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ABSTRACT: The photo- and acidochromic properties of a new generation
norbornadiene derivative have been harnessed for the realization of a three-input keypad
lock, where a specific sequence of inputs induces a unique output. Reversible
quadricyclane/norbornadiene photoisomerization is reported, and this rare feature allows
the first example of a norbornadiene-based molecular logic system. The function of this
system is clearly rationalized in terms of the interconversion scheme and the absorption
spectra of the involved species.

Molecular logic and information processing is a research
field in which molecules are designed to emulate

functions conventionally performed by electronic hardware.1−3

While the latter is voltage controlled, the molecular versions
are not being restricted by this boundary condition. Instead,
the researcher can choose the inputs and the outputs freely, to
fit the intended use.4,5 Photonic and chemical (metal cations,
DNA oligomers, acid/base, etc.) inputs enjoy preference,
whereas the outputs are typically read by spectroscopic means
(e.g., UV−vis absorption or fluorescence emission). The
pioneering example was reported by de Silva in 1993.6 An
anthracene fluorophore equipped with two receptors was
designed to display strong emission (output) only upon the
presence of both Na+ ions and protons (inputs), implying the
realization of the first molecular logic AND gate. Since then,
more and more complex functions have been mimicked by
molecule-based systems, often requiring a multitude of inputs
and outputs.7,8 Special attention has been given to the keypad
lock, a device where not only the correct input combination
matters but also the sequence in which the inputs are
applied.9,10 Hence, the keypad locks are so-called sequential
logic devices. The first example of a molecular version was
realized by Shanzer and Margulies in 2007.11 Several
alternative approaches have been presented, including systems
with input combinations of all-photonic, all-chemical, or mixed
character.12−18 In the all-photonic case, photochromic systems
are par excellence candidates as the spectral changes required to
perform the desired logic function are conveniently triggered
by photonic stimuli. Photoswitches from several different
photochromic families have been used including spiropyrans,
diarylethenes, and fulgimides.19 Here, we present the first
example of a molecular logic device based on a norborna-

diene−quadricyclane photoswitch. Using photons and acid/
base chemistry, it performs the function of a three-input
keypad lock.
Norbornadiene is a bicyclic organic compound which upon

irradiation with UV light is converted to the highly strained
and saturated quadricyclane isomer.20−22 Back-isomerization
to the norbornadiene form has been observed thermally,
electrochemically, catalytically, and photonically.21,23−26 Nor-
bornadienes have been widely studied over the years for solar
thermal energy storage applications.27−30 They have also been
studied as molecular electronic components.31 Synthesis of
norbornadiene derivatives has been explored in the past for
their importance as synthetic intermediates, and for other
applications.32 Recently, the research area has seen a
resurgence, thanks to the contributions of modern coupling
reactions and advanced computational tools.33−39 Most often,
the unsubstituted norbornadiene is not ideal for these
purposes. Thus, different molecular modifications have been
explored to optimize the performance, including the
introduction of electron donor and acceptor groups on one
or both double bonds.27,29,30,33,34

Norbornadiene derivative NBD in Figure 1 has been
previously synthesized.34 The synthesis starts from the
commercially available norbornadiene, and it is straightforward
and efficient over only three steps. It is a versatile derivative
with interesting properties that have been already partially
characterized and exploited in previous works but will be here
discussed in depth and further expanded, with the introduction
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of novel features and applications. The structural rearrange-
ment responsible for the isomerization is the breaking of the
double bonds to form the corresponding single bonds (Figure
1a), which interrupts the conjugation in the donor−acceptor
system and therefore significantly blue-shifts the absorption of
the QC isomer (Figure 1b). While unsubstituted norborna-
diene does not absorb above 300 nm, NBD, thanks to the
donor−acceptor groups introduced on the double bond,
absorbs up to around 460 nm with absorption maximum at
398 nm.34 Upon light exposure at wavelengths between ca. 350
and 425 nm it photoisomerizes to the corresponding
quadricyclane (QC) form with a measured quantum yield of
28%.34 As indicated above, breaking the conjugation of the
push−pull system blue-shifts the absorption substantially. The
QC absorption has an onset at 344 nm and an absorption
maximum at 298 nm. The back-isomerization from QC to
NBD has been observed to be induced thermally (time

constant of 7.3 h at 25 °C in toluene). Quadricyclane units
incorporated into polymers have been reported to undergo
photoinduced conversion to the norbornadiene isomer, which
was achieved by irradiation with short-wave UV light.23,24

Quadricyclane to norbornadiene photoisomerization in the
newer generations of derivatives with red-shifted absorption is,
however, extremely rare.40 Despite this fact, we decided to
irradiate QC with light at 310 nm, and to our surprise it readily
and almost completely converted to NBD. This feature is of
great interest, since it allows conversion of QC to NBD on a
much shorter time scale than the thermal process. Being able
to convert readily and on demand between QC and NBD
opens the utilization of this system to new applications where a
fast and clean conversion between the species is needed. The
quantum yield of the QC → NBD photoisomerization was
measured as 53% at 300 nm (see Supporting Information page
9 for more information). The fatigue resistance of NBD-QC
isomers during photothermal and all-photonic processes was
tested, showing excellent robustness with no or small
degradation over about 100 cycles (see our previous work37

or Supporting Information page 10 for more information).
This system has more interesting features; protonation of

the methylamino group allows for the formation of two
additional species: NBDH+ and QCH+. Since the protonation
of the amino group reduces the electron-donating character,
NBDH+ and QCH+ are expected to have a more blue-shifted
absorption compared to that of the nonprotonated species.
This is indeed also observed experimentally (Figure 1b). The
structures and the interconversion scheme of all four
implicated forms are shown in Figure 1a. Here, irradiation of
NBD at 405 nm was used to induce full photoisomerization to
QC, while irradiation at 310 nm allowed for almost complete
back-photoisomerization. Partial isomerization of NBDH+ to
QCH+ was also observed when the sample was irradiated at
340 nm. All photoinduced processes proceed readily at modest
light intensities (25−870 mW, less than a minute irradiation).
This should be contrasted with the thermal isomerizations
occurring on the time scale of several hours (time constants of
7.3 and 2.5 h at room temperature for QC → NBD and QCH+

→ NBDH+, respectively; see also Supporting Information page
5).
After identifying all the states and interconversions in the

system, the function of NBD as a three-input keypad lock is
easily rationalized. We define the three inputs as acid (a), base
(b), and light at 310 nm (UV). From Figure 1a, it is clear that
that there is only one input sequence that interconverts QCH+

to NBDH+, and therefore, a unique output is obtained only by
using a unique input sequence, so that the molecular system
can serve as a keypad lock. Thus, we define QCH+ as the initial
state. NBDH+ has a characteristic absorption band centered at
around 330 nm, a wavelength where all other forms display no
or low absorption only. The absorbance at 330 nm is therefore
chosen as the output.
Exposing QCH+ to 310 nm UV light does not significantly

affect the isomeric distribution between QCH+ and NBDH+.

Figure 1. (a) Interconversion scheme for the four molecular species
NBD, QC, NBDH+, and QCH+. Irradiation at 405 nm photoconverts
NBD to QC, while QC can isomerize back to NBD photochemically
(310 nm) or thermally (over hours at room temperature). Both NBD
and QC can be protonated using for example trifluoroacetic acid
(TFA), and NBDH+ and QCH+ can be deprotonated using a base as
triethylamine (Et3N). Photoisomerization of NBDH+ to QCH+ is
observed upon irradiation at 340 nm, whereas QCH+ is thermally
isomerized to NBDH+ (over hours at room temperature). (b) UV−vis
absorption spectra of the four implicated species NBD, QC, NBDH+,
and QCH+. All samples prepared as toluene solutions.

Table 1. All Possible Sequential Combinations of the Inputs, a = Acid, b = Base, UV = Irradiation at 310 nm

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

a a b b UV UV a b a UV b UV a b UV
b UV a UV a b b a UV a UV b
UV b UV a b a
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Instead, QCH+ must first be deprotonated by the addition of
base (triethylamine, Et3N, added in excess) to yield QC. QC is
isomerized to NBD by 310 nm UV for about 60 s. Subsequent
addition of acid (trifluoroacetic acid, TFA, added in excess)
results in the formation of NBDH+ displaying strong
absorption at 330 nm, switching the output to the on-state,
equivalent to opening the lock. Thus, due to the intrinsically
much slower thermal isomerization processes, there is no other
way to produce NBDH+ on this time scale than the input order
b, UV, a (addition of Et3N, irradiation at 310 nm, and addition
of TFA).
In order to experimentally verify the above-mentioned

performance, all the permutations generated by combinations
of one, two, or all three inputs (Table 1) were subjected to the
system in toluene solution. Before each of the input sequences
was applied, the initial state QCH+ was prepared from the as-
synthesized NBD form by photoisomerization at 405 nm
followed by addition of TFA. The predicted resulting species
after applying the 15 input sequences are shown in Table 2.
Indeed, this is also experimentally verified from the
corresponding absorption spectra (Supporting Information
pages 6−7).
Extracting the absorbance values at the output wavelength

330 nm yields the graph shown in Figure 2. Only one out of

the 15 possible input combinations, namely, the anticipated b-
UV-a (input sequence 4), yields an absorbance above the
threshold level set to 0.25. These proof of principle
experiments show that it is possible to use the described
system as a three-input molecular keypad lock, where the
output signal for the correct input sequence is at least 1.6 times
higher (equivalent to the dynamic range) than for all others.

The presented NBD derivative has already many advantages
compared to those of previously reported systems, such as the
ease of synthesis34 and the demonstrated robustness over many
cycles.37 Moreover, NBDs synthesis and physical and chemical
behaviors and properties are widely studied and quite well
understood,29,32,35,36,38 implying the facilitation of carefully
designing molecular systems with the desired properties and
predictable physicochemical behavior. Some limitations and
challenges can be identified. For example, the described
molecular system is based on metastable states, displaying
thermal isomerizations on the time scale of 3−7 h. In the
operation of NBD as a keypad lock, however, the time required
to apply the photonic and chemical inputs is below 1 min, and
in this time the thermal isomerization of the metastable species
is minimal (<4%). A universal reset operation can be
suggested, where the sample is basified to induce deprotona-
tion, and heat is applied to induce back-conversion of any QC
to the stable form NBD. If multiple cycles are considered,
however, the use of chemical inputs results in chemical
byproducts and eventual dilution, interfering with the intended
function.
To conclude, we have demonstrated the first example of a

norbornadiene−quadricyclane photoswitch in the context of
molecular logic. Using photons and acid/base as inputs, it
performs as a three-input keypad lock. The function is easily
rationalized from the underlying isomerization and proto-
nation/deprotonation scheme. The advantage of using NBD
derivatives is that NBD chemical modifications have been
abundantly explored in the past and more recently,29,30,32,34,39

which allows us to access a wide library of compounds and
synthetic methods. For these reasons there are certainly great
opportunities for improved design aiming at more streamlined
keypad locks, or complex multiswitch systems allowing for
even more sophisticated logic functions to be performed.
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absorbance above the threshold level, arbitrarily set at A = 0.25.

The Journal of Physical Chemistry Letters Letter

DOI: 10.1021/acs.jpclett.8b02567
J. Phys. Chem. Lett. 2018, 9, 6174−6178

6176

http://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.8b02567/suppl_file/jz8b02567_si_001.pdf
http://pubs.acs.org
http://pubs.acs.org/doi/abs/10.1021/acs.jpclett.8b02567
http://pubs.acs.org/doi/abs/10.1021/acs.jpclett.8b02567
http://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.8b02567/suppl_file/jz8b02567_si_001.pdf
mailto:kasper.moth-poulsen@chalmers.se
http://dx.doi.org/10.1021/acs.jpclett.8b02567
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(1) Pilarczyk, K.; Wlazĺak, E.; Przyczyna, D.; Blachecki, A.;
Podborska, A.; Anathasiou, V.; Konkoli, Z.; Szaciłowski, K. Molecules,
Semiconductors, Light and Information: Towards Future Sensing and
Computing Paradigms. Coord. Chem. Rev. 2018, 365, 23−40.
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