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Abstract The global temperature trend observed over the last century is largely the result of two
opposing effects—cooling from aerosol particles and greenhouse gas warming. While the effect of
increasing greenhouse gas concentrations on Earth’s radiation budget is well constrained, that due
to anthropogenic aerosols is not, partly due to a lack of observations. However, long-term surface
measurements of changes in downward solar radiation (SDSR), an often used proxy for aerosol radiative
impact, are available worldwide over the last half century. We compare SDSR changes from ∼1,400 stations
to those from the Coupled Model Intercomparison Project Version 5 global climate simulations over the
period 1961–2005. The observed SDSR shows a strong early downward trend followed by a weaker trend
reversal, broadly consistent with historical aerosol emissions. However, despite considerable changes to
known aerosol emissions over time, the models show negligible SDSR trends, revealing a lethargic response
to aerosol emissions and casting doubt on the accuracy of their future climate projections.

Plain Language Summary Observations of incoming solar radiation, as measured at
approximately 1,400 surface stations worldwide, show a strong downward trend from the 1960s to the
1980s, followed by a weaker trend reversal thereafter. These trends are thought to be due to changes in the
amount of aerosol particles in the atmosphere, and we find support for that here in the temporal evolution
of anthropogenic aerosol emissions. This is expected because aerosol particles reflect and/or absorb
sunlight back to space and have a net cooling effect on Earth’s climate. However, we find that the current
generation of climate models simulates negligible solar radiation trends over the last half century,
suggesting that they have underestimated the cooling effect that aerosol particles have had on climate in
recent decades. Despite this, climate models tend to reproduce surface air temperature over the time period
in question reasonably well. This, in turn, suggests that the models are not sensitive enough to increasing
greenhouse gas concentrations in the atmosphere, with important implications for their ability to simulate
future climate.

1. Introduction

Since preindustrial times, global mean surface temperatures have increased by approximately 1 K. An exam-
ination of the global surface temperature record reveals that the rate of warming has varied substantially
through time, with periods of accelerated warming punctuated by periods with weak or negligible temper-
ature trend (Hartmann et al., 2013). There is now broad consensus within the climate science community on
the root cause of the overall warming, namely, rising levels of atmospheric CO2, now at 50% above preindus-
trial levels, driven predominantly by anthropogenic burning of fossil fuels (Cook et al., 2016). Understanding
exactly how sensitive Earth’s climate is to CO2 (and other greenhouse gas [GHG]) emissions is critically impor-
tant for efforts to mitigate future climate change and particularly for efforts to limit warming to less than
1.5 ∘C, a goal now shared by most countries as stated in the Paris Agreement (United Nations, 2016). Despite
recognition of the importance of quantifying Earth’s climate sensitivity, that is, the global mean surface tem-
perature increase for a given atmospheric CO2 increase, this quantity remains elusive. Lack of progress on this
issue can be partly attributed to the difficulty of deducing climate sensitivity to CO2 based on observations.
Such efforts have been plagued by the fact that aerosol particles, which have a net cooling effect on climate,

RESEARCH LETTER
10.1029/2018GL078298

Key Points:
• Trends in downward solar radiation

measured at ∼1,400 surface stations
are presented for the last half century

• Historical aerosol emissions support
the idea that these observed radiation
trends were mainly due to changes in
atmospheric aerosol loading

• CMIP5 simulations show negligible
solar radiation trends over the same
period, raising doubts about their
ability to simulate future climate

Supporting Information:
• Supporting Information S1

Correspondence to:
T. Storelvmo,
trude.storelvmo@geo.uio.no

Citation:
Storelvmo, T., Heede, U. K., Leirvik, T.,
Phillips, P. C. B., Arndt, P., & Wild, M.
(2018). Lethargic response to aerosol
emissions in current climate models.
Geophysical Research
Letters, 45, 9814–9823.
https://doi.org/10.1029/2018GL078298

Received 12 APR 2018

Accepted 23 AUG 2018

Accepted article online 29 AUG 2018

Published online 19 SEP 2018

©2018. The Authors.
This is an open access article under the
terms of the Creative Commons
Attribution-NonCommercial-NoDerivs
License, which permits use and
distribution in any medium, provided
the original work is properly cited, the
use is non-commercial and no
modifications or adaptations are made.

STORELVMO ET AL. 9814

http://publications.agu.org/journals/
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1944-8007
http://orcid.org/0000-0002-0068-2430
http://orcid.org/0000-0002-3619-7568
http://dx.doi.org/10.1029/2018GL078298
http://dx.doi.org/10.1029/2018GL078298
https://doi.org/10.1029/2018GL078298
http://creativecommons.org/licenses/by-nc-nd/4.0/


Geophysical Research Letters 10.1029/2018GL078298

have been increasing along with CO2 and have therefore masked some unknown proportion of CO2-induced
warming to date (Andreae et al., 2005; Millar & Friedlingstein, 2018). Two apparent pauses in global warming
(in the 1960s and in the 2000s) have both been attributed to aerosol changes (D. M. Smith et al., 2016; Wilcox
et al., 2013; Wild, 2016). Representing the cooling effect of aerosol particles in global climate models (GCMs)
has proven notoriously challenging, and GCM estimates of aerosol cooling continue to diverge (Boucher
et al., 2013).

The overall aerosol effect on climate is often quantified in terms of its effective radiative forcing (ERF; Myhre
et al., 2013). ERF can be defined in this context as the perturbation to Earth’s radiation balance at the
top-of-the-atmosphere (TOA) associated with a given change in atmospheric composition—it is negative for
anthropogenic aerosols, which cause more solar radiation to be reflected back to space, but positive for CO2

and other GHGs, which trap more infrared radiation in the Earth system. The underlying mechanisms respon-
sible for the aerosol ERF are not well understood, and there have thus far been few observational constraints
on models incorporating these mechanism. One implication of the lack of observational constraints concerns
the current generation of state-of-the-art GCMs. These models must be able to broadly capture the surface
temperature evolution of the last century in order to have any credibility. Yet they all reasonably do so despite
having vastly different reported climate sensitivities (Forster et al., 2013; Kiehl, 2007; Knutti, 2008). Among
the GCMs that participated in the Coupled Model Intercomparison Project Version 5 (CMIP5), for instance, the
reported equilibrium climate sensitivity (ECS) estimates ranged from 2.0 to 4.5 ∘C. Clearly, observational con-
straints that embody aerosol forcing elements are urgently needed to enhance model realism and to help
narrow the wide range of current ECS estimates.

For this purpose, we here make use of a frequently used proxy for aerosol forcing, namely, perturbations to the
incoming solar radiation at the surface (Cherian et al., 2014). Downward fluxes of solar radiation at the surface
(SDSR) have been measured extensively at hundreds of stations worldwide since the midtwentieth century
and have been recorded as monthly averages in the Global Energy Balance Archive (GEBA; Wild et al., 2017).
Because of atmospheric absorption of solar radiation, aerosol forcing evaluated at the surface differs from
that evaluated at the TOA. As such, SDSR changes represent an imperfect proxy for ERF, but the GEBA data
set is nevertheless a unique and invaluable data set in this context because of its length and relative consis-
tency. Satellite observations of changes to the net solar radiation at the TOA would be preferable, but reliable
long-term records are unfortunately not available. Most GEBA stations do not record separate clear-sky and
all-sky SDSR records, so a caveat to the analysis presented here is that cloud changes that are unrelated to
aerosol changes could to some extent be responsible for the observed trends. However, previous papers have
analyzed SDSR trends from a subset of the GEBA stations that do record separate clear-sky and all-sky data,
and they consistently do not find support for the idea that the trends are dominated by cloud changes (Wild,
2012, and references therein). In the following, we will therefore assume that the reported SDSR changes
are reliable aerosol ERF proxies. The GEBA data set will be described in more detail in the following section
(section 2.1), along with the observational data set used for surface temperature in this study (section 2.2).
More details on the CMIP5 model output that we utilized for this study are presented in section 2.3. There-
after follows a comparison of simulated and observed temperature and SDSR trends globally (section 3.1) and
regionally (section 3.2). In section 4 we discuss the implications of our findings and conclude the paper.

2. Methods
2.1. The GEBA Data Set
The GEBA data set consists of monthly mean SDSR values in units of watts per meter squared, as measured by
radiometers at more than 2,000 surface stations worldwide (Wild et al., 2017). It contributed to the discovery
of the phenomenon now known as global dimming, a term that refers to the strong downward trend in SDSR
documented in surface measurements worldwide starting in the mid-1950s (Liepert, 2002). Many locations
saw a reversal of the dimming trend or a brightening in the 1980s (notably Europe and North America), while
at other locations the dimming trend continues until the present, for example, in India and China (Wild, 2012).
The brightening is mainly attributable to air quality measures implemented in Europe and the United States in
the 1960s and 1970s, which caused subsequent sharp declines in aerosol emissions in those regions (Monks
et al., 2009), leading to an inverse U-shaped effect that is known in economics as the environmental Kuznets
curve (Grossman & Krueger, 1995).

The GEBA data quality is ensured through rigorous quality control, as described in Gilgen and Ohmura (1999)
and Gilgen et al. (1998). Irrespective of data quality, comparisons between data from a single/few station(s)
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Figure 1. Global overview of location of Global Energy Balance Archive stations included in this study, along with the
sign and magnitude of their downward flux of solar radiation at the surface trend, calculated based on 5-year running
means from 1961 to 2013 (red corresponds to brightening and blue to dimming). Station records have been
complemented with machine-learning algorithms (random forests).

and grid box averages are always challenging. The question of whether GEBA stations are representative of
their general surroundings, and specifically whether urban impacts dominate SDSR trends, has previously
been addressed by Wang et al. (2014), who concluded that the urban impact is very small. This is also con-
sistent with our own finding that separating the GEBA stations into urban and rural categories did not yield
significantly different SDSR trends (see supporting information Figure S3 for further information on the sta-
tion classification). We therefore deem the comparison between data from the GEBA stations and simulated
averages from model grid boxes in which the stations are located as appropriate.

It is worth noting that many of the GEBA stations do not have unbroken time series over the time period stud-
ied here. In fact, data availability prevented us from incorporating measurements prior to 1961 in this study,
which is based on approximately 1,400 surface stations and has a global as well as regional focus. For the
analysis presented here, we produced annual SDSR means for each station based on the monthly mean data
for the time period 1961 to 2015. Figure 1 shows the geographical distribution of the stations along with the
sign of their individual SDSR trend over the time period considered. It is reassuring that within a given region,
the sign of the trend is consistent across stations. The fact that observed trends in pan evaporation, sunshine
duration, and diurnal temperature range are generally consistent with the SDSR trends represents a further
vote of confidence for the GEBA data (Wild et al., 2005). Whenever stations had measurement gaps, interpola-
tion with the use of a machine-learning algorithm (Random Forests; Breiman, 2001) was applied, utilizing the
full suite of variables in the Climate Research Unit (CRU) TS4.00 data set described in the following subsection.
An alternative to filling data gaps in this way would be to simply carry out the analysis with the gaps present
in both the observed and simulated data sets. This approach yields a qualitatively similar outcome to the one
presented here; see Storelvmo et al. (2016) for the observed SDSR temporal evolution in this case.

2.2. The CRU TS4.00 Data Set
The CRU high-resolution-gridded climate data set TS4.00 was obtained by interpolating surface observations
from meteorological stations across the world’s land areas into 0.5∘ latitude/longitude grid cells (Harris et al.,
2014). The CRU TS4.00 data set contains multiple meteorological variables, but for the purpose of this study
we use only monthly mean surface air temperature (TS). For each monthly mean SDSR at a given GEBA station,
a corresponding TS value from the CRU TS4.00 grid cell within which the station lies is assigned. As for the
GEBA data, we create annual mean TS data and analyze the period 1961–2015.

2.3. The CMIP5 Historical Simulations
For comparison with the GEBA and CRU TS4.00 data described above, we use output from the CMIP5 his-
torical experiment (Taylor et al., 2012). The historical simulations are performed either with fully coupled
atmosphere-ocean GCMs (AOGCMs) or Earth System Models (ESMs) and are initiated from the respective
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Table 1
Coupled Model Intercomparison Project Version 5 Models, Number of Ensemble Members, and
Station-Averaged TS and SDSR Linear Trends

Model # of ensemble members TS trend (K) SDSR trend (Wm−2)

ACCESS1.0 3 0.90 0.20

ACCESS1.3 3 0.54 1.60

BCC-CSM1.1 3 0.03 −0.08

BNU-ESM 1 1.25 2.14

CanESM2 5 1.15 1.15

CCSM4 3 1.07 0.77

CESM(CAM5) 3 0.79 0.83

GFDL-CM3 5 0.78 −0.28

CMCC-CM 1 0.99 0.03

CMCC-CESM 1 0.60 −0.62

CMCC-CMS 1 1.09 1.07

CNRM-CM4 8 0.85 −0.05

CSIRO-Mk3.6.0 9 0.72 0.35

GFDL-ESM2G 1 1.04 1.26

GFDL-ESM2M 1 0.76 0.65

FGOALS-g2 5 −0.20 0.27

FIO-ESM 3 0.56 −0.14

GISS-E2-H 4 0.64 −2.11

HadCM3 10 0.67 0.21

HadGEM2-CC 1 0.39 −0.48

HadGEM2-ES 4 0.82 0.99

INM-CM4 1 0.63 0.40

IPSL-CM5A-LR 4 1.22 1.52

IPSL-CM5B-LR 1 0.92 0.98

IPSL-CM5A-MR 3 1.03 1.07

MIROC5 5 −0.01 −0.03

MIROC5-ESM 3 0.66 2.17

MPI-ESM-LR 3 0.88 0.68

MPI-ESM-MR 3 1.02 0.63

MPI-ESM-P 2 1.08 0.56

MRI-GCM3 5 0.48 −0.19

NorESM1-M 3 0.71 0.56

Model ensemble mean 108 (sum) 0.75 0.50

Observations — 0.96 −2.56

Note. SDSR = downward flux of solar radiation at the surface; TS = surface air temperature.

preindustrial control simulations for each AOGCM/ESM. The simulations begin in 1850 and end in 2005 and

are forced with observed atmospheric composition and land cover changes. Some models have been run only

once for the period 1850–2005, while others have been run repeated times in order to produce an ensemble

of simulations. The ensemble members for a given model differ only in their initial states, which are taken from

different points in the preindustrial control simulation. In this study, we analyzed monthly mean data from 33

unique AOGCMs/ESMs, which each have one to nine ensemble members, for a total of 108 simulations. The

models, their number of ensemble members, and their station-mean temperature and SDSR trends are listed

in Table 1. In order to make a fair comparison with the observations, we only utilize output from model grid

boxes that contain at least one GEBA station.
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Figure 2. The red line represents the 5-year running mean of changes to temperature (a) and radiation (b) since 1961 averaged across all GEBA stations (b) and
corresponding grid boxes for the CRU data set (a). The black line represents the 5-year running mean of the averaged change in temperature (a) and radiation (b)
simulated by all 108 CMIP5-model ensembles since 1961 for grid boxes corresponding to the location of GEBA stations. The shaded area represents the running
mean of the standard deviation of the trend among models. The mean of the first 5 years of the time series (1961–1966) is calculated for each model and is
subsequently subtracted from each year, such that each model has a trend only relative to its individual baseline. The standard deviation thus represents the
deviation of a modeled quantity relative to individual model baselines. The right axis and blue line in (b) illustrates linearly interpolated decadal relative changes
to total anthropogenic aerosol emission since 1960 averaged over all grid boxes corresponding to the location of GEBA stations based on the Intergovernmental
Panel on Climate Change Fifth Assessment Report emission data set (Lamarque et al., 2010). CMIP5 = Coupled Model Intercomparison Project Version 5;
CRU = Climate Research Unit; TS = surface air temperature; SDSR = downward flux of solar radiation at the surface; GEBA = Global Energy Balance Archive.

3. Results
3.1. Global Trends in Models and Observations
3.1.1. Temperature Trends
Figure 2a shows the year-to-year change in TS in observations as well as in the ensemble mean of all 108 sim-
ulations for the period 1964–2005, both averaged across the ∼1,400 stations. Despite considerable spread
among the simulations, the ensemble mean TS trend captures the observed trend reasonably well until the
early 1980s. Thereafter, the models underestimate the station mean warming. This finding appears to con-
tradict earlier comparisons of simulated and observed global mean surface temperature trends, for which
the CMIP5 models actually tend to produce slightly too much warming (Flato et al., 2013). However, the
comparison here is somewhat unusual in the sense that we compare year-to-year changes averaged across
GEBA stations, which are unevenly distributed around the globe (see Figure 1). The present comparison will
therefore likely accentuate systematic regional/continental model biases that may be averaged out in global
means. A similar underestimate of warming over land surfaces has previously been reported for CMIP3 cli-
mate models (Wild, 2009). In section 3.2 we discuss how the discrepancy between simulated and observed
temperature trends in recent decades differ between regions and propose plausible causes for it in section 4.

3.1.2. Surface Radiation Trends
Figure 2b shows the corresponding SDSR changes for the same time period and reveals an egregious mis-
match between models and observations. While the observed SDSR decreases steadily from 1961 to ∼1990,
followed by a weaker upward trend from 1990 to 2005 and beyond, the models show very weak trends that
are not statistically significant. These findings are consistent with what has previously been reported for iso-
lated regions, for example, for China and Japan by Allen et al. (2013) and Dwyer et al. (2010) and for Europe
by Allen et al. (2013). As evident from Figure 2b, not only does this discrepancy persist in station-averaged
SDSR but also its magnitude is striking. This raises major concerns about the fidelity of the models and their
representation of processes that govern SDSR. Along with the SDSR changes with time, the figure also shows
how the total anthropogenic emissions of aerosol particles and their precursors have changed over the time
period of interest (Lamarque et al., 2010). Though we cannot prove a causal relationship, Figure 2b strongly
suggests that the SDSR changes were driven by aerosol-induced changes in the reflection and/or absorp-
tion of sunlight. In other words, the observed changes in SDSR are broadly consistent with known emission
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Figure 3. Following the same principles as Figure 2a, the observed and simulated temperature trends for grid boxes corresponding to the Global Energy Balance
Archive stations are divided by continent. The two American continents are combined due to the low density of stations in South America (see Figure 1). Stations
on oceanic islands far from continents are excluded. TS = surface air temperature; CMIP5 = Coupled Model Intercomparison Project Version 5; CRU = Climate
Research Unit.

changes, while the simulated SDSR changes are not. This is true whether SDSR changes are calculated for
all-sky or clear-sky conditions (see Figure S1). The lack of simulated SDSR trend is particularly striking given
that the emissions displayed in Figure 2b are exactly the same as those used as input to the CMIP5 simula-
tions. As one would expect, selecting only models that have a reported strong negative aerosol ERF (Boucher
et al., 2013) slightly improves the comparison with observations (see Figure S2), consistent with findings by,
for example, Baker et al. (2015). The following subsection presents the same analysis by region and thus sheds
further light on the underlying cause of the disagreement between observed and simulated SDSR trends.

3.2. Regional Trends in Models and Observations
A regional comparison of simulated and observed temperature changes (Figure 3, station averages) reveals
that the underestimated warming trend in recent decades stems mainly from Europe, Asia, and Africa. The
rapid warming in Europe since the early 1980s is naturally partly attributable to increasing GHG concentra-
tions, but evident in Figure 4a is a coincident positive trend in SDSR across the region, which is not fully
captured by the CMIP5 models. Europe is by far the region with the best spatial station coverage (Figure 1),
and the reported SDSR trends have been corroborated with satellite observations (Wild et al., 2017). It has
been inferred that this observed radiation trend contributed roughly as much warming in recent decades as
GHGs (Philipona et al., 2009). This brightening is consistent with known trends in European aerosol emissions
and is likely in part responsible for the accelerated warming (Cherian et al., 2014).

Asian emissions are thought to have plateaued in the mid-1990s (Figure 4c), at which point the observed
warming trend overshoots the simulated one (Figure 3c). Since the simulated SDSR evolution appears to be
completely nonresponsive to the aerosol emissions that are driving the simulations, there is presumably also
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Figure 4. Following the same principles as Figure 2b, the observed and simulated radiation trends for GEBA stations are divided into continents. The two
American continents are combined due to the low density of stations in South America (see Figure 1). The blue line corresponds to the right axis and represents
the average change relative to the 1960s to anthropogenic aerosol emission over each continent. Note that areas with low density of GEBA stations are excluded
such that the aerosol emission changes for each continent is centered around areas of high density of stations, for example, aerosol emissions over Northern
Asia, Eastern Sahara, and Eastern South America are not included. SDSR = downward flux of solar radiation at the surface; CMIP5 = Coupled Model
Intercomparison Project Version 5; GEBA = Global Energy Balance Archive.

minimal aerosol impact on the simulated temperature evolution. Despite this lack of aerosol cooling, Asian
temperature changes are reasonably reproduced by the CMIP5 models until the mid-1990s, implying that
they are not sensitive enough to GHG changes. As one would expect if this is the correct explanation, the
simulated and observed temperatures start to diverge once Asian aerosol cooling stabilizes in the 1990s. It
is worth noting that post-2005 the observations again suggest additional dimming and reduced warming,
which is consistent with the current understanding of historical emissions in the region (Hoesly et al., 2018). A
recent comprehensive evaluation of Chinese SDSR trends reported by the GEBA stations confirmed that the
strong downward trend seen until the 1990s can be trusted but that the trend reversal may be slightly exag-
gerated (Yang et al., 2018). Identifying the reason(s) that the discrepancy between observed and simulated
SDSR trends is particularly large for Asia will require extensive follow-up research, but the fact that several
studies have recently concluded that present-day Asian aerosol emissions are underestimated by at least 50%
can likely explain some of the discrepancy (e.g., Jiang et al., 2013). This is broadly consistent with reports that
a majority of GCMs underestimate aerosol optical depth over East Asia (Shindell et al., 2013), and indeed, his-
torical aerosol emissions for the region have been revised upward for recent decades in the inventories that
will be used in the upcoming CMIP phase 6 (Hoesly et al., 2018). However, preliminary results (not shown)
suggest that emission increases far exceeding 50% would be required to resolve the disagreement between
simulations and observations in this case. In other words, it will likely be necessary to reexamine the GCMs’
treatment of processes that govern aerosol lifetime, transport, size distribution, and composition in order to
fully resolve this issue.
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For Africa and Oceania, SDSR trends are much weaker, as expected given the relatively weak historical emission
changes in those regions (but note that according to Wild et al., 2005, the Australian stations have issues that
preclude reliable trend calculations there). The observations show moderate dimming in Africa, which is prac-
tically absent in the CMIP5 simulations. Despite this, the models show slightly less warming than observed,
again supporting the notion that they are not sufficiently sensitive to GHG changes. The temperature evolu-
tion for the Americas is reasonably well reproduced by the CMIP5 models, even though they appear to lack
the observed SDSR trend. However, in this case the observed strong negative SDSR trend cannot fully be
explained by the aerosol emissions of Lamarque et al. (2010). That being said, the sharp dimming seen in the
GEBA data until the early 1970s, as well as the subsequent stabilization, is supported by the temporal evolu-
tion of anthropogenic sulfur dioxide emissions reported by S. J. Smith et al. (2011). We speculate that sulfate
was more central to SDSR trends observed over the Americas than they were elsewhere, where the total emis-
sions of aerosols and aerosol precursors are perfectly consistent with observed SDSR trends. In general, all
regional SDSR trends could also be affected by any changes in interregional aerosol transport associated with
circulation changes on decadal time scales.

4. Discussion and Conclusions

We report a like-for-like comparison of 1961–2005 simulated (CMIP5) air temperature and incoming solar
radiation (SDSR) at the surface with those reported for ∼1,400 stations by the CRU TS4.00 and GEBA data sets,
respectively. The observed temperature evolution is reasonably reproduced by the CMIP5 models until the
1980s, while the overall warming trend is underestimated thereafter. In strong contrast to the observations,
the CMIP5 models show little or no trend in SDSR over the relevant time period. This strongly suggests that
the models are collectively not responding to aerosol emissions in an appropriate way. The observed SDSR
trends are qualitatively consistent with known emission trends for aerosol particles and their precursors, while
the simulated trends are not. We therefore argue that the explanation for the SDSR trend discrepancy is not
predominantly emission biases but rather errors in the treatment of processes that translate aerosol emissions
into clear-sky and all-sky radiative forcings in the models. The failure by the CMIP5 models to reproduce the
observed SDSR trend can to some extent explain their biases in simulated temperature trends, especially if
a general model underestimation of the temperature response to GHG changes is invoked. This is the most
plausible, but not the only possible, explanation for our findings. Other possibilities include the following:
(1) If the observed SDSR trends are mainly caused by black carbon particles, which are believed to have a
net warming effect, that would mean that dimming does not necessarily equate to cooling; in which case
the above logic fails. However, even the largest historical black carbon emission estimates to date do not
support this idea (Bond et al., 2013). (2) Even if we are correct to assume that the CMIP5 models underestimate
aerosol cooling over land, they could still hypothetically have the correct amount of aerosol cooling (and
therefore a realistic ECS) in a global average sense, if they simultaneously overestimate aerosol cooling over
the ocean (e.g., due to unrealistic aerosol transport), and (3) the observed SDSR changes could in theory be
driven by changes in cloudiness and not aerosols. Cloud feedbacks, in which clouds change in response to
climate change and thus further amplify/dampen these changes (Boucher et al., 2013), could certainly be a
contributing factor in long-term SDSR changes, but it is very difficult to see how the SDSR trend reversals seen
in the observational record could have been caused by cloud feedbacks because all regions considered show
persistent warming throughout the time period of interest.

Comprehensive testing of these alternative hypotheses will require extensive follow-up research, which
should include further observational analysis as well as climate model sensitivity experiments, the latter ide-
ally conducted in the form of multimodel intercomparison initiatives. This work, some of which is ongoing,
goes beyond the scope of the present study. We close here by concluding that the analysis presented sup-
ports the idea that CMIP5 models do not adequately represent the climate impact of aerosol changes and that
their biased surface temperature trends are thus most easily explained by a lack of aerosol cooling, which is
in turn imperfectly compensated through a general underestimation of climate sensitivity.
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