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Abstract: Nanoparticles made of high index dielectric materials have seen a surge of interest
and have been proposed for various applications, such as metalenses, light harvesting and
directional scattering. With the advent of fabrication techniques enabling colloidal suspensions,
the prospects of optical manipulation of such nanoparticles becomes paramount. High index
nanoparticles support electric and magnetic multipolar responses in the visible regime and
interference between such modes can give rise to highly directional scattering, in particular a
cancellation of back-scattered radiation at the first Kerker condition. Here we present a study of
the optical forces on silicon nanoparticles in the visible and near infrared calculated using the
transfer matrix method. The zero-backscattering Kerker condition is investigated as an avenue
to reduce radiation pressure in an optical trap. We find that while asymmetric scattering does
reduce the radiation pressure, the main determining factor of trap stability is the increased particle
response near the geometric resonances. The trap stability for non-spherical silicon nanoparticles
is also investigated and we find that ellipsoidal deformation of spheres enables trapping of slightly
larger particles.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Optical trapping of non-resonant dielectric particles dates back almost 50 years [1]. Since
then, trapping and manipulation of such particles in optical tweezers has opened up a wealth
of opportunities in biology and biotechnology [2, 3]. Typical particles of this type are made of
latex (polystyrene) or glass, with refractive index n around 1.4–1.6. Trapped biological matter,
such as cells, also fall within this refractive index range. Trapping of metallic nanoparticles
with localized surface plasmon resonances (LSPRs) in the visible region is also the subject of
considerable interest for various applications [4], including biomolecular [5] and cellular [6]
analysis, photothermal imaging [7], novel lithography methods [8] as well as more basic studies
such as non-equilibrium thermodynamics [9], to name a few.

Particles that are resonant at a wavelength close to the trapping wavelength inevitably exhibit
significant light extinction. This enhanced scattering and absorption amplifies the momentum
transfer from the beam to the particle and strongly influences the 3D stability of a single-beam
optical trap, since the axial restoring force has to overcome the resonant forward momentum
transfer for the trap to be stable. In a dipole approximation, this corresponds to axial gradient
forces overcoming radiation pressure forces in the direction of the incident laser beam. This
is difficult to achieve in practice, and trapping of resonant particles is therefore typically done
only in the two lateral dimensions, using electrostatic repulsion from a surface to counteract the
radiation pressure in the third direction [6,10], or by using two counter-propagating beams [1,11].
This constrains the utility of the optical tweezers and makes it more difficult to move the particle
to a specific location.
High index dielectric (HID) nanoparticles have been demonstrated to be a competitive
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alternative to resonant metal nanoparticles in, for example, the design of metasurfaces [12–14]
and optical or optoelectronic devices [15–17]. Because of the high refractive index, n >∼3, HID
nanoparticles support geometric resonances of electric and magnetic character in the visible
and near infra-red spectral range, where optical absorption is low [18, 19]. This is in contrast
to plasmonic nanoparticles, which always exhibit significant absorption due to Ohmic losses.
The potential to exploit these properties has made optical trapping and manipulation of HID
nanoparticles an interesting line of research. Examples include optical sorting [20], optical
binding forces [21] and recent experimental demonstrations [22].
Interference between different multipolar modes in HID particles can give rise to highly

directional scattering [23–25]. In particular, interference between electric and magnetic dipole
scattering can result in complete cancellation of backscattered light. This is known as the first
Kerker condition [26] and can be realized in high index dielectric spheres [24, 27]. Multipolar
interference effects have been discussed as a necessity for the realization of an optical pulling
force, or tractor beam, where one diffractionless optical beam [28, 29] or two beams at an
angle [28, 30] are used to realize a negative force over a macroscopic distance. For the case
of plane wave illumination and passive materials, it is impossible to realize a pulling force
regardless of particle specifics [29]. It has however been suggested that complete suppression of
backscattered radiation can serve to reduce the momentum transfer from the beam to the particle
and thus give rise to a more stable trap [28, 31].

While the first Kerker condition has been discussed previously with regard to radiation pressure
for silicon particles in a plane wave [32, 33], no study on these effects in the case of optical
tweezers, that is, a single focused Gaussian laser beam, have been published, to the best of our
knowledge. Previous studies have been made on how Mie resonances of dielectric particles affect
optical forces in a focused beam [34, 35]; however, these studies consider larger particles with a
low to moderate refractive index (n < 2).

In this work, we investigate the optical forces on silicon nanospheres, the prototypical example
of a HID nanoparticle, for realistic optical tweezer parameters in order to evaluate how asymmetric
scattering (in the forward-backward sense) and the first Kerker condition influences optical trap
stability. First, we study the case of plane wave excitation of a silicon sphere in water in order to
examine how this scattering asymmetry affects the optical forces in the presence of radiation
pressure only. Next, to understand the interference effects and multipolar contributions in a
realistic optical tweezer experiment, we study how illumination by a focused Gaussian laser
beam deviates from the plane wave behaviour. Moreover, we use symmetry to separate the
gradient forces from the radiation pressure and discuss the multipolar contributions to each
component. Since optimal forward-to-backward scattering ratios are not found in spherical
high-index particles but rather in ellipsoidal shapes [36,37], we finally investigate the optical trap
stability for deformed silicon spheres.

2. Results and discussion

The electrodynamics simulations used here for calculating the optical forces consist of either
a plane wave or a focused laser beam in an angular spectrum representation [38]. This means
that the electromagnetic fields exciting the nanoparticle are not paraxial but are true solutions to
the Maxwell equations. The incident fields are projected, through numerical integration, onto
vector spherical harmonics on the surface of a sphere, Sc , circumscribing the nanoparticle. The
response of the particle is then calculated through the Transfer Matrix approach [39] and is
expanded into electric and magnetic multipole fields on the circumscribing sphere. The optical
properties can then be calculated in the Mie theory framework. The time-averaged optical force,
for example, is obtained by integration of the outward normal component of the Maxwell stress
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tensor,
↔
T [40, 41] 〈 ®F〉

=
〈 ∫

Sc

n̂ ·
↔
T dS

〉
, (1)

which can be easily performed with the aid of the Wigner-Eckart theorem [41] since the fields are
expressed in a series of spherical multipole terms. In the present case, the full T-matrix approach
is preferred above the more transparent analytical point dipole approximations commonly found
in optical tweezer literature since the particle response is beyond dipolar for larger sizes. All
calculations were performed assuming a uniform aqueous surrounding medium (ns = 1.33).
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Fig. 1. Silicon spheres subject to λ = 1064 nm plane wave excitation. (a) Schematic of
the system. (b) Scattering efficiency and forward-to-backward scattering ratio versus size-
parameter x, showing the well-known divergence at the first Kerker condition (xk = 0.776,
rk = 131 nm). (c) Radiation pressure force on Si spheres in a plane wave (full black
line) versus x, together with the pure electric (red) and magnetic dipole (blue) forces and
the contribution from their interference (green), respectively. Note that the interference
contribution decreases the radiation pressure, but the effect is strongest a higher radius than
the first Kerker condition. The dashed curve in (c) shows that the sum of the two dipolar
contributions completely dominates the radiation pressure force up until slightly above x
= 1 where the magnetic quadrupole starts playing a role. (d) The total radiation pressure
force normalized by the scattering cross section of the particle, demonstrating that the first
Kerker condition is the optimal angular distribution of scattered radiation. The inset shows
the scattering efficiency versus wavelength for a Si sphere in water with radius rk = 131 nm,
fulfilling the first Kerker condition at λ = 1064 nm.
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2.1. Plane wave excitation

First, we revisit the well-known case of plane wave excitation [Fig. 1]. This will reveal the
multipolar interaction and the role of the first Kerker condition in the presence of radiation
pressure only. We fix the wavelength of the incident radiation to λ = 1064 nm, the most common
laser wavelength in optical tweezers technology, and instead vary the particle size and, thus,
the size parameter (x = 2πr/λ). The complex refractive index of crystalline silicon at this
wavelength is n = 3.55 + i0.000083 [42] but, since the dispersion n(λ) is weak in the visible to
near-infrared spectral region, results obtained for a particular x at λ = 1064 nm can be used also
for neighboring trapping wavelengths with good accuracy.
We note that the optical absorption of Si at 1064 nm is very small (well below 0.2% of the

extinction for particle sizes above r ≈ 40 nm) since the photon energy of the incident light is just
slightly larger than the indirect band gap of Si, corresponding to λ ≈ 1150 nm. As a consequence,
the radiation pressure is completely dominated by scattering and while absorption is included in
the calculations, it will not be further discussed.

The characteristic hallmarks of the first Kerker condition can be seen in the scattering properties
as a function of size parameter x in Fig. 1. We decomposed the scattered power into electric
dipole and magnetic dipole contributions [Fig. 1(b)], which can be done since interference
between different multipoles does not affect the total power scattered in each multipolar channel.
The peak in scattering at around x = 1.2 is due to the magnetic quadrupole and is therefore absent
from both the electric and magnetic dipole contributions. The first Kerker condition occurs at
the crossing of the electric and magnetic dipole resonances, where these dipole excitations are
of equal magnitude and are in phase [26]. When this condition is fulfilled, we see a spike in
the forward-to-backward scattering ratio [shown in logarithmic scale in Fig. 1(b)], defined as
F/B = dσs

dΩ
��
θ=0◦

/ dσs

dΩ
��
θ=180◦ , where

dσs

dΩ is the differential scattering cross-section. This is due
to a complete cancellation of backscattered radiation due to perfect destructive interference in
the backward direction, θ = 180◦. For λ = 1064 nm, the first Kerker condition is fulfilled for a Si
sphere of radius rk = 131 nm. A scattering spectrum for a Si sphere with this radius is shown
as an inset in Fig. 1(d). One might expect that the highly forward-directed scattering should
give rise to a reduction in the momentum transferred from the beam to the particle. In fact,
considering the particle as a simple source of scattered radiation would give rise to a negative
radiation pressure force, since the scattering is predominantly directed in the forward half-space.
However, when also considering the incident field, it is clear that no net attractive force can be
achieved since any scattering of the incident plane wave photons by the particle can only reduce
their forward momentum or, at best, leave it unchanged. The momentum lost by the incident field
is transferred to the particle, therefore inducing a force in the forward direction.
In the dipole approximation for magneto-electric particles in a plane wave, one typically

decomposes the radiation pressure force into three contributions [43], namely

F tot = F(ed) + F(md) + F(int) , (2)

where F(ed) is the force on the particle stemming from its electric dipole polarizability and
likewise for F(md), from the magnetic dipole polarizability. In contrast to the scattered power,
the radiation pressure force contains a cross term due to the interference between the scattering
from the electric and the magnetic dipoles. This term can become negative and thus serve to
reduce the radiation pressure by means of coherent interaction between electric and magnetic
dipole excitations. In order to decompose the force according to Eq. (2), we first calculated the
multipolar response of the sphere. Then, in the calculations of the optical force, we used only a
single dipolar Mie response coefficient at a time, with the rest set to zero. The dipole interference
force was then obtained through F(int) = F(ed+md) − F(ed) − F(md), where F(ed+md) corresponds to
the force when both electric and magnetic dipolar coefficients are included [black dashed line in
Fig. 1(c)].
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As is clear from a comparison of the spectral profiles in Fig. 1(b) and (c), the interference force,
F(int), does not exhibit a minimum at the first Kerker condition, as one might expect, but rather
at slightly larger particle sizes. This behavior, which can be seen but is not discussed in [32],
demonstrates that momentum transfer is not straightforwardly related to the forward-to-backward
scattering ratio. The reason that the interference force is not minimized at the first Kerker
condition is that the stronger particle response closer to the dipolar resonance peaks amplifies
the total scattered power, and thus the interference force. To demonstrate this, we normalized
the total radiation pressure force, F tot

z , by the scattering cross section, σs [Fig. 1(d)] in order to
decouple the total particle response from the angular distribution of the scattered radiation. We
then see that the first Kerker condition does correspond to the optimal angular distribution in
terms of minimum momentum transfer.

2.2. Optical forces in a focused Gaussian beam

Guided by the insights discussed above, we now turn to the question of how the asymmetric
scattering from a Si particle affects the possibility to trap the particle using a single focused
laser beam. We confine ourselves to studying the optical forces acting in the light propagation
direction, since these are the forces that limit the three-dimensional stability of a single-beam
laser trap. Specifically, we investigate whether the interference forces in the radiation pressure,
aided by restoring forces that arise due to field intensity gradients near a tight focus, can overcome
the forward momentum transfer. Moreover, we explore whether multipolar interference affects
these restoring forces. To this end, we calculated the optical force for varying particle position
along the optical axis for a tightly focused laser beam in the angular spectrum representation [38].
As above, we fixed the trapping wavelength at λ = 1064 nm and used a surrounding medium of
water. We studied the stability of the optical trap for a silicon sphere of size parameter x∗ = 0.737
(radius r∗ = 124.8 nm), since this turns out to be the size at which the trap is most stable [Fig. 3].
Circular polarization of the incident light is used throughout. While unimportant for spherical
particles, the choice of polarization will be significant when we consider anisotropic particles
in Sec. 2.3. These parameters, along with our chosen objective numerical aperture of NA =
1.2, constitute realistic and typical experimental conditions for optical tweezer research. The
numerical aperture sets the beam focus width by fixing the maximum angle of convergence
through NA = ns sinαmax and our chosen NA results in a beam waist radius of w = 407 nm
(where the intensity has dropped to 1/e2 of its axial value). The results of this analysis are
summarized in Fig. 2.
In the electric dipole approximation and for a properly radiation-corrected electric dipole

polarizability αe, the optical force can be decomposed into a gradient force ®Fg ∝ Re{αe}∇| ®E |2
and a radiation pressure force ®Fp ∝ Im{αe}

〈 ®E × ®H∗〉 [43]. The radiation pressure does not change
sign when crossing the focus of the beam, that is, it is always directed in the propagation direction
for particles on-axis. The gradient force on the other hand changes sign since it always aligns
with the direction of increasing intensity (for Re{αe} > 0). We thus decompose the total optical
force acting on the particle into its symmetric and anti-symmetric parts [Fig. 2(b)] with respect
to the focus position (z = 0) and identify the symmetric part as the radiation pressure force. Even
though the term ”gradient force” is traditionally associated with the electric dipole and paraxial
field approximations, we borrow this expression and identify the anti-symmetric force part as
such. The Fourier treatment recently presented in [44, 45] generalizes this decomposition to all
of space, albeit in a numerically more demanding fashion.

In order to investigate the dipolar interference effects, we isolate the contributions to the optical
force stemming from the different multipolar contributions in the same manner as in Fig. 1(c).
This allows us to identify the contributions to the gradient and radiation pressure forces due to
the electric (ed) and magnetic (md) dipole excitations of the sphere. As shown in Fig. 2(c), the
ed and md contributions to the gradient force turn out to be completely additive, demonstrating
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Fig. 2. Optical forces on a silicon sphere in a focused laser beam. Optical force simulations
of a Si sphere with radius r∗ = 124.8 nm (size parameter x∗ = 0.737) situated in water
and illuminated by a circularly polarized laser beam with wavelength λ = 1064 nm focused
by a lens with numerical aperture NA = 1.2. The chosen sphere radius corresponds to
the most stable trap situation for this set of illumination parameters. (a) Schematic of the
simulated system. (b) The optical force in the direction of the optical axis (z) normalized
to incident power. The total force (black) is decomposed into its symmetric (green) and
anti-symmetric (brown) parts, which we identify as the radiation pressure Fp, and the
gradient force Fg, respectively. (c) The gradient force contributions from all multipoles
(black), from only the electric dipole (red) and from only the magnetic dipole (blue). The
gray dashed line, which shows the sum of the two dipolar contributions, perfectly overlaps
with the black line. This demonstrates that the gradient force is strictly additive, i.e. there
are no interference effects. (d) The radiation pressure from all multipoles (black), from only
the electric dipole (red) and from only the magnetic dipole (blue). The green line shows
the difference F(int)

p = Ftot
p − F(e)p − F(m)p and demonstrates that interference between the

induced electric and magnetic dipoles significantly reduces the radiation pressure. We note
that the response for this particular size parameter is completely determined by the electric
and magnetic dipole responses [c.f. Fig. 1(c)].

that no interference effects affect the gradient force in the present case despite the significant
spectral and spatial overlap between the two modes. This is expected since the gradient force is
caused by the fact that the potential energy of a particle is lowered if it has an induced (in-phase)
electric dipole moment and moves towards a stronger electric field, or an induced magnetic dipole
moment and moves towards a stronger magnetic field. In contrast, the radiation pressure exhibits
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a clear interference effect analogous to the plane wave case, which can be seen by comparing
the amplitude of total radiation pressure force with the two dipole contributions [Fig. 2(d), note
that higher order multipoles have negligible effect for this parameter set]. The interference force,
F(int)

p = F tot
p − (F

(e)
p + F(m)p ) is in fact almost as large as the electric dipole contribution, resulting

in F tot
p ≈ F(m)p .

Based on the analysis above, we now turn to the size dependence of the trap stability and the
optical forces [Fig. 3]. Specifically, we investigate which sizes of silicon particles that can be
stably trapped for the chosen trapping wavelength, numerical aperture and trapping medium, and
how the different contributions to the optical forces influence the axial trapping potential.

The total optical force acting on the particle is non-conservative, and a potential energy can in
principle not be defined. However, if we limit our analysis to axial forces acting on a particle on
the optical axis, we can define an effective potential depth according to

W =
∫ zr

z0

Fz dz , (3)

where z0 and zr are the axial positions where the optical force changes sign [shown in Fig. 2(b)].
Thus, z0 corresponds to a local minimum in the potential energy (the particle’s equilibrium
position within the trap) and zr corresponds to where the force becomes repulsive. W thus
corresponds to the work required to move the particle along z from its equilibrium position to a
point where it will be repelled [Fig. 3(a)]. This will be a good measure of the three-dimensional
trap stability since the lateral restoring forces are much stronger than the axial forces for a
single beam trap. It should also be mentioned that for certain parameter values, there exist
multiple potential wells along the optical axis. In such cases, we selected the deepest well,
usually the one closest to the beam focus. Figure 3(a) shows W/Pin expressed in units of kBT
at room-temperature, T = 293.15 K. In order for an optical potential well to stably prevent the
particle escaping through Brownian fluctuations, one typically estimates that the potential barrier
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Fig. 3. Trap stability and optical force contributions versus particle size for silicon spheres
in water. (a) Axial potential depth normalized to incident laser power, W/Pin, in units of
kBT with T = 293.15 K. (b) Gradient force with all multipoles present (solid black line) and
with only the electric dipole (red) or the magnetic dipole (blue) included in the calculation.
The black dashed line shows the sum of the two dipolar contributions. Note that the gradient
force components change sign upon crossing their respective resonance wavelengths. (c)
Radiation pressure force from all multipoles (black) and from only the electric (red) or
magnetic (blue) dipoles. The green line shows the dipole-dipole interference contribution
F(int)

p = Ftot
p − F(e)p − F(m)p . The forces in (a) and (b) were calculated at z = 600 nm from

the focus, where the gradient force is at its strongest [c.f. Fig. 2]. All calculations were
performed for λ = 1064 nm, NA = 1.2 and circular polarization.
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should exceed 10 kBT [46] (under the assumption that light-induced heating can be neglected).
As seen in Fig. 3(a), the axial potential depth spectrum peaks at a size parameter of x∗ = 0.737

(corresponding to r∗ = 124.8 nm) while the first Kerker condition occurs at xk = 0.776 (rk = 131
nm). For even larger x, the trap becomes unstable (W undefined), meaning that trapping becomes
impossible for any incident power. We again note that there is no discontinuity or other particular
spectral feature associated with the first Kerker condition.
The dielectric particles widely employed in optical trapping generally have much lower

refractive index than the Si particles considered here. It is therefore instructive to compare
the present trap stability results in Fig. 3(a) with the trap stability for a particle made of
e.g. polystyrene (n ≈ 1.57). We also performed the same type of trap stability calculations
for such spheres. In the size regime where the Si particles could be trapped (up to r ∼ 130
nm), the trap stability for Si was found to be higher by a factor of 3 – 6. One can note that
this factor is consistent with a rough estimate provided by forming the ratio αSi/αPS ≈ 6 at
λ = 1064 nm, using the corresponding simple Clausius-Mossotti electric dipole polarizabilities
α = (n2

sphere − n2
s )/(n2

sphere + 2n2
s ).

In the same manner as in Fig. 2, we now decompose the optical force into its symmetric and
anti-symmetric parts, corresponding to the gradient [Fig. 3(b)] and radiation pressure [Fig. 3(c)]
forces, respectively. In addition, we isolate the ed and md contributions to these forces by only
keeping those corresponding multipolar response coefficients non-zero in the force calculation.
We note that the magnetic gradient force, F(m)g , changes sign upon crossing the magnetic dipolar
resonance [c.f. Fig. 1(a)], as is expected due to the real part of the magnetic dipole polarizability
changing sign. In the same size region, we observe an increased radiation pressure stemming
from the resonant scattering due to both electric and magnetic dipole resonances. These two
effects combined serve to decrease the trap stability to a point where axial particle confinement is
no longer possible at this numerical aperture and laser wavelength. The negative contribution to
the radiation pressure due to the interference between electric and magnetic dipoles, F(int)

p , is not
enough to allow trapping of larger particles.
We also performed calculations of optical forces for silicon spheres for varying numerical

aperture to investigate whether lower or higher focusing increases the importance of asymmetric
scattering and the Kerker condition (not shown). We did not observe any appreciable effect of
lower focusing, that is, by approaching the plane-wave case. In fact, the radiation pattern for a
silicon sphere fulfilling the first Kerker condition (rk = 131 nm at λ = 1064 nm) in the focused
beam at z = 600 nm (NA = 1.2) is essentially identical to the radiation pattern in a plane wave
(not shown). Thus, the only effect of lower focusing is a reduction in the restoring gradient forces
and a corresponding weakening of the optical potential.

From our analysis, we can conclude that the most stable trapping is not directly related to the
first Kerker condition. Rather, the trap becomes unstable at the onset of the particles’ multipolar
Mie resonances and the first Kerker condition also occurs at particle sizes in this region.

2.3. Optical forces on non-spherical silicon particles

Recent studies show that optimal forward-to-backward scattering is obtained for spheroidal
shapes rather than spheres due to their better overlap between electric and magnetic dipole
resonances [36, 37]. Since the interference force in the radiation pressure (F(int)

p ) stems from
asymmetric scattering, we calculated the optical forces and optical potential depth for spheroidal
silicon particles [Fig. 4] in order to further investigate the correspondence between asymmetric
scattering and trap strength. The calculations were performed with a similar method as for the
spherical particles. An incident focused (NA = 1.2) Gaussian laser beam with λ = 1064 nm
was used and we employed the T-matrix method outlined in [39]. For a cylindrically symmetric
particle (e.g. spheroid) aligned along the z-axis, the T-matrix is diagonal in the quantum number
m but couples multipole orders corresponding to different `. This is in contrast to the spherical
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Fig. 4. Trap stability for spheroidal silicon particles in water. The axial potential depth
normalized to the incident power for spheroids with different aspect ratios a/b, where b is
the half-axis along the spheroid symmetry axis. Thus, for aspect ratios > 1 (< 1) we have
oblate (prolate) spheroids. The excitation is λ = 1064 nm in water. The particles considered
here have the same volume as the spheres considered in Fig. 1(a) and the size is therefore
shown as the radius of a sphere with that volume for ease of comparison. (a) The potential
depth for incidence along the spheroid symmetry axis. (b) The potential depth for incidence
90 tilted from the spheroid symmetry axis. The regions with gray dashed lines correspond
to parameter values where there is no axial potential well, making trapping impossible. We
see that by changing the shape of the particles, there is no drastic gain in terms of being able
to trap particles with higher volume.

case (standard Mie theory) where the T-matrix is completely diagonal. Using this T-matrix,
the electromagnetic fields and the Maxwell stress tensor were calculated on the circumscribing
sphere, Sc. From this, we proceeded the same way as for the spherical particles in calculating the
optical forces.

We performed calculations for different aspect ratios (a/b), where a and b are the half-axes of
the spheroidal particle. We chose b to be the half-axis along the spheroid symmetry axis, such
that a > b is an oblate spheroid and a < b is a prolate spheroid. In order to compare the trapping
efficiency with the spherical particles studied previously, we introduce an “equal volume sphere
radius” req such that a2b = r3

eq. This allows for investigation of whether or not particles of larger
volume can be trapped through deformation of a sphere.

Both incidence along and perpendicular to the spheroid symmetry axis was considered. For
the case where the particle symmetry axis was not aligned with the z-axis in space, we still
exploited the cylindrical symmetry of the particle by Wigner rotating the multipole expansion
of the incident field to the particle frame. The force was then calculated in that frame and
subsequently transformed back. For light incident parallel to the spheroid symmetry axis, that is
when the maximum geometric cross section for oblate spheroids and the minimum for prolate
spheroids face the wave front [Fig. 4(a)], the axial potential is deeper and thus trapping requires
lower laser powers for prolate shapes. This is in contrast to the increased forward-to-backward
scattering observed for oblate spheroids [36], indicating that the increased area exposed to the
beam, and the concomitant increase in resonant radiation pressure has a more pronounced effect
on the trap stability than the scattering asymmetry has. The same effect is observed for light
incident perpendicular to the spheroid symmetry axis [Fig. 4(b)]. In this case, the trap is more
stable for the oblate spheroids due to a smaller area being exposed to the beam for oblate shapes.
For both directions of incidence, there can be a small gain in particle volume compared to

spherical shapes, but not more than ∼ 20 nm in equivalent radius. One exception to this was
observed for highly prolate spheroids and incidence along the symmetry axis [bottom right, Fig.
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4(a)]. There is a small region in which trapping is possible for equal sphere radii around 240
nm. However, the axial potential is shallow and stable trapping (∼10 kBT) would require laser
powers around 100 mW at room temperature.

3. Summary and conclusions

We have demonstrated that small silicon particles (r <∼130 nm) can be stably trapped in three
dimensions at a wavelength of λ = 1064 nm. Stable trapping of particles as small as r = 50 nm
requires modest laser powers of ∼5 mW and due to the low silicon absorption at this wavelength,
photothermal heating is negligible. Moreover, the precise shape of the particles (spherical or
elongated), does not drastically change the particle volumes able to be trapped.

Silicon particles support both electric and magnetic dipole polarizabilities that both contribute
to the radiation pressure force and gradient force. We have isolated the different multipolar
contributions to these forces and determined that the main factor determining the trap stability
is not the asymmetric scattering by multipolar interference, but rather the sharply increasing
resonant radiation pressure for larger particle sizes. Additionally, the magnetic gradient force
changes sign as the magnetic resonance approaches the excitation wavelength and becomes
repulsive, further weakening the trap. The first Kerker condition, while constituting the optimal
angular scattering distribution in terms of minimizing radiation pressure, does not correspond to
the most stable trap.

Optical trapping and manipulation of small particles have many potential uses in biotechnology
and biomedicine, and the advantage in such applications of using silicon particles over, say,
metallic particles is the drastically reduced photothermal heating. It should be noted that while
the absorption of silicon is negligible for our chosen wavelength of λ = 1064 nm, this is not the
case for other common optical trapping wavelengths at higher photon energies. In such cases, the
photo-induced thermal effects on the particle dynamics will need to be taken into account.
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