Copper Chaperone Atox1 Interacts with Cell Cycle Proteins

Citation for the original published paper (version of record):
Copper Chaperone Atox1 Interacts with Cell Cycle Proteins
Computational and Structural Biotechnology Journal, 16: 443-449
http://dx.doi.org/10.1016/j.csbj.2018.10.018

N.B. When citing this work, cite the original published paper.
Copper Chaperone Atox1 Interacts with Cell Cycle Proteins

Maria Matson Dzebo, Stéphanie Blockhuys, Sebastian Valenzuela, Emanuele Celauro, Elin K. Esbjörner, Pernilla Wittung-Stafshede *

Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden

A R T I C L E I N F O
Article history:
Received 13 September 2018
Received in revised form 20 October 2018
Accepted 26 October 2018
Available online 31 October 2018

A B S T R A C T

The anaphase-promoting complex (APC) is involved in several processes in the cell cycle, most prominently it facilitates the separation of the sister chromatids during mitosis, before cell division. Because of the key role in the cell cycle, APC is suggested as a putative target for anticancer agents. We here show that the copper chaperone Atox1, known for shuttling copper in the cytoplasm from Ctr1 to ATP7A/B in the secretory pathway, interacts with several APC subunits. Atox1 interactions with APC subunits were discovered by mass spectrometry of co-immunoprecipitated samples and further confirmed using proximity ligation assays in HEK293T cells. Upon comparing wild-type cells with those in which the Atox1 gene had been knocked out, we found that in the absence of Atox1 protein, cells have prolonged G2/M phases and a slower proliferation rate. Thus, in addition to copper transport for loading of copper-dependent enzymes, Atox1 may modulate the cell cycle by interacting with APC subunits.

© 2018 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Copper (Cu) ions in oxidized and reduced forms are found in the active sites of many essential proteins that participate in key cellular reactions often involving electron transfer [1–3]. However, free Cu ions are potentially toxic for cells since, due to their redox activity, they are capable of producing reactive oxygen species [4]. To avoid Cu toxicity, the intracellular concentration of Cu is regulated via dedicated proteins that facilitate uptake, efflux as well as distribution of Cu to Cu-dependent proteins and enzymes [5–7]. In the human cytoplasm, after the uptake of Cu ions by the membrane-spanning Ctr1 trimer [8], the small Cu chaperone Atox1 transports the metal to ATP7A and ATP7B (also called Menke’s and Wilson disease proteins, respectively), two homologous membrane-bound P1B-type ATPases located in the trans-Golgi network. Once transferred to ATP7A/B, the Cu ion is channeled to the lumen of the Golgi where it is loaded onto Cu-dependent proteins and enzymes in the secretory pathway [9–12].

However, it is becoming more and more obvious that the concept of ‘one protein – one function’ is naive. Many proteins appear to have multiple functions and this has become clear also for Atox1. In 2008, Atox1 was reported to have additional activity in the nucleus as a Cu-dependent transcription factor (TF) of several genes [13–17]. We also confirmed the presence of Atox1 in the nucleus of HeLa cells, but no DNA binding of Atox1 to the proposed GAAAGA promoter sequence in vitro was detected [18]. Nonetheless, Atox1 may regulate gene transcription via additional proteins that in turn bind DNA. Using a yeast two-hybrid screen of a large human fragment library, a number of new Atox1-interacting proteins were identified as confident hits [19]. Among these target proteins, several were reported as detected in the nucleus and described as DNA/RNA-binding proteins [19]. However, these experiments were made in yeast and may not necessarily represent interactions taking place in human cells. In addition, Atox1 was found to localize at lamellipodia edges in breast cancer cells and, by a yet unknown mechanism, promote cancer cell migration [20]. Clearly, Atox1 may have more activities than basic copper transport to the secretion pathway [9,21].

To reveal Atox1 interaction partners in human cells, we here developed a co-immunoprecipitation protocol for Atox1 in human embryonic kidney (HEK293T) cells and used it, together with mass spectrometry analysis, to identify new protein interactions. The results revealed that several Atox1 interaction partners are subunits of the large multipeptide anaphase-promoting complex (here abbreviated as APC; also called cyclosome, or APC/C). APC is a cullin-RING E3 ubiquitin ligase that facilitates chromatid separation in mitosis before cell division, but it also has additional cell cycle functions such regulation of cyclins [22,23]. We direct readers to several excellent reviews for information on function and mechanism of APC [22,24–26]. Therefore, after

* Corresponding author.
E-mail address: Pernilla.wittung@chalmers.se (P. Wittung-Stafshede).
confirming some Atox1-APC interactions in cells using the in situ proximity ligation assay, we used Atox1 knock-out (KO) cells to investigate the putative role of Atox1 in the cell cycle and proliferation of HEK293T cells.

2. Materials and Methods

2.1. Cell Culture

HEK293T and MDA-MB-231 cells were purchased from ATCC (Manassas, VA, USA). The cells were cultured in Dulbecco’s modified Eagle’s medium containing high glucose, pyruvate and l-glutamine (Gibco), supplemented with 10% fetal bovine serum (HyClone, GE healthcare), at 37 °C in a humidified atmosphere with 5% CO₂. Cells were washed with DPBS without calcium and magnesium (Gibco) once and detached using Trypsin-ED (Gibco) at a concentration of about 80% for sub-culturing.

2.2. Atox1 KO Cell Line

We used CRISPR-Cas9 technology coupled to LoxP-driven recombination to establish an Atox1 KO cell line of HEK293T cells. Unlike in standard knock-out strategies, where the reading frame and the transcription start site are simply disrupted by the insertion of a reporter/sele-

The KO cells were cultured under the same conditions as wild-

The KO cells were cultured under the same conditions as wild-

2.3. Lysis of Cells

Cells (80% confluency) were washed with DPBS prior to lysing with lysis buffer (Pierce IP lysis buffer, Thermo Scientific) and incubated at 4 °C for 10 min on a rotary shaker. The lysate was centrifuged at 13,000g for 10 min at 4 °C and the supernatant was used for further studies.

2.4. Co-Immunoprecipitation (Co-IP)

Co-IP was performed with Pierce MS-compatible Magnetic IP Kit (ThermoFisher) using an adapted protocol. Magnetic beads (50 μL) were washed 3 times with coupling buffer, 10 μg rabbit anti-Atox1 monoclonal antibody (Abcam) or 10 μg rabbit monoclonal IgG isotype control antibody (Abcam) in 500 μL coupling buffer (20 mM Na phosphate pH 7–9, 150 mM NaCl, 0.05% Tween 20) was added to the washed beads and the solution was incubated for 15 min at room temperature (vortexed every 5 min). The antibody-conjugated beads were washed with coupling buffer three times before incubation with 5 mM disuccinimidyl suberate (DSS, ThermoFisher) during 45 min at room temperature on a tube rotator. To quench crosslinking, TRIS buffer (pre-

pared from Trizma-HCl, Sigma Aldrich) was added to a final concentra-

of 25mM and the beads were incubated on the tube rotator 15 min at room temperature prior to three washes with coupling buffer. The beads were further blocked with 1 × Roti-Block (Carl Roth) for 30 min at 4 °C with rotation and then mixed with pre-cleared cell lysate (cell lys-

ate incubated 30 min at 4 °C with magnetic beads, without antibodies, to avoid non-specific binding to the beads). The beads were incubated with the pre-cleared cell lysate during 4 h and then washed with the wash buffers in the kit according to the manufacturer’s recommenda-

tion (5 washes in total). Elution was done with 100 μL elution buffer during 10 min. Upon Western blot detection of Atox1, the samples were sent for analysis the Proteomics Core Facility at the Sahlgrenska Academy, University of Gothenburg.

Eluates from the IP were digested with trypsin using modified filter-

aided sample preparation (FASP) protocol [27]. Briefly, sodium dodecyl sulfate (SDS) and triethylammonium bicarbonate (TEAB) were added to final concentrations of 2% SDS and 50 mM TEAB prior to reduction using 100 mM dithiothreitol at 60 °C for 30 min. Reduced samples were transferred and concentrated onto 10 kDa MWCO Pall Nanosep centrifugal filters (Sigma-Aldrich) and washed repeatedly with 8 M Urea. Alkylation was performed with 10 mM methyl methane thiosulfonate (MMTS) diluted in digestion buffer (1% sodium deoxycholate (SDC), 50 mM TEAB) for 30 min in room temperature. Trypsin (0.3 μg, Pierce Trypsin Protease, MS Grade, Thermo Fisher Scientific) in digestion buffer was added and the samples were incubated at 37 °C overnight. Another portion of trypsin (0.3 μg) was added and incubated for an extra 3 h. Peptides were collected by centrifugation and SDC was removed by acidification with 10% trifluoroacetic acid. Samples were further purified using Detergent Removal Spin Column (Pierce, ThermoFisher Scientific) followed by C18 Desalting Spin Column (Pierce, ThermoFisher Scientific) according to the manufacturer’s guidelines. The detergent-free supernatants were dried and reconstituted in 3% acetonitrile (ACN) in 0.1% formic acid (FA) for LC-

MS analysis.

Peptide samples were analyzed on a QExactive HF mass spectrome-

ter interfaced with Easy-nLC1200 liquid chromatography system (ThermoFisher Scientific). Peptides were trapped on an Acclaim Pepmap 100 C18 trap column (100 μm × 2 cm, particle size 5 μm, ThermoFisher Scientific) and separated on an in-house packed analytical column (75 μm × 300 mm, particle size 3 μm, Reprosil-Pur C18, Dr. Maisch) using a gradient from 5% to 48% B over 75 min, followed by an increase to 100% B for 5 min at a flow of 300 nL/min, where Solvent A was 0.2% FA and solvent B was 80% ACN in 0.2% FA. The instrument
operated in data-dependent mode where the precursor ion mass spectra were acquired at a resolution of 60,000, the 10 most intense ions were isolated in a 1.2 Da isolation window and fragmented using collision energy HCD settings at 28. MS2 spectra were recorded at a resolution of 30,000 with charge states 2 to 4 selected for fragmentation and dynamic exclusion set to 20 s.

Data analysis was performed using Proteome Discoverer version 1.4 (ThermoFisher Scientific) against the Human Uniprot Database Nov 2017 (Swiss Institute of Bioinformatics, Switzerland). Mascot 2.5 (Matrix Science) was used as a search engine with precursor mass tolerance of 5 ppm and fragment mass tolerance of 200 millimass units. Tryptic peptides were accepted with one missed cleavage. Variable modifications of 5 ppm and fragment mass tolerance of 200 millimass units. Tryptic trypsin (ThermoFisher) was used as a search engine with precursor mass tolerance of 2017 (Swiss Institute of Bioinformatics, Switzerland). Mascot 2.5 (Mascot@ThermoFisher) against the Human Uniprot Database Nov 2017 (Swiss Institute of Bioinformatics, Switzerland).

3.1. New Atox1 partners identified with co-immunoprecipitation

To find new interaction partners of the Cu chaperone Atox1 in mammalian cells, co-immunoprecipitation (co-IP) experiments were performed in HEK293T cells using antibody-coupled magnetic beads. Because Atox1 is a small (68 residues) protein, extensive optimization was required to obtain successful Atox1 immunoprecipitation from the cell lysate (Fig. 1, Fig. S2). In parallel control experiments, we used an isotype control antibody coupled to the beads. The co-IP samples were analyzed by nano-LC MS/MS for the detection of peptide fragments. A Mascot 99 filter (1% false discovery rate) was used for nano-LC MS/MS analysis and detection of one unique peptide in the Atox1

![Fig. 1. Western blot detection of Atox1 in co-IP samples: blot. cell lysate (L), flow through (FT), washes (W1–5) and immunoprecipitates (IP) with an Atox1-antibody as bait as well as using an isotype control antibody (IC). See also Fig. S2.](image-url)
sample but not in the isotype control was regarded a positive result (hit).

Proteins immunoprecipitated with Atox1, but not with the isotype control, and identified with at least four unique peptides in the Atox1 sample, are listed in Table 1. Complete lists of identified proteins (in Atox1 and control samples) in the HEK293T cells are provided in Table S1. Surprisingly, upon inspection of the data in Table 1, it is evident that proteins involved in the cell cycle are the top hits in our experiments. In particular, several anaphase-promoting complex (APC) subunits are found on top of the list of proteins immunoprecipitated with Atox1. The hits with the highest number of unique peptides identified are in descending order APC1, APC7, APC3 and APC5. Notably, the same co-IP experiment was performed in the cancer cell line MDA-MB-231, we also found APC subunits (including APC1, APC7, APC3 and APC5 noted above) as the primary proteins immunoprecipitated with Atox1 (overlap in hits between cell lines are marked in Table 1). Complete lists of identified proteins (in Atox1 and control samples) in the MDA-MB-231 cells are reported in Table S2. We note that no known Atox1 partners in the Cu transport chain were immuno-precipitated in our experiments (e.g., Ctr1, ATP7A/B). This observation suggests that this experimental approach favors copper-independent interactions. Therefore, the results obtained here do not necessarily report on dominant Atox1 interactions but merely identify APC subunits as being among cellular Atox1 interaction partners.

3.2. Proximity Ligation Assay to Detect Atox1-APC Interactions in Cells

To directly probe Atox1 interactions with APC subunits in the HEK293T cells, we employed the recently developed proximity ligation assay (PLA) which exhibits single-molecule resolution [29,30]. Here, oligonucleotide probes are attached to antibodies against two proteins of interest and, if they are bound in close proximity (< 40 nm), the oligonucleotides guide the formation of circular DNA strands. The DNA circles can then serve as templates for localized rolling-circle amplification which allows pairs of protein molecules in close proximity to be visualized and counted in situ using fluorescence microscopy. As a negative control for the PLA experiments, and also used in our other experiments (see below), we created an Atox1 KO cell line of the HEK293T cells (Fig. S1).

We used PLA to assess Atox1 interactions in situ for APC1, APC3, APC5 and APC7. The subunits APC1, APC3 and APC7 were selected as they are the top three hits in the immunoprecipitation results in HEK293T cells; APC5 was chosen as it is located further away from APC1, APC3 and APC7 in the structure of the complete APC complex [22,23] but still is among the top four hits in Table 1. Quantitative analysis of the results for Atox1 and APC1, APC3 and APC7, respectively, showed higher number of dots in each case as compared to the background found in the KO cell line (Fig. 2), indicating close proximity between Atox1 and APC1, APC3 and APC7 in the HEK293T cells. However, for APC5, no specific Atox1 interaction was found using PLA, indicating that this APC subunit is not in close proximity of Atox1 and, therefore, likely interacts indirectly with Atox1 via other APC subunits. Notably, the PLA data demonstrates that the interactions between Atox1 and APCs take place in the cytoplasm (Fig. 2). Several control experiments were performed to assess the accuracy of the PLA results. As positive and negative controls we performed PLA for Atox1-ATP7A and Atox1-beta actin interactions, respectively, in wt and Atox1 KO HEK293T cells. We also confirmed the specificity of the anti-Atox1 antibody by a PLA experiment for Atox1 detection using anti-mouse minus and plus PLA probes in wt and Atox1 KO HEK293T cells (Fig. S3). The PLA results, together with the co-IP results, encouraged us to further study a possible role of Atox1 in the cell cycle.

3.3. Consequence for Cells of Atox1 Knock out (KO)

The cell cycle can be divided into interphase (including G₁, S, and G₂ stages) followed by mitosis (M phase, which includes the anaphase) and cytokinesis, with the last two steps facilitating cell division. Anaphase starts when cytoplasmic APC labels an inhibitory chaperone with ubiquitin [22,23] resulting in a cascade of events that promotes sister chromatid separation. Activator subunits target APC to specific subcellular locations at different times in the cell cycle: Cdc20 activates in mitosis and Cdh1 activates in interphase [26]. Atox1 may modulate APC activity at any stage of the cell cycle, as both Cdc20 and Cdh1 were shown to interact with Atox1 [22,23] but still is among the top four hits in Table 1. Quantitative analysis of the results for Atox1 and APC1, APC3, and APC7, respectively, showed higher number of dots in each case as compared to the background found in the KO cell line (Fig. 2), indicating close proximity between Atox1 and APC1, APC3, and APC7 in the HEK293T cells. However, for APC5, no specific Atox1 interaction was found using PLA, indicating that this APC subunit is not in close proximity of Atox1 and, therefore, likely interacts indirectly with Atox1 via other APC subunits. Notably, the PLA data demonstrates that the interactions between Atox1 and APCs take place in the cytoplasm (Fig. 2). Several control experiments were performed to assess the accuracy of the PLA results. As positive and negative controls we performed PLA for Atox1-ATP7A and Atox1-beta actin interactions, respectively, in wt and Atox1 KO HEK293T cells. We also confirmed the specificity of the anti-Atox1 antibody by a PLA experiment for Atox1 detection using anti-mouse minus and plus PLA probes in wt and Atox1 KO HEK293T cells (Fig. S3). The PLA results, together with the co-IP results, encouraged us to further study a possible role of Atox1 in the cell cycle.

Table 1

<table>
<thead>
<tr>
<th>Gene name</th>
<th>Protein description</th>
<th>Uniprot Accession</th>
<th>Number of unique peptides</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANAPC1</td>
<td>Anaphase-promoting complex subunit 1b</td>
<td>Q9H1A4</td>
<td>28</td>
</tr>
<tr>
<td>ANAPC7</td>
<td>Anaphase-promoting complex subunit 7b</td>
<td>Q9UXJ3</td>
<td>24</td>
</tr>
<tr>
<td>ANAPC3</td>
<td>Anaphase-promoting complex subunit5(Cell division cycle protein 27 homolog)</td>
<td>P30620</td>
<td>20</td>
</tr>
<tr>
<td>ANAPC5</td>
<td>Anaphase-promoting complex subunit 5b</td>
<td>Q9UXJ4</td>
<td>14</td>
</tr>
<tr>
<td>ANAPC8</td>
<td>Anaphase-promoting complex subunit 8b</td>
<td>Q9UXJ2</td>
<td>13</td>
</tr>
<tr>
<td>SARP1</td>
<td>SAP domain-containing ribonucleaseproteinb</td>
<td>P82977</td>
<td>11</td>
</tr>
<tr>
<td>SARP2</td>
<td>Anaphase-promoting complex subunit 2b</td>
<td>Q9UXJ6</td>
<td>10</td>
</tr>
<tr>
<td>TOMM70</td>
<td>Mitochondrial import receptor subunit</td>
<td>Q94826</td>
<td>10</td>
</tr>
<tr>
<td>ANAPC10</td>
<td>Anaphase-promoting complex subunit 10b</td>
<td>Q9UM13</td>
<td>7</td>
</tr>
<tr>
<td>ANAPC4</td>
<td>Anaphase-promoting complex subunit 4b</td>
<td>Q9UXJ5</td>
<td>7</td>
</tr>
<tr>
<td>MOGC</td>
<td>Mannosyl-oligosaccharide glucosidase</td>
<td>Q17274</td>
<td>6</td>
</tr>
<tr>
<td>LETMD1</td>
<td>LETM1 domain-containing protein 1</td>
<td>Q6P1Q0</td>
<td>6</td>
</tr>
<tr>
<td>NEK2</td>
<td>Serine/threonine-protein kinase Nek2</td>
<td>P51995</td>
<td>6</td>
</tr>
<tr>
<td>PARP1</td>
<td>Poly [ADP-ribose] polymerase 1</td>
<td>P09874</td>
<td>6</td>
</tr>
<tr>
<td>CDC20</td>
<td>Cell division cycle protein 20 homolog</td>
<td>Q12834</td>
<td>5</td>
</tr>
<tr>
<td>CDH1</td>
<td>Fizzy and cell division cycle 20 related Q9UXJ1</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>FZFR1</td>
<td>(Fizzy-related protein homolog)</td>
<td>Q9UXJ1</td>
<td>11</td>
</tr>
<tr>
<td>NEX1</td>
<td>Serine/threonine-protein kinase Nek1</td>
<td>Q96P66</td>
<td>5</td>
</tr>
<tr>
<td>ALDH1A2</td>
<td>Fatty aldehyde dehydrogenase</td>
<td>P51648</td>
<td>4</td>
</tr>
<tr>
<td>ANAPC16</td>
<td>Anaphase-promoting complex subunit 16b</td>
<td>Q96DE5</td>
<td>4</td>
</tr>
<tr>
<td>C3orf58</td>
<td>Deleted in autism protein 1</td>
<td>Q9NQD4</td>
<td>4</td>
</tr>
<tr>
<td>FAR1</td>
<td>Fatty acyl-CoA reductase</td>
<td>Q8WXX9</td>
<td>4</td>
</tr>
<tr>
<td>TIMP0</td>
<td>Lamin-associated polypeptide 2, isofoms beta/gammaa</td>
<td>P42167</td>
<td>4</td>
</tr>
<tr>
<td>SLC25A11</td>
<td>Mitochondrial 2-oxoglutarate/malate carrier protein</td>
<td>Q02978</td>
<td>4</td>
</tr>
<tr>
<td>MARC2</td>
<td>Mitochondrial aminoxyde reducing component 2</td>
<td>Q960Z3</td>
<td></td>
</tr>
<tr>
<td>OCIAD1</td>
<td>OCIAD domain-containing protein 1</td>
<td>Q9NXX0</td>
<td>4</td>
</tr>
<tr>
<td>PTGES</td>
<td>Prostaglandin E synthase 2</td>
<td>Q9H7Z7</td>
<td>4</td>
</tr>
<tr>
<td>PHLDB2</td>
<td>Pleckstrin homology-like domain B member 2</td>
<td>Q86QG0</td>
<td>4</td>
</tr>
<tr>
<td>RPS16</td>
<td>40S ribosomal protein 516b</td>
<td>P62249</td>
<td>4</td>
</tr>
<tr>
<td>SEC22B</td>
<td>Vesicle-trafficking protein SEC22b</td>
<td>Q7S396</td>
<td>4</td>
</tr>
<tr>
<td>VDAC1</td>
<td>Voltage-dependent anion-selective channel</td>
<td>P21796</td>
<td>4</td>
</tr>
<tr>
<td>XRC6</td>
<td>X-ray repair cross-complementing protein 6</td>
<td>P12956</td>
<td>4</td>
</tr>
</tbody>
</table>

a The list contains proteins identified with at least four unique peptides in the Atox1 co-IP but no peptide in the isotype control co-IP. A complete list of for both Atox1 and isotype control co-IP in the HEK293T cells is found in Table S1.

b These proteins were also co-immunoprecipitated with Atox1 in MDA-MB-231 breast cancer cells, see Table S2 for complete list for this cell line.
phases take place during only a few hours and the rest of the time is spent in the S phase. Inspection of the fractions of cells in different phases for the two cell types shows that the fraction of total cell cycle time the cells spend in G2/M phases has increased from about 23% to 33% when Atox1 is absent (Fig. 3A). As another evidence of altered cell cycle phases, we compared the amounts of cyclins A and B1 in wt and Atox1 KO cells. Both these cyclins are accumulated in G2/M phases [31] and, in accord with the flow cytometry data, we find a trend of increased cyclins A and B1 in the KO cells (Fig. S4B). Unfortunately, the differences were not statistically significant which may be due to the rather small increase in G2/M percentage for the KO cells. Taken together, removing Atox1 protein from the cells prolongs the duration of G2/M phases compared to G1 and S, resulting in G2/M enrichment.

That knock out of Atox1 in cells results in slower growth than corresponding wt cells has been reported for mouse embryonic fibroblasts [14]. To link altered cell cycle stage distribution to cell growth of our cells, we probed cell proliferation of wt and Atox1 KO HEK293T cells over 72 h (Fig. 3B). The data shows that the Atox1 KO cells proliferate slower than the wt cells: at 72 h the amount of wt cells is almost double that of the KO cells. To test if the result was due to slower proliferation or increased cell death, we probed the presence of dead cells in both wt and KO cells after 72 h of growth. Data from Live/Dead staining experiments showed that the number of dead cells was low in both cell lines (<2%; data not shown).

Taken together, removal of Atox1 from the cells increases the population of cells in G2/M phases and slows down overall cell proliferation. A tentative explanation for these observations is that Atox1 is a co-activator of APC, helping it to advance through later stages of the cell cycle, thereby facilitating proliferation.

4. Discussion

We here show that the copper chaperone Atox1, known for transporting Cu in the cytoplasm, interacts with subunits in the anaphase-promoting complex (APC). APC is a 1.2 MDa complex including 19 APC subunits and coactivators that regulates multiple steps in the cell cycle, but most prominently, mitosis [22,23]. High resolution structures of the multi-protein APC complex, with different coactivators bound, have been resolved by cryo-electron microscopy [23,32]. From the deduced arrangement of subunits in the APC complex, the here discovered subunits co-immunoprecipitated with Atox1 can be located to two regions. The top three hits in Table 1 are APC1, APC7 and APC3; these proteins are located near each other on one side of the complex (right side, Fig. 4) and are also closely connected to APC10, APC16 and modulator Cdh1 proteins, also on list in Table 1. The fourth and fifth top hits in Table 1, APC5 and APC8, are located next to each other on the other side of the APC complex (left side, Fig. 4) and are connected to APC2, APC6 and APC4 (also in Table 1). Using in situ proximity ligation directly in cells, we confirmed Atox1 interactions (close proximity) for APC1, APC3 and APC7 (top three hits in Table 1) but not for APC5.
important for proliferation of non-small lung cancer cells and it was even proposed that Atox1 may be a potential therapeutic target for lung cancer therapy [35].

The effects of altered copper levels and/or importance of Atox1 being copper-loaded for the here observed cell cycle effects and APC interactions should be specifically addressed in future work. A recent study indicated that small synthetic molecules, blocking the copper-binding ability of Atox1 and of another cytoplasmic copper chaperone, resulted in inhibition of proliferation of cancer cells and these molecules also significantly attenuated tumor growth in xenograft mice models [36]. These effects were proposed to be due to accumulation of free copper ions in cells that caused oxidative damage and killed the cells [36]. Based on our results, part of the noted changes may be due to cell cycle/growth defects due to an abolished Atox1 network of interactions.

In conclusion, we have discovered that the copper chaperone Atox1 interacts with subunits of APC, which is a complex involved in several steps of the cell cycle. Further studies are required to reveal the molecular mechanisms of this interaction and its consequences for the cell cycle. Such studies are of importance as they may reveal new targets for the development of anticancer drugs and, from a fundamental point of view, they may also identify a connection between copper metabolism and the cell cycle.

Role of the Funding Source

The funding sources given above had no role in study design, data collection, analysis and interpretation, or in writing and submission of the report.

Acknowledgements

The proteomic analysis was performed at the Proteomics Core Facility of Sahlgrenska Academy, University of Gothenburg. Molecular graphics were performed with the UCSF Chimera package. The Nikon confocal microscope was funded by the Lundberg foundation, Sweden. Funding for research was provided by the Swedish Research Council, the Knut and Alice Wallenberg Foundation and the Swedish Cancer Society.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.csbj.2018.10.018.

References

Fig. 4. Structure of anaphase-promoting complex (APC) with the subunits, identified in the co-IP-MS with at least 4 unique peptides, in color. Subunits APC1, APC3, APC5, and F-box only protein 5 were not found in the analysis of the Atox1 co-IP using nano- LC MS/MS and are shown in grey; also in grey is APC12 which was identified in the Atox1 immunoprecipitation experiment with only 2 unique peptides. The subunits identified with largest number of unique peptides are all located in the same area, APC7 (red), APC1 (cyan) and APC3 (light green, also called CDC27). Image made using PDB ID 4UI9 [23] and UCSF Chimera 1.11.2 software [37]. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

