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Abstract: With tougher restrictions on emissions the automotive industry is in dire need of
additional functionality to reduce emissions. We conduct a case study trying to predict long-
lasting brake events, to support the decision-making process when the engine can beneficially
be put to idle or shut down to achieve emission reduction. We introduce Compressed Mixture
Models, a multivariate and mixed variate kernel density model featuring online training and
complexity reduction, and use it for prediction purposes. The results show that the proposed
method produces comparable prediction results as a Random Forest Classifier and outperform a
Support Vector Classifier. On an urban road a prediction accuracy of 87.4 % is obtained, while a
prediction accuracy of 76.4 % on a highway segment using the proposed method. Furthermore,
it is possible to use a trained Compressed Mixture Model as a tool for statistical inference to
study the properties of the observed realization of the underlying random variables.

Keywords: Machine learning, recursive algorithms, model complexity reduction, prediction
methods, probabilistic models, information theory.

1. INTRODUCTION

When working with big data or infinite data streams it
is necessary to employ recursive/online training methods.
Streaming data applications exists in many fields, e.g. in
media, web applications, electrical power systems etc. The
automotive industry is yet another example that contains
many interesting streaming data applications like, multi-
variate on-board diagnostics, modeling customer-/vehicle
excitation spaces, and modeling drift/aging of compo-
nents.

Methods for estimating the probability density of a ran-
dom variable can be divided into two classes, parametric
and non-parametric. A popular parametric model is the
Gaussian Mixture Model (GMM), treated in e.g. McLach-
lan and Peel (2000). Conventional methods based on GMM
have consistently produced probability density models
with satisfying results. Dempster et al. (1977) introduced
Expectation Maximization (EM) which is the most pop-
ular offline method for estimating the parameters of a
GMM according to Kristan et al. (2011). The fact that the
number of components needs to be specified in advance
in the original EM algorithm makes it less attractive.
Zivkovic and van der Heijden (2004) introduced a recursive
EM method that starts with a large number of compo-
nents, larger than the optimal number of components, and
discards irrelevant components during training. Figueiredo
and Jain (2002) introduced a data-driven method to esti-
mate the number of components to be used in the EM
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algorithm. The quality of the resulting probability density
function (pdf) is directly dependent on the initial choice of
number of components. Choosing a proper number of com-
ponents is especially problematic in infinitely streaming
data applications. The Parzen kernel density estimators
(KDE), introduced by Parzen (1962), is a non-parametric
method with a probability kernel around each observation.
Each observation is treated as a component of the mixture
and is thus not haunted by the problem of specifying a
number of components. However, the complexity of the
KDE increases linearly with the number of observations.
Thus using KDE to model the underlying pdf of a random
variable is infeasible for large or infinite data-sets.

A probability density estimation technique not suffering
from the linear increase in complexity, while not having to
define the number of components beforehand is an appeal-
ing idea. Some studies have been made in this field, e.g.
Declercq and Piater (2008) treat every new observation
as a normal distribution with a predefined covariance and
use a fidelity measure for deciding if model complexity
reduction is possible by simplifying two components into
one during training. Kristan et al. (2011) introduces an
online Kernel Density Estimaton technique (oKDE) which
maintain and updates a non-parametric model of the ob-
served data recursively from which it is possible to calcu-
late KDE using an online bandwidth estimation method
they propose. The complexity of the KDE is maintained
low due to a compression/revitalization scheme.

The method introduced in this study will be referred
to as a Compressed Mixture Model (CMM) and uses a
recursive learning technique inspired by oKDE. In con-
trast to oKDE the CMM uses prior information to mimic
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measurement uncertainty of the observation similar to the
work of Declercq and Piater (2008). The previous studies
on estimating a probability density function recursively
focused exclusively on handling real-valued data. Our main
contribution is the introduction of an online probability
density estimation technique, which by observing only a
single sample at a time constructs a multivariate proba-
bility estimate, featuring complexity reduction and able to
handle mixed variate data. The novelty of the CMM lies
in the ability to handle mixed-variate data types, which
to the authors best knowledge has not yet been studied
for a recursive learning technique of a kernel density es-
timate. The additional types of data studied are discrete
valued, but the results should be general enough to handle
additional data types.

The automotive industry is relying on the development
of new technologies to meet the demanding emission
regulations. One such concept is Stop-In-Drive-In-Speed
(SIDIS), where the engine is put into idle when the
vehicle is decelerating. An even better solution from an
emission side stand-point would be to shut down the
engine completely when the vehicle is not accelerating.
Even though this sounds appealing it is not a good idea
to naively shut down the engine as soon as the vehicle is
decelerating. A shut down needs to be long-lasting to be
considered successful from an emission reduction point of
view.

In this paper we develop a predictor of long-lasting brake
events to support the decision-making process when the
engine can beneficially be put to idle or shut down to
achieve emission reduction. We compare the prediction ac-
curacy of three methods namely Support Vector Machines
(SVM), Random Forest (RF), and CMM introduced in
this paper.

The remaining sections of the paper is structure in the
following way. In Section 2 the Compressed Mixture Model
is introduced alongside the supporting mathematical con-
cepts and the recursive training technique. Next, in Section
3 the case study is presented together with prediction
results for the prediction methods considered. A discussion
regarding the findings in this study is given in Section 4
and finally some conclusions are stated in Section 5.

2. MODEL

In this section the construction of the Compressed Mixture
Model (CMM) and the incremental learning technique is
presented together with the supporting theory.

2.1 Feature Vector

In this study a feature vector x is an observation (or
realization) of a random variable vector X : Ω → E

x =

[
xC

xD

]
= [x1, . . . ,xd]

T
,

consisting of d independent random variables, where xj is
the observation of the jth random variable. The random
variables considered either discrete, or continuous values
and either univariate or multivariate. The sample space
Ω = ΩC × ΩD, where ΩC is the samples space of
all continuous random variables, and ΩD is the samples

space of all discrete random variables. Also, xC and xD

corresponds to the continuous and discrete elements of the
feature vector respectively.

2.2 Kernels

To model the data statistically, each type of data is
assigned a probability kernel.

The kernel used for a discrete data-type is a categorical
distribution x ∼ D(p)

φ(x;p) =

{
pi if x = xi

0 otherwise
(1)

where
∑

i p
i = 1. A binary data-type is a special case of

a discrete-type, which therefore can be modeled using the
categorical distribution.

The kernel used for a continuous data-type is the mul-
tivariate normal distribution, and the multivariate case
x ∼ N (µ,Σ)

φ(x;µ,Σ) =
1√

(2π)k det (Σ)
e−

1
2 (x−µ)TΣ� 1(x−µ), (2)

where T is the transpose and det() the determinant.

2.3 Compressed Mixture Model

Essentially, the Compressed Mixture Model is a finite
mixture model

f(x) = f(xC ,xD) =

N∑
i=1

λiΦ(x;θi), (3)

where λi is the mixing coefficient of the ith component, θi

are the parameters for component i, and Φ is a component
defined by a kernel product of its d elements

Φ(x;θi) =

d∏
j=1

φj(xj ;θij), (4)

where φj(xj ;θij) is the jth element (a probability kernel)
of the ith component, xj is the jth element in the feature
vector and θij is the jth element kernel parameters of the
ith component. The jth element of all the components in
the CMM are of the same kernel type.

A CMM is a probability density function
∑

xD∈ΩD

(∫

ΩC

f(xC ,xD) dxC

)
= 1. (5)

2.4 Recursive Training

During the recursive training a linear increase in model
complexity with the number of observations is avoided by
aggregating similar components. The aggregated compo-
nent contains updated parameters using a moment match-
ing technique for two components Φ1 = Φ(x;θ1) and
Φ2 = Φ(x;θ2)

Φ(x;θ∗) = ψ(Φ1,Φ2). (6)

where ψ is the aggregation operator for two components.
The moment matching is performed individually on the
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measurement uncertainty of the observation similar to the
work of Declercq and Piater (2008). The previous studies
on estimating a probability density function recursively
focused exclusively on handling real-valued data. Our main
contribution is the introduction of an online probability
density estimation technique, which by observing only a
single sample at a time constructs a multivariate proba-
bility estimate, featuring complexity reduction and able to
handle mixed variate data. The novelty of the CMM lies
in the ability to handle mixed-variate data types, which
to the authors best knowledge has not yet been studied
for a recursive learning technique of a kernel density es-
timate. The additional types of data studied are discrete
valued, but the results should be general enough to handle
additional data types.

The automotive industry is relying on the development
of new technologies to meet the demanding emission
regulations. One such concept is Stop-In-Drive-In-Speed
(SIDIS), where the engine is put into idle when the
vehicle is decelerating. An even better solution from an
emission side stand-point would be to shut down the
engine completely when the vehicle is not accelerating.
Even though this sounds appealing it is not a good idea
to naively shut down the engine as soon as the vehicle is
decelerating. A shut down needs to be long-lasting to be
considered successful from an emission reduction point of
view.

In this paper we develop a predictor of long-lasting brake
events to support the decision-making process when the
engine can beneficially be put to idle or shut down to
achieve emission reduction. We compare the prediction ac-
curacy of three methods namely Support Vector Machines
(SVM), Random Forest (RF), and CMM introduced in
this paper.

The remaining sections of the paper is structure in the
following way. In Section 2 the Compressed Mixture Model
is introduced alongside the supporting mathematical con-
cepts and the recursive training technique. Next, in Section
3 the case study is presented together with prediction
results for the prediction methods considered. A discussion
regarding the findings in this study is given in Section 4
and finally some conclusions are stated in Section 5.

2. MODEL

In this section the construction of the Compressed Mixture
Model (CMM) and the incremental learning technique is
presented together with the supporting theory.

2.1 Feature Vector

In this study a feature vector x is an observation (or
realization) of a random variable vector X : Ω → E

x =

[
xC

xD

]
= [x1, . . . ,xd]

T
,

consisting of d independent random variables, where xj is
the observation of the jth random variable. The random
variables considered either discrete, or continuous values
and either univariate or multivariate. The sample space
Ω = ΩC × ΩD, where ΩC is the samples space of
all continuous random variables, and ΩD is the samples

space of all discrete random variables. Also, xC and xD

corresponds to the continuous and discrete elements of the
feature vector respectively.

2.2 Kernels

To model the data statistically, each type of data is
assigned a probability kernel.

The kernel used for a discrete data-type is a categorical
distribution x ∼ D(p)

φ(x;p) =

{
pi if x = xi

0 otherwise
(1)

where
∑

i p
i = 1. A binary data-type is a special case of

a discrete-type, which therefore can be modeled using the
categorical distribution.

The kernel used for a continuous data-type is the mul-
tivariate normal distribution, and the multivariate case
x ∼ N (µ,Σ)

φ(x;µ,Σ) =
1√

(2π)k det (Σ)
e−

1
2 (x−µ)TΣ� 1(x−µ), (2)

where T is the transpose and det() the determinant.

2.3 Compressed Mixture Model

Essentially, the Compressed Mixture Model is a finite
mixture model

f(x) = f(xC ,xD) =

N∑
i=1

λiΦ(x;θi), (3)

where λi is the mixing coefficient of the ith component, θi

are the parameters for component i, and Φ is a component
defined by a kernel product of its d elements

Φ(x;θi) =

d∏
j=1

φj(xj ;θij), (4)

where φj(xj ;θij) is the jth element (a probability kernel)
of the ith component, xj is the jth element in the feature
vector and θij is the jth element kernel parameters of the
ith component. The jth element of all the components in
the CMM are of the same kernel type.

A CMM is a probability density function
∑

xD∈ΩD

(∫

ΩC

f(xC ,xD) dxC

)
= 1. (5)

2.4 Recursive Training

During the recursive training a linear increase in model
complexity with the number of observations is avoided by
aggregating similar components. The aggregated compo-
nent contains updated parameters using a moment match-
ing technique for two components Φ1 = Φ(x;θ1) and
Φ2 = Φ(x;θ2)

Φ(x;θ∗) = ψ(Φ1,Φ2). (6)

where ψ is the aggregation operator for two components.
The moment matching is performed individually on the
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element level for the kernels of the jth element φ1j =
φ(x;θ1j) and φ2j = φ(x;θ2j)

θ∗j = ψ(φ1, φ2), (7)

where ψ is the element aggregation operator, defined for
each kernel type. The weight for the aggregated component
is given by λ∗ = λ1 + λ2, where λ1, λ2 are the mixing
weights of component Φ1 and Φ2 respectively.

Aggregation operators Here the aggregation operators
for the different kernels are defined and the result that
λ∗ = λ1 + λ2 is frequently used. Starting with the
aggregation operator for two discrete kernels φ1 = φ(x;p1)
and φ2 = φ(x;p2)

φ(x;p∗) = ψ(φ1, φ2) (8)

where

pi∗ =
λ1p

i
1 + λ2p

i
2

λ∗
.

For two multivariate continuous kernels φ1 = φ(x;µ1,Σ1)
and φ2 = φ(x;µ2,Σ2)

φ(µ∗,Σ∗) = ψ(φ1, φ2) (9)

where

µ∗ =
λ1µ1 + λ2µ2

λ∗
,

Σ∗ =

2∑
i=1

λi(Σi + µiµi
T)

λ∗
− µµT.

By aggregating components into composite components
the complexity of the model is reduced at the expense of
model accuracy. Thus, there is a trade-off between model
complexity and model accuracy. Aggregating components
which are similar, with respect to some similarity measure,
it is possible to maintain the information loss at an accept-
able level while achieving model complexity reduction.

Component Distance The similarity between two com-
ponents can be assessed by a component distance. In
this study a distance based on the Kullback-Leibler (KL)
divergence, a measure of how one probability distribution
diverges from another, is proposed. KL divergence is ad-
ditive for independent distributions, which is the case for
a component defined as a product of independent kernels.
Thus, it is possible to define a relevant component distance
using KL divergence. The component distance between
Φ1 = Φ(x;θ1) and Φ2 = Φ(x;θ2) is defined as

D(Φ1,Φ2) =

d∑
j=1

DKL(φ1j , φ2j) +DKL(φ2j , φ1j)

2d
. (10)

Here DKL(φ1j , φ2j) is the KL divergence between the two
distributions φ1j and φ2j from the jth element of the two
components Φ1 and Φ2 respectively, and d is the number of
component elements. KL divergence is non-symmetrical,
but the component distance in (10) is symmetrical and
also invariant to the number of component elements. There
exists closed form solutions of the KL divergence for all the
studied kernels in this paper.

The KL divergence between two discrete kernels φ1 =
φ(x;p1) and φ2 = φ(x;p2) is,

DKL(φ1, φ2) =

k∑
i=1

pi1 log

(
pi1
pi2

)
, (11)

where k are the number of possible outcomes for the two
discrete distributions. In the case when any pij = 0 the
component distance in (10) becomes infinite. To address
this problem, and allow compression, the KL divergence
for a discrete component element is forced to 0 during
training.

The KL divergence between two multivariate normal dis-
tributions φ1 = φ(x;µ1,Σ1) and φ2 = φ(x;µ2,Σ2) is
given by

D(φ1, φ2) =

tr
(
Σ� 1

2 Σ1

)
− k + ln

(
det(Σ2)

det(Σ1)

)

2
+

+
(µ2 − µ1)

T
Σ−1

2 (µ2 − µ1)

2
,

(12)

where tr() is the trace of a matrix, k is the number of
dimensions of the multivariate normal distributions, and
det() is the determinant of a matrix. In the univariate case
the calculations can be performed without using matrix
operations, which is also true for the aggregation method
calculation in (9).

Pseudo-Code The recursive training process of adding a
new observation is stated in Algorithm 1.

Algorithm 1. Recursive training technique for CMM.

Input: Mn−1 - CMM, xn - nth observation.

1: Φ = Φ(x;θ(xn)), λ = 1
n , M = Mn−1 � intialize

2: λi ← (1− 1
n )λi ∀ i s.t. Φi ∈ M � rescale weights

3: Find Φ∗ ∈ M s.t. D(Φ,Φ∗) ≤ D(Φ,Φj) ∀Φj ∈ M .
4: if D(Φ,Φ∗) < ε then � model complexity reduction

M ← M \ Φ∗

Φ̂ = ψ(Φ,Φ∗) � aggregate components

λ̂ = λ+ λ∗ � aggregate component weights

Let λ ← λ̂ and Φ ← Φ̂ and return to step 3.
5: else

M ← M ∪ Φ � add Φ with weight λ to model
return Mn

Below, the recursive training process is described in words.

The inputs to the recursive training technique are the
currently trained model Mn−1 and the new observation
(feature vector) xn. Here, Mn−1 is the CMM trained on
the sequence of n − 1 observations {x1, . . . ,xn−1}. In
step 1, a component Φ = Φ(x,θ(xn)) is initialized, as
defined in (4). The kernel parameters θ(xn) are given by,
µ = xn

∗ and predefined σ2, µ = xn
∗ and predefined Σ,

and pi = 1 (if xn
∗ = xi) if the ∗th component element

is univariate continuous, multivariate continuous, and dis-
crete respectively. The mixing weight corresponding to the
new component is set to λ = 1

n . Also, M = Mn−1 to
simplify notation. In step 2, the mixing weights for all
components in M are downscaled with the factor 1 − 1

n .
This is to assert that the sum of all mixing weights in M
plus the new components mixing weight should sum to
1. In step 3, the closest component to Φ in M is found,
referred to as Φ∗, using the component distance defined in
(10). Step 4, model complexity reduction, is performed if
the component distance between Φ and Φ∗ is smaller than
the maximum allowed distance threshold ε. The distance
threshold is a hyperparameter of the CMM and asserts
that model complexity reduction can be performed while
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limiting the information loss. The closest component Φ∗ is
removed from the modelM and the two components Φ and

Φ∗ are aggregated resulting in Φ̂ with mixing weight λ̂. The
aggregation is performed using the aggregation operator
for two components defined in (6). To recursively find new

complexity reductions made possible, let λ ← λ̂ and Φ ← λ̂
and return to step 3. If all component distances are larger
than or equal to ε, step 5 is performed and Φ with mixing
weight λ is added to M . At last, the updated model M is
returned.

We argue that the worst case time complexity is O(n2)
for Algorithm 1, when applied incrementally on n obser-
vations. The two steps, step 2 and step 3, are linear with
respect to the number of components nc ≤ n. The other
steps are constant with respect to nc and thus also n. The
worst imaginable scenario is if no model complexity reduc-
tion is allowed until the last observation when one model
complexity reduction starts a chain reaction of reductions
until only one component remains. This corresponds to

T (n) =

nc∑
i=1

O(i)

︸ ︷︷ ︸
training

+

nc−1∑
i=0

O(nc − i)

︸ ︷︷ ︸
reduction

≤

≤
n∑

i=1

O(i) +

n−1∑
i=0

O(n− i) = O(n2),

(13)

and a worst case time complexity of O(n2) is obtained.

3. APPLICATION & RESULTS

As mentioned in the introduction it is of interest to predict
long-lasting brake events for supporting decision-making
when to perform SIDIS. In this study, for each unique
road segment, we create a prediction model, using static
geospatial information together with vehicle state data.
The original data contained geospatial information that
together with a map matching tool and OpenStreetMap
(OSM) data over the Gothenburg region was used to
identify the road ID and lane direction from where the
data were generated. Two road segments was selected for
the case study: R1 - an urban road segment (Fabriksgatan)
and R2 - a highway segment (E6).

3.1 Data

The available data have been collected from real-life driv-
ing using a few test vehicles. The data consists of e.g.
geospatial positions (longitude λ, latitude φ), vehicle speed
v and the actual power output on the drive shaft p.

The vehicles uses a regeneration scheme and the brake
events had to be deducted using the actual power output
on the drive shaft p, according to

bi =



True if p < −10 kW,

bi−1 if − 10 kW ≤ p ≤ 5 kW,

False if p > 5 kW,

where bi is the brake event value at time instance i.
A a dead zone is implemented to enhance the driving
experience.

We define the time until the vehicle is accelerating again
by ti, where ti = 0 if the brake event value bi is False

otherwise ti holds the time until the next brake event value
that is True.

Finally a signal indicating if the brake is long-lasting or
not is defined as

yi =

{
True if ti > 4 s,

False otherwise.

The feature vectors X and labels Y are given by

X =



xiB1

...
xiBm


 =



viB1

piB1
λiB1

φiB1

...
...

...
...

viBm
piBm

λiBm
φiBm


 , Y =



yiB1

...
yiBm


 .

In the remainder of this section the data will be split
into two parts, training- and testing data. Using a split
factor of 0.8 makes the training set contain 80% and
the test set contain 20% of the original data set. The
training data set will be used to train the model and choose
suitable hyperparameters using theK-fold cross-validation
technique.

3.2 Set-Up of Methods

The machine learning methods considered in this case
study are Compressed Mixture Model (CMM), Support
Vector Classifier (SVC), and Random Forest (RF). Python
is the programming language of choice and the scikit-
learn methods for Random Forest and SVC are used. The
default options for the methods in scikit-learn is used,
except for the hyperparameters varied which are presented
in Section 3.4. A non-linear kernel (radial-basis function)
is used for SVC. The CMM is defined using four univariate
continuous kernels to model, v, p, λ and φ and a binary
kernel to model the label y.

3.3 Predictions

Using a CMM, predictions can be made using the condi-
tional probabilities, i.e. a likelihood-ratio test, of a new
feature vector x and a label y as follows

g(x, y) =
f(x|y = True)

f(x|y = False)
≶ ξ, (14)

where y = 1 is predicted to be True if g(x, y) > ξ, and
False otherwise.

3.4 Optimizing Hyperparameters

To find the optimal choice for hyperparameters the models
are cross-validated on the training data set using K = 5
folds. The different combinations of hyperparameters are
evaluated using the Area Under the Curve (AUC) metric,
i.e. the area under the Receiver Operating Characteristics
(ROC) curve. In this study a full-factorial optimization
routine together with the K-fold cross-validation scheme
is used. The resulting choices of hyperparameters for each
machine learning method evaluated, maximizing AUC, on
each of the two road segments analyzed R1 and R2 are
presented in Table 1.

In Table 1, ε is the maximum component distance thresh-
old, C is the penalty parameter, γ is the kernel coefficient,
nest is the number of estimators, and nfeat is the maximum
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limiting the information loss. The closest component Φ∗ is
removed from the modelM and the two components Φ and

Φ∗ are aggregated resulting in Φ̂ with mixing weight λ̂. The
aggregation is performed using the aggregation operator
for two components defined in (6). To recursively find new

complexity reductions made possible, let λ ← λ̂ and Φ ← λ̂
and return to step 3. If all component distances are larger
than or equal to ε, step 5 is performed and Φ with mixing
weight λ is added to M . At last, the updated model M is
returned.

We argue that the worst case time complexity is O(n2)
for Algorithm 1, when applied incrementally on n obser-
vations. The two steps, step 2 and step 3, are linear with
respect to the number of components nc ≤ n. The other
steps are constant with respect to nc and thus also n. The
worst imaginable scenario is if no model complexity reduc-
tion is allowed until the last observation when one model
complexity reduction starts a chain reaction of reductions
until only one component remains. This corresponds to

T (n) =

nc∑
i=1

O(i)

︸ ︷︷ ︸
training

+

nc−1∑
i=0

O(nc − i)

︸ ︷︷ ︸
reduction

≤

≤
n∑

i=1

O(i) +

n−1∑
i=0

O(n− i) = O(n2),

(13)

and a worst case time complexity of O(n2) is obtained.

3. APPLICATION & RESULTS

As mentioned in the introduction it is of interest to predict
long-lasting brake events for supporting decision-making
when to perform SIDIS. In this study, for each unique
road segment, we create a prediction model, using static
geospatial information together with vehicle state data.
The original data contained geospatial information that
together with a map matching tool and OpenStreetMap
(OSM) data over the Gothenburg region was used to
identify the road ID and lane direction from where the
data were generated. Two road segments was selected for
the case study: R1 - an urban road segment (Fabriksgatan)
and R2 - a highway segment (E6).

3.1 Data

The available data have been collected from real-life driv-
ing using a few test vehicles. The data consists of e.g.
geospatial positions (longitude λ, latitude φ), vehicle speed
v and the actual power output on the drive shaft p.

The vehicles uses a regeneration scheme and the brake
events had to be deducted using the actual power output
on the drive shaft p, according to

bi =



True if p < −10 kW,

bi−1 if − 10 kW ≤ p ≤ 5 kW,

False if p > 5 kW,

where bi is the brake event value at time instance i.
A a dead zone is implemented to enhance the driving
experience.

We define the time until the vehicle is accelerating again
by ti, where ti = 0 if the brake event value bi is False

otherwise ti holds the time until the next brake event value
that is True.

Finally a signal indicating if the brake is long-lasting or
not is defined as

yi =

{
True if ti > 4 s,

False otherwise.

The feature vectors X and labels Y are given by

X =



xiB1

...
xiBm


 =



viB1

piB1
λiB1

φiB1

...
...

...
...

viBm
piBm

λiBm
φiBm


 , Y =



yiB1

...
yiBm


 .

In the remainder of this section the data will be split
into two parts, training- and testing data. Using a split
factor of 0.8 makes the training set contain 80% and
the test set contain 20% of the original data set. The
training data set will be used to train the model and choose
suitable hyperparameters using theK-fold cross-validation
technique.

3.2 Set-Up of Methods

The machine learning methods considered in this case
study are Compressed Mixture Model (CMM), Support
Vector Classifier (SVC), and Random Forest (RF). Python
is the programming language of choice and the scikit-
learn methods for Random Forest and SVC are used. The
default options for the methods in scikit-learn is used,
except for the hyperparameters varied which are presented
in Section 3.4. A non-linear kernel (radial-basis function)
is used for SVC. The CMM is defined using four univariate
continuous kernels to model, v, p, λ and φ and a binary
kernel to model the label y.

3.3 Predictions

Using a CMM, predictions can be made using the condi-
tional probabilities, i.e. a likelihood-ratio test, of a new
feature vector x and a label y as follows

g(x, y) =
f(x|y = True)

f(x|y = False)
≶ ξ, (14)

where y = 1 is predicted to be True if g(x, y) > ξ, and
False otherwise.

3.4 Optimizing Hyperparameters

To find the optimal choice for hyperparameters the models
are cross-validated on the training data set using K = 5
folds. The different combinations of hyperparameters are
evaluated using the Area Under the Curve (AUC) metric,
i.e. the area under the Receiver Operating Characteristics
(ROC) curve. In this study a full-factorial optimization
routine together with the K-fold cross-validation scheme
is used. The resulting choices of hyperparameters for each
machine learning method evaluated, maximizing AUC, on
each of the two road segments analyzed R1 and R2 are
presented in Table 1.

In Table 1, ε is the maximum component distance thresh-
old, C is the penalty parameter, γ is the kernel coefficient,
nest is the number of estimators, and nfeat is the maximum
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Fig. 1. ROC-curves for the different methods on R1 test
data. The points where the optimal F1-score occurs
are presented using different markers, a triangle for
CMM, a square for SVC, and a circle for Random
Forest.

number of features to consider when searching for the
best split. Prior information used for the CMM kernel
parameters are found in Table 2.

3.5 Test Results

Using the optimal set of hyperparameters in Table 1
together with the priors in Table 2 the three models are
compared on the test data.

In Figure 1 and Figure 2 the ROC-curves for the different
models on the test data set are presented for R1 and R2

respectively. Table 3 holds the AUC-metrics corresponding
to the ROC-curves in the figures. The two methods CMM
and Random Forest are producing fairly similar ROC-
curves, while SVC deviates significantly from the others in
the middle region of the ROC-curve. The methods tend
to predict long-lasting brake events better on the urban
road segment R1 than on the highway road segment R2.
There might be several explanations why the methods have
a higher prediction accuracy on the urban road segment
than on the highway road segment, but the influence of

Table 1. Hyperparameters

Road CMM SVC RF
Segment ε C γ nest nfeat

R1 1e-1 1e-3 1e2 150 2
R2 1e-1 1e3 1e-1 150 1

Table 2. CMM priors

σv σp σλ, σφ

3 5e3 2e-5

Table 3. AUC-scores

Road CMM SVC RF

R1 0.926 0.839 0.940
R2 0.794 0.690 0.830
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Fig. 2. ROC-curves for the different methods on R2 test
data. The points where the optimal F1-score occurs
are presented using different markers: a triangle for
CMM, a square for SVC, and a circle for Random
Forest.

static objects like e.g. crossings, traffic lights etc. could be
one of the key explanations.

Confusion matrices corresponding to the marked points
in Figure 1 and Figure 2 are presented in Table 4, and
Table 5 respectively.

Table 4. Confusion matrices for R1

CMM
AP AN

PP 960 78
PN 108 330

SVC
AP AN

PP 1020 18
PN 355 83

RF
AP AN

PP 961 77
PN 106 332

Table 5. Confusion matrices for R2

CMM
AP AN

PP 192 84
PN 95 389

SVC
AP AN

PP 202 74
PN 241 243

RF
AP AN

PP 197 79
PN 77 407

The abbreviations AP, AN, PP, and PN stands for actual
positive, actual negative, predicted positive, and predicted
negative respectively. A confusion matrix contains infor-
mation about prediction performance. The two possible
faults are a false alarm and a false rejection, which are
varying in importance between applications. The F1-score
weight false alarms and false rejections equally and is used
in this case study. The confusion matrices are calculated
for the points in the ROC-curves which maximized the
F1-score, i.e. the points marked in Figure 1 and Figure 2
for the respective methods. The prediction accuracy scores
in these points are presented in Table 6.

Table 6. Prediction accuracy scores

Road CMM SVC RF

R1 0.874 0.747 0.876
R2 0.764 0.586 0.795
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4. DISCUSSION

According to the results presented in Section 3 the pro-
posed technique CMM produce competitive results in com-
parison with two state-of-the-art machine learning classi-
fiers, Random Forest, and SVC. CMM tends to outper-
form SVC, while producing comparable results as Random
Forest. This statement becomes evident by examining the
ROC-curves in Figure 1, and Figure 2, since a better
performance is obtained for a smaller false positive rate
while the true positive rate is high. Thus, curves which
are closer to the top-left corner have a better performance
in general. The proposed technique is generative, which
grants the possibility to study properties of the underly-
ing/modeled random variable post-mortem training. The
generative property of a CMM is especially interesting in
situations when working with big data or infinite data
streams. Time complexities for training the treated ma-
chine learning algorithms with respect to the number of
observations n are:

• SVC - at least O(n2) for smaller values of C and
O(n3) when C gets large, according to Bottou and
Lin (2007).

• Random Forest - O(pn2 log n) in the worst case and
Θ(pn log2 n) on average, according to Louppe (2014),
where p is the number of elements in the feature
vector.

• CMM - is O(n2) in the worst case according to (13).

Thus, CMM is not more efficient in time complexity than
the other methods if all data is available in advance.
The recursive training technique utilized by CMM is
an advantage, since it enables the possibility to update
the model as new data becomes available. The methods
Random Forest, and SVC requires training data being
available in advance and thus will have to retrain on all
data as new data is observed. There have been studies
on extending these techniques to handle streaming data.
An extension to the Random Forest algorithm, Streaming
Random Forest, is presented by Abdulsalam et al. (2007).
They show that the extended algorithm has comparable
accuracy to the original method. Rai et al. (2009) presents
StreamSVM, a 3

2 -approximation to the optimal solution
of the minimum enclosing ball problem. They provide
experimental evidence that StreamSVM is competitive
with alternative techniques with a much simpler solution.

5. CONCLUSIONS

We have proposed a multivariate and mixed-variate kernel
density estimation technique suitable for streaming data
situations. The proposed technique utilizes a complexity
reduction scheme, aggregating similar kernels, and main-
tains a compressed model of the underlying probability
density distribution. The case study shows that the pro-
posed method produces comparable prediction results as
Random Forest and higher accuracy than Support Vector
Classifier. The recursive training technique along-side the
generative property promotes CMM as a solid candidate
for online streaming applications. A trained model can be
used as a predictor, as shown in the conducted case-study.
Furthermore, it is possible to use a trained model as a

tool for statistical inference to study the properties of the
observed realization of the underlying random variables.
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