

where pif is the final position of vehicle i. Further, the
corresponding times can be expressed in terms of the set

Gi(ui(t)) = {t ∈ [0, tif]|pi(t) ∈ Ci},

where tif is the time when vehicle i reaches its final position
pif.

D. Cost function

In [9], several different cost functions are suggested,
depending on the prefered behavior of the solution. In this
paper, we stick to the simple choice of minimizing the
distance from a known velocity trajectory and minimizing
the actuator limits for each vehicle. further, this cost function
can be approximated by a quadratic cost fuction by replacing
the reference velocity vir(p) with the mean reference velocity
v̄ir(p) and linearize the first integrand around it. Doing so
yields

Ji(·) ≈ wi1

∫ pif

0

(
zi(p)− 1

vir(p)

)2

dp

+ wi2v̄
5
ir

∫ pif

0

u2
i (p)dp + wi3v̄

7
ir

∫ pif

0

u′2i (p)dp = J̃i(·).

The cost function used in the optimization program is the
sum of the individual cost functions of the N vehicles, i.e.,

J(·) =
∑
i∈N

J̃i(xi(p), ui(p), u′i(p),xi(pif)).

See [9] for more details.

E. Optimal control problem

Let the matrix of all possible crossing orders be
O ∈ NM×N , where M = N ! is the number of crossing
orders and N is the number of cars. Then, the task of
determining the optimal longitudinal behavior of N vehicles
moving through the crossing in a given crossing order m can
be written as

minimize
uE(t)

J(xi(p), ui(p), u′i(p),xi(pif)) (1a)

subject to
x′i(p) = Axi(p) + Bui(p), ∀i ∈ N , (1b)
xi(p) ∈ [ximin(p),ximax(p)], ∀i ∈ N , (1c)
ui(p) ∈ [umin(p, zi(p)), umax(p, zi(p))], ∀i ∈ N , (1d)
xi(0) = xi0,xi(pif) = xif, ∀i ∈ N , (1e)
tk(Hk) ≤ tl(Ll), k = Om,n, l = Om,n+1,∀n ∈ N \N.

(1f)

Thus, the best crossing order is found by solving (1) for all
m = 1, . . . ,M and choosing the one with the lowest cost.
In Section III the collision constraints 1f will be replaced by
less restrictive once.
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Fig. 1. Illustration of a shared zone between two vehicles. The shared zone
is marked in grey, Lij and Hij are entry and exit for vehicles j = 1, 2, of
the shared zone. The solid blue and green lines show the predefined paths
and the dashed show the limits of the vehicles.

III. DEFINING LESS CONSERVATIVE CRITICAL ZONES

Recall that in the initial problem formulation, (1), one
critical zone was introduced, which, applied for all vehicles.
In this section we suggest a different way of defining the
non-collision constraints which are less restrictive and allow
for faster traffic flow through the intersection. This is done by
replacing the critical set with a set of shared zones. A shared
zone is a limited rectangular area within the intersection
where two (or more) vehicles can reside at the same time,
according to their predefined paths, see Fig. 1. The minimum
size of the shared zones are decided by the intersection of
the left and right safety margins of the vehicle (illustrated by
red dots in 1), which in turn define the entry and exit points
Lij and Hij for vehicles i and j. The set of positions for
which the vehicle i ∈ N resides within a shared zone with
the vehicle j can be expressed as

Cij = {pi(t) ∈ [0, pif]|pi(t) ∈ [Lij , Hij ]}.

From this set we define the set of vehicle pairs that do not
have a shared zone as I = {(i, j) ∈ N ×N|Cij = ∅}.

A. Full program using shared zones

This leads to a new optimization program

minimize
uE(t)

J(xi(p), ui(p), u′i(p),xi(pif )) (2a)

subject to
(1b)− (1e)
tk(Hkl) ≤ tl(Llk), k = O′m,n, l = O′m,n2

,

n1 < n2 and (k, l) ∈ Ic,∀n1 ∈ N .
(2b)

where Ic denotes the set complement of I. The non-collision
constraints (2b) check the times when the vehicles enter and
leave a shared zone instead of the intersection. In contrast to
the non-collision constraints (1f) it is not enough to check
for constraints between consecutive vehicles in the crossing
order but constraints need to be imposed between all vehicles
crossing paths. Further, the crossing order matrix O has been
replaced by a new matrix O′ of crossing orders. This is
because, when introducing the shared zones, it is clear that
the number of interesting crossing orders might be reduced.
For instance, for the scenario depicted in Fig. 2, which will
be discussed in Section IV, the optimization program (2) will

yield the same solution regardless of where in the crossing
order the blue vehicle is located, since it does not have any
constraints related to the other vehicles. In Section IV we
will present an algorithm that construct the matrix O′.

IV. REDUCTION OF NUMBER OF OPTIMIZATION
PROBLEMS SOLVED

In this section an algorithm is defined that finds the matrix
of reduced crossing orders O′. The idea behind the algorithm
is to remove crossing orders that lead to identical collision
constraints (2b). Two collision orders Om,: and Ok,: lead to
indentical collision constraints if the only difference between
them is that consecutive vehicles, which have no shared zone
(i.e., do not impose a constraint), have switched places.

Example 1. Consider the scenario depicted in Fig. 2. For
this case, the matrix of all crossing orders is

O = [[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1]]T .
(3)

It is clear that vehicle 1 does not have a shared zone with
vehicle 2 or 3. Thus, the consecutive order of vehicles 1, 2
and 1, 3 does not matter. This can be seen by studying the
constraints the crossing orders give rise to

(1,2,3)⇒ t2(H23) ≤ t3(L32), (1,3,2)⇒ t3(H32) ≤ t2(L23)

(2,1,3)⇒ t2(H23) ≤ t3(L32), (2,3,1)⇒ t2(H23) ≤ t3(L32)

(3,1,2)⇒ t3(H32) ≤ t2(L23), (3,2,1)⇒ t3(H32) ≤ t2(L23)

As can be seen, crossing orders (1,2,3),(2,1,3),(2,3,1) give rise
to identical constraints. Further, this is so since the only
difference between (1,2,3) and (2,1,3) is that the vehicles 1 and
2, which do not cross paths, have swapped places. The same
is true for (2,1,3) and (2,3,1), where non-crossing vehicles have
switched places. Lastly, note that (1,3,2),(3,1,2),(3,2,1) yield
identical constraints for similar reasons. Thus, in this specific
scenario the number of optimization programs needed to be
solved can be reduced from 6 to 2.

Based on the idea that crossing orders are identical under
the swap of non-crossing vehicles we formulate Algorithm
(IV.1) to calculates the matrix of reduced crossing orders O′.

Algorithm IV.1.

Step 0: Find the set I1 = {(i, j) ∈ I : i < j}, sort it on
the first and then second entry. Further, create the
empty set I2.

Step 1: Take the first element (i, j) in I1.
Step 2: Go through the rows of the crossing order matrix

O and remove all orders (rows) containing the pair
(i, j) in sequence. Also, set I2=I2 ∪ {j}.

Step 3: Remove (i, j) from I1, i.e, I1 = I1 \ (i, j).
Step 4: If I1 = ∅ stop, otherwise take the next element

(k, l) in I and do the first of the following that
apply

1) If k ∈ I2 set (i, j) = (l, k) and go to step 2,
2) Set (i, j) = (k, l) go to step 2.
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Fig. 2. Scenario with three vehicles, where
the red and green cross paths.
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Fig. 3. Scenario 2, four vehicles all driving
straight.
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Fig. 4. Scenario 3, three vehicles, all crossing
paths.

As is implied in Step 4 of Algorithm IV.1 it matters if
crossing orders containing (i, j) or (j, i) is removed from
O. This is illustrated by revisiting the scenario in Fig. 2.

Example 2. In Example 1 we saw that crossing orders
(1,2,3),(2,1,3),(2,3,1) yield identical collision constraints. As
did the three crossing orders (1,3,2),(3,1,2),(3,2,1). Hence, it
is enough to solve two optimization program of the type (2),
using one crossing order from (1,2,3),(2,1,3),(2,3,1) and one
from (1,3,2),(3,1,2),(3,2,1). Further, this means that Algorithm
IV.1 should provide us with two elements, one from each
group of crossing orders.

Apply Algorithm IV.1 to the original matrix of crossing
orders, (3). Set I = {(1,3),(3,1),(1,2),(2,1)} so the sets defined
in Step 0 of the algorithm is I1 = {(1,2),(1,3)} and I2 = ∅.
Now, choose the first entry in I1, which is (1,2), and remove
all rows of O containing exactly that sequence, this results in
the matrix [[1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 2, 1]]T . Further, we
also set I2 = {2}. In the third step, remove (1,2) from I1,
i.e., now I1 = {(1,3)}. In step four, I1 is not empty so take the
element that is left, (1,3), and note that 1 /∈ I2, so choose
(1,3) and go back to step 2 which after completion gives
[[2, 3, 1], [3, 2, 1]]T . This is the end of the algorithm since
I1 is now empty. As can be seen, the resulting matrix of
crossing orders O′ = [[2, 3, 1], [3, 2, 1]]T contains exactly
one element from (1,2,3),(2,1,3),(2,3,1) and one element from
(1,3,2),(3,1,2),(3,2,1). It was important that the second sequence
removed was (1,3) and not (3,1) since removing (3,1) would
have resulted in the following three rows in the reduced
crossing matrix (1,3,2),(2,1,3),(3,2,1).

As is evident from Examples 1 and 2 the minimum number
of crossing orders are not unique. However, note that all the
minimum number of crossing orders give the same solution.
In the next section, Section V, it is proved that Algorithm
IV.1 gives the minimum number of crossing orders under
the assumptions that the intersection has k legs, there are n
vehicles and at most one vehicle in each lane at all times.

V. PROOF OF ALGORITHM

The aim of this section is to prove that Algorithm IV.1
provides us with the smallest possible reduced crossing
order matrix which provides all unique formulations of the
optimization program (2). The proof is divided into two main

parts and follows the same outline as Examples 1 and 2.
What this means is that the first part of the proof groups
the crossing orders that yield identical collision constraints,
similar to what is done in Example 1. This is done via the
concept of equivalence relations and equivalence classes. For
an introduction to these fundamental mathematical concepts,
see, for instance [14], [15]. The second part of the proof is
to apply the algorithm IV.1 to a general crossing scenario as
we did in Example 2 and prove that we end up with exactly
one crossing order from each group.

A. Group crossing orders

For convenience of the proof, we will, instead of dis-
cussing the crossing order matrix O study the set of all
crossing orders S, i.e, the rows of O are the elements of
S. As mentiond, the idea of this part of the proof is to
group the crossing orders using equivalence classes. The
reason for this, is that there is a wellknown theorem in
abstract algebra guaranteeing that equivalence classes on a
set, in our case S, forms a partition of that set. To define
equivalence classes we first need to define an equivalence
relation on S . Further, to define this relation we define a
bijection swap(i,j) : S → S for each, non-crossing vehicle
pair (i, j) ∈ I1 = {(i, j) ∈ I : i < j}, such that if s ∈ S

swap(i,j)(s) =


s(j,i) if s = s(i,j)

s(i,j) if s = s(j,i)

s = s otherwise.
(4)

where s(i,j) is an element of S which contains the sequence
(i, j). The swap operator (4) swap the places of vehicles i, j
in the crossing order if they appear in sequence, otherwise
it leaves the crossing order unchanged. Further, we say that
two elements s1, s2 ∈ S fulfill relation R if

s1Rs2 = {(s1, s2) ∈ S × S :

swapk(i,j)(s1) = s2 for some (i, j) ∈ I1 and k = {1, 2}}.
(5)

where swap2
(i,j)(s) = swap(i,j)(swap(i,j)(s)). The interpre-

tation of two vehicles being in the relation R is that they
lead to identical optimization programs, since either the
permutations are the same, or we have shifted the position of
vehicles that do not have a shared zone with each other. With
the observation that any operator swap(i,j) with (i, j) ∈ I1
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is its own inverse, it is easy to show that R is an equivalence
relation on S.

Theorem 1. The relation R defined by (5) is an equivalence
relation on the set of crossing orders S.

Proof. Let s1, s2, s3 ∈ S and let swap(i,j) for some
(i, j) ∈ I1.

Reflexive? Prove that s1Rs1. s1 ∈ S . True, since
swap2(i,j)(s1) = s1 for any element in S.

Symmetric? Prove that if s1Rs2 then s2Rs1. True,
since if swap(i,j)(s1) = s2 then swap(i,j)(s2) =
swap(i,j)(swap(i,j)(s1)) = s1

Transitive? Prove that if s1Rs2 and
s2Rs3 then s1Rs3. This is true since
swap2(i,j)(s1) = swap(i,j)(swap(i,j)(s1)) = swap(i,j)(s2) = s3.

Using this equivalence relation we define the equivalence
class on S of the element s1 to be [s1] = {s ∈ S : sRs1}.
From the equivalence relation we obtain a family of equiv-
alent classes [s1], [s2] . . . , [sk]. According to a well-known
theorem in abstract algebra equivalent classes of a set forms
a partition of that set, [15]. Thus, the equivalence classes
[s1], [s2] . . . , [sk] form a partition of S, i.e. ∪[si] = S and
[si] ∩ [sj ] = ∅ if i 6= j. We make the claim that the
elements within each equivalence class will lead to identical
formulation of the optimization program (2), which is evident
from the interpretation made earlier of the relation R. Thus,
to obtain all unique formulations of the optimization program
(2) it is enough to pick exactly one representative from each
equivalence class. The goal is now, to prove that Algorithm
IV.1 does exactly that. But first, let us return to scenario 2
to illustrate the mathematical concepts we introduced above.

Example 3. Consider, again, the crossing scenario depicted
in Fig. 2. For this case, the set of all crossing orders is

S = {(1,2,3),(1,3,2),(2,1,3),(2,3,1),(3,1,2),(3,2,1)}.

Next, we want to define one operator for each vehicle pair
which do not have crossing paths. As can be seen in Fig. 2,
the vehicle 1 do not cross path with vehicle 2 or 3. Therefore,
we introduce the swap operators swap(1,2) and swap(1,3)

as defined by (4). Applying these operators to some of the
elements in

swap(1,2)((1,2,3)) = (2,1,3), swap(1,3)((1,2,3)) = (1,2,3),

swap(1,2)((1,3,2)) = (1,3,2), swap(1,3)((1,3,2)) = (3,1,2),

If the operators are applied to all 24 elements of S and
recall the interpretation of the relation R it can be see that
(1,2,3),(2,1,3),(2,3,1) are equivalent and (1,3,2),(3,1,2),(3,2,1) are
equivalent. Thus, we end up with the following two equivalent
classes

S1 = {(1,2,3),(2,1,3),(2,3,1)},
S2 = {(1,3,2),(3,1,2),(3,2,1)},

(6)

which forms a partition of the original set of crossing orders
S. Further, these equivalent classes translate to non-collision
constraints of the type (2b)

S1 ⇒ t2(H23) ≤ t3(L32), S2 ⇒ t3(H32) ≤ t2(L23).

The sets (6) are identical to the grouping in Example 1 and
thus the reduced number of crossing orders found in Example
2 contained exactly one element from each equivalent class.

B. Algorithm provides minimum set

In the previous section, we found a partition of the set of
crossing orders S. We denoted the sets of this partition by
[s1], [s2] . . . [sk] and concluded that all elements of such a
set yields the exact same collision constraints (2b). In this
section, we prove that Algorithm IV.1 provides us with one
and only one element from each of these sets.

Theorem 2. Assume we have a k-dimensional crossing and
N vehicles, and at most one vehicle in each lane. Then,
applying Algorithm IV.1 to the matrix of crossing orders
O will result in a matrix of crossing orders O′ which will
contain exactly one crossing order from each equivalence
class defined by the equivalence relation (5).

Proof. Applying the algorithm to the matrix of crossing
orders O to obtain a reduced crossing order matrix O′ is
identical to applying it to the set of crossing orders S and
end up with a subset A which contains the rows of O′.
This reduced set A is arrived at by removing one specific
order of each redundant vehicle pair. Assuming one of these
vehicle pairs is (i,j) and all sequences containing that order
is removed, then it means all elements s ∈ S have been
removed for which swap(i,j)(s) = sj,i.
First, we prove that there is at least one element from each
equivalent class in A. This follows from transitivity of the
equivalence relation in the following manner. Applying the
algorithm to any element s ∈ S implies that

swap1(s) = s1, swap2(s1) = s2, . . . , swapn(sn−1) = sn,

⇒ sRs1, s1Rs2, . . . , sn−1Rsn.

where the only element belonging to A is sn, but by
transitivity sRsn so sn is in the same equivalence class as
s. Thus, all members of S are related by the equivalence
relation R to some element in A.

Now, let us prove that A cannot contain two elements
of any one equivalence class. Note that this is trivial if A
contains only one element. Therefore assume that A contains
at least two elements. For a proof of contradiction assume
that the two elements a1, a2 ∈ A and that a1, a2 ∈ [s]. Then,
we know from the construction of our equivalent classes that

a) swap(i,j)(s) = a1 or b) swap2
(i,j)(s) = a1,

I) swap(k,l)(s) = a2 or II) swap2
(k,l)(s) = a2,

for some redundant vehicle pairs (i,j),(k,l) ∈ I1. This leads
us to four different cases:
b) and II): Since by definition the swap operator is its own
inverse, it follows directly that s = a1 = a2. Contradiction.
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a) and II): Then s = a2 and swap(i,j)(s) = a1, but then a2
is either equal to a1 or a1 and a2 contain the sequence (i,j)

and (j,i) respectively which means they cannot both belong
to A. Contradiction.
b) and I): Same argument as for a) and II).
a) and I): s can be:

1) s = s(i,j) but not (k,l) or (l,k),
2) s = s(j,i) but not (k,l) or (l,k),
3) s = s(i,j),(l,k), i.e., booth,
4) s = s(i,j,k) where j = l.

If we have 1), 2) or 3) it is clear that one of a1 and a2
contain (i,j) while the other contains (j,i). Since (i,j) is a
redundant vehicle pair, only one of a1 and a2 can belong to
A. If we have 4) then a1 contains (j,i) and a2 contains (k,j).
However, this would imply the sequences (i,j) and (k,j) has
been removed, which is impossible since after the first of
these were removed j would be added to I2 which would
prevent the removal of the other, by step 4 in Algorithm IV.1.
So, only one of a1 and a2 can belong to A.

VI. CASE STUDY

In this section the new formulation presented in this paper
will be compared to the already existing formulation. The
comparison will be made on the three scenarios depicted in
Fig. 2-4. Each vehicle has three choices, move straight, turn
right or turn left. In all three scenarios, the radius of a right
turn is 2 m, the radius of a left turn is 7.5 m while going
straight implies infinite radius. The minimum velocity is set
to vmin = 1 km/h and the legal speed limit vl = 90 km/h.
Further, the minimum and maximum acceleration of each
vehicle in all scenarios is amin = −4 m/s2 and amax =
4 m/s2, respectively. All vehicles are assumed to start with
acceleration 0 and a chosen reference velocity. The rest of
the problem data is presented in Table I. Each quadratic
optimization program is discreatized using first order Euler
discretization with a sampling interval of 1 m and solved
using the second order cone program solver ECOS, [16].

TABLE I
PROBLEM DATA FOR SCENARIO 1, 2 AND 3. INITIAL POSITION, RADIUS

AND ACCELERATION LIMIT IS GIVEN FOR EACH VEHICLE.

Scenario 1 Scenario 2 Scenario 3
Init. position (m) [75, 70, 70] [70, 70, 70, 70] [70, 80, 80]
Radius (m) [2.5,∞,∞] [∞,∞,∞,∞] [7.5, 7.5, 7.5]
[wi1, wi2, wi3] ∀i [1, 1, 0.5] [1, 1, 0.5] [1, 1, 0.5]

A. Performance evaluation

Some results of solving the programs (1) and (2) for the
Scenarios 1 to 3 are shown in Table II. The reference speeds,
which are not constant due to the fact that the vehicles want
to move slower when turning, are illustrated as dotted lines in
the top plots of Figs. VI-A-5. As can be seen in the first row,
the number of crossing orders that needed to be considered
when using the intersection as a critical zone was 6, while it
was reduced to 2 when using the shared zone approach (as
expected from Examples 1 and 2). However, the crossing
time has not been reduced in this case. This is because the

reference velocity of the red vehicle is much larger than that
of the green vehicle which allows them both to maintain their
preferable speed in both cases. If, however, we increase the
green vehicle’s reference speed to 60 km/h, changes in the
acceleration of the green and red vehicles are made and using
the shared zone approach the total crossing time is reduced
by 0.4 s.

Further, one can see from Table II that the total computa-
tion time for the QPs are lower for the shared zone approach
compared to the intersection, and this is, in spite of, only two
crossing orders providing feasible solutions in the case of
intersections, i.e., only two of the six QPs needs to be solved.
This is because the blue vehicle has a longitudinal velocity
which is significantly lower than the red and green vehicles
which makes it impossible for any of them to slow down
enough to leave way for the blue vehicle, without violating
the minimum acceleration constraints.

For the second scenario, which features four vehicles, one
can most clearly see the benefits of the shared zone approach.
The number of QPs needed to be solved have been reduced
from 24 to 14 and the total optimization time has been
reduced by 49%. The time to find the fourteen orders that
needed to be solved took 51 ms which means that the total
computation time was reduced by 45%. Further, the total
time it took for the vehicles to travel through the crossing
was reduced from 4.9 s to 2.9 s.

In the third scenario, no reduction of the number of QPs
solved is possible since all vehicles are crossing eachothers
paths. Further, one can see very small variations in the so-
lutions, the total crossing time has been reduced slightly but
the calculation of the optimization problem has also gone up,
slightly. Further, checking whether any crossing orders could
be removed or not took an additional 14.28 ms which makes
the shared zone approach 33 ms slower in this scenario.
However, in an unpredictable traffic setting the small increase
in computational time for simple scenarios such as this one
might be worth it due to the large time reductions and
improved performance possible in more complex scenarios
as we saw in Scenario 2.

Lastly, we study the optimal speed and acceleration tra-
jectories for all vehicles, which are presented in Fig. VI-
A-5. It can be observed that the velocity and acceleration
trajectories generated by the algorithm are smooth. Further,
one can notice from the bottom plots of VI-A and 5 that the
linearized acceleration constraints (dash-dotted lines) give
rise to linearization error, since the optimal acceleration
trajectories touch the linearized bounds. In practice, the
linearization error could be removed by using sequential
quadratic programming, [17].

VII. CONCLUSIONS

In this paper we have provided an alternative formulation
of the optimization based algorithm for safe and collaborative
driving first introduced in [9] by introducing less restrictive
collision constraints. This proposed approach decrease the
number of quadratic optimization problems that need to
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Fig. 5. Scenario 1-3 from left to right. Solid lines represent the optimal trajectories (speed in top figure, acceleration in the bottom figure), while dotted
lines represent reference speed in the top plot and dash-dotted linearized acceleration limits in the bottom.

TABLE II
COMPARISON BETWEEN THE ALGORITHMS, ONE WITH THE CRITICAL

ZONE BEING DEFINED BY THE INTERSECTION AND THE OTHER WHERE

THE CRITICAL ZONES ARE DEFINED VIA SHARED ZONES. SCENARIOS, 1,
2 AND 3 REFER TO FIG. 2, 3 AND 4, RESPLECTIVELY.

Intersection Shared zones

Scen. Order

QP
Calc.
time
(ms)

Tot.
cross.

time (s)
# Order Order

QP
Calc.
time
(ms)

Tot.
cross

time (s)
# Order

1 3 2 1 128 11.15 6 3 2 1 69 11.14 2
2 3 4 2 1 1504 4.12 24 3 4 2 1 771 2.9 14
3 1 3 2 227 7.5 6 1 3 2 246 7.47 6

be solved to find the solution. An algorithm was formu-
lated which was proven to provide the minimum number
of optimization programs that needs to be solved to find
the solution. Further, in simulation, it was seen that in
scenarios with four vehicles the computation time could be
significantly lowered.
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“Centralized mpc for autonomous intersection crossing,” in Interna-
tional Conference on Intelligent Transportation Systems, 2016.

[11] A. Katriniok, P. Kleibaum, and M. Josev̌ski, “Distributed model
predictive control for intersection automation using a parallelized
optimization approach,” in IFAC, Toulouse, France, 2017.

[12] G. R. de Campos, P. Falcone, R. Hult, H. Wymeersch, and J. Sjöberg,
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