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Abstract: This paper presents a computationally efficient velocity control of vehicles driving
in a possibly hilly terrain and over long look-ahead horizons that may stretch to hundreds of
kilometers. The controller decouples gear scheduling into an offline optimization problem, from
the remaining optimization problem that governs two real-valued states. One of the states, the
travel time, is adjoined to the objective by applying the necessary optimality conditions, which
results into an online optimization problem that has kinetic energy as the single state. Finally
an inner approximation is proposed for the online problem to obtain a quadratic program that
can be solved efficiently. The efficiency of the proposed controller is shown for different horizon
lengths.
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1. INTRODUCTION

The depletion of oil reserves, global warming and pollutant
emissions are recently being considered as alarming issues
in automotive industry due to economic, environmental
and health reasons. One promising way that mitigates the
consequences from the excessive usage of oil is to improve
the vehicular energy efficiency, thus reducing oil consump-
tion and simultaneously reducing harmful emissions.

Vehicle’s energy efficiency can be improved by intelligent
usage of its energy storage units, which in the case of
a conventional vehicle include the kinetic, potential and
chemical (fuel) storage. To this end, velocity profile of
the vehicle can be controlled over a narrow speed interval,
where proper gear is selected. For instance, the vehicle’s
speed can decrease when climbing uphill and gradually
increase while rolling downhill, which results in less energy
dissipation at the braking pads. This type of driving
belongs to a category, which is so-called economic driving.
For long-haulage trucks, the energy consumption and CO2
emissions can be reduced up to 10 % by economic driving
(Barkenbus, 2010).

Rule-based control strategies are suitable for implementa-
tion of the behaviour of speed varying within the interval,
where topographic profiles are relatively simple. On the
other hand, model-based control strategies are suggested
for more complex topographic profiles, where various op-
timal control algorithms are employed to coordinate the
energy use. The model-based control strategies can be
mainly classified into dynamic programming (DP)-based,
non DP-based and mixed methods.

DP (Bellman, 1957) is the most commonly used optimiza-
tion method in the technical literature for finding global
optimum of nonlinear, non-convex and mixed-integer prob-

lems. A DP-based method is proposed by Hellström et al.
(2009, 2010), to optimize velocity trajectory, where trip
time is constrained and close-to-optimal fuel consumption
is achieved. A two-layer planning approach is presented
by Heppeler et al. (2016), where energy management sys-
tem (EMS) and economic driving are considered together
to have optimized gear shifting, velocity trajectories and
torque split of a hybrid electric vehicle. However, expo-
nential increase of computational time with increasing the
number of state variables and control signals, i.e. the so-
called curse of dimensionality, is the main drawback of
using DP.

In order to alleviate the amount of computational effort,
several approaches have been proposed that adjoin system
dynamics to the objective function (Hellström et al., 2010;
Lindgärde et al., 2015; van Keulen et al., 2010, 2011).
A numerical approach, based on Pontryagin’s Minimum
Principle (PMP) (Pontryagin et al., 1962) is employed
by van Keulen et al. (2014) for power split control prob-
lem in hybrid electric vehicles. Although PMP methods
are computational-efficient for control over long distance
intervals, they do not provide the same computational
advantage for optimal control problems where states often
activate their bounds, especially the methods that relay on
a single shooting for solving a two-point boundary value
problem (van Keulen et al., 2010, 2011). Another faster
approach, which characterizes simultaneous component
sizing and energy management of plug-in hybrid electric
vehicles (PHEV)s into convex optimization framework is
proposed by Murgovski et al. (2012); Pourabdollah et al.
(2013). By using this approach it is possible to handle the
large-size problems with very long driving cycles. However,
the main drawback is that the approach cannot be applied
to mixed-integer problems, which arise when, e.g., gear
scheduling ought to be optimized.



Another portion of the conducted research benefits from
combination of DP and other methods. Such approaches
have been proposed by Johannesson et al. (2015a,b); Mur-
govski et al. (2016); Hovgard et al. (2018), where real-
valued decisions, e.g., planing optimal velocity, are made
by convex optimization, while integer decisions are made
by DP. These approaches have also been shown to be
promising when considering surrounding traffic (Johannes-
son et al., 2015b), or cooperative energy management of
multiple vehicles (Murgovski et al., 2016; Hovgard et al.,
2018). Other proposed approaches rely on a combination
of DP and PMP (Ngo et al., 2012; Uebel et al., 2017).
To investigate the impact of optimized gear shifting on
fuel economy the combined DP-PMP method is presented
by Ngo et al. (2012), where gear and engine on/off are
regarded as integer states. Online-capable EMS using the
DP-PMP method is reported by Uebel et al. (2017).

The previously mentioned online implementable methods
are suitable for predictive control over moderately long
look-ahead horizons, in the range of 5-20 km. The goal of
this paper is to develop an online implementable predictive
controller over longer look-ahead horizons that may stretch
to the end of the route, i.e to hundreds of kilometers. The
purpose of the controller is to provide a target set for low-
level controllers with a limited look-ahead horizon, such
as those discussed previously. In the case of conventional
vehicles, the typical target set includes the maximum
travel time, while in the case of a PHEV, the target set
may also include the allowed change in battery energy.

In particular, this paper considers optimization of velocity
and gear trajectory of a heavy duty vehicle, on horizons
that possibly stretch over 100 km. Several steps are pro-
posed to decrease computational effort, while preserving
sufficient amount of modeling details that capture the
general trend of predictive state trajectories that derive
from longitudinal vehicle dynamics. These steps include
1) a problem decomposition into two sub-problems, which
include an online optimization of velocity and travel-time
trajectory and an offline optimization of gear shifting
strategy, 2) a combination of an indirect PMP solution and
a direct nonlinear programming for reducing the number
of states in the online optimization sub problem, and
3) a real-time iteration (RTI) sequential quadratic pro-
gramming (SQP), which allows a single quadratic pro-
gram (QP) to be solved in a moving horizon framework.
Although the intended usage of the proposed method is
in a model predictive control (MPC) framework (Mayne
et al., 2000), this paper focuses on the derivation of the
QP formulation for a single MPC stage.

The outline of current paper is as follows. The paper starts
with powertrain modelling in Section 2. The optimization
control problem is formulated in Section 3. Bi-level com-
putational efficient algorithm is presented in Section 4.
Simulation results are given in Section 5 and finally the
paper is concluded in Section 6.

2. POWERTRAIN MODELLING

This section introduces the powertrain model of a con-
ventional vehicle, which includes a transmission and an
internal combustion engine (ICE).

2.1 Longitudinal vehicle dynamics

The conventional vehicle is modeled as a lumped mass,
where traveled distance, s, and vehicle speed, v, are state
variables

ṡ(t) = v(t) (1)

mv̇(t) = Fw(t) + Fbrk(t)− Fα(s)− Fair(v) (2)

with m denoting the total vehicle mass, and Fw and Fbrk

the non-negative force delivered by ICE at the wheel
side of the vehicle and the non-positive braking force,
respectively. In (2), traveled distance and vehicle speed
are functions of t, however it is omitted from Fα(s) and
Fair(v) for simplicity. The nominal aerodynamic drag and
forces that depend on road gradient α are modeled as

Fα(s) = mg (sin(α(s)) + cr cos(α(s))) (3)

Fair(v) =
ρacdAfv

2(t)

2
(4)

where g is the gravitational acceleration, cr is rolling
resistance coefficient, ρa is air density, cd is aero-dynamic
drag coefficient and Af is vehicle frontal area. The vehicle
dynamics (2) are nonlinear due to the trigonometric func-
tion of traveled distance (3) and the quadratic term in the
aerodynamic drag (4).

2.2 Change of independent variable

To overcome the nonlinearity in (3) a change of indepen-
dent variable is proposed, where decisions are planed with
respect to travel distance, s, instead of travel time. This
introduces the travel time, t(s), as a state in the problem.
In addition, the nonlinearity in (4) is removed by a change
of state variable, where kinetic energy

E(s) =
mv2(s)

2
(5)

is used instead of velocity. These transformations are
non-approximate as long as the studied vehicle does not
stop or change direction of its movement. Similar variable
changes have been applied previously for optimal control
of vehicles (Murgovski et al., 2013a; Lipp and Boyd, 2014;
Johannesson et al., 2015b; Murgovski et al., 2015, 2016;
de Castro et al., 2016). Consequently, the new governing
equations of the studied system are

t′(s) =

√
m

2E(s)
(6)

E′(s) = Fw(s) + Fbrk(s)− c̃aE(s)− Fα(s) (7)

where t′ is used as a short hand notation for dt/ds,
E′(s) = mv(s)v′(s) and the coefficient in (7) is calculated
as c̃a = ρacdAf/m. It can be noticed that (7) becomes a
linear equation, although (6) is still nonlinear. A method
for dealing with the nonlinearity in (6) is presented later,
in Section 4.

2.3 Engine model

For given engine speed values, ω, engine torque, M , and
fuel mass rate, µ(ω,M), steady-state data of a diesel
engine is gathered using a detailed model presented by
Wahlström and Eriksson (2012). Fig. (1) shows the ob-
tained fuel mass rate represented as brake specific fuel con-
sumption (BSFC), together with the maximum delivered
torque Mmax(ω), which is a function of engine speed.
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Fig. 1. The torque limit of the engine together with contour
lines of the brake-specific fuel consumption (BSFC).

2.4 Transmission system

Vehicle speed and longitudinal force can be calculated from
engine speed and torque, respectively, as

v(s) = ω(s)R(γ), Fw(s) =
M(s)ηγ(γ)

R(γ)
(8)

where γ is selected gear, ηγ is gear efficiency and R(γ) is
calculated as

R(γ) =
Rw

rγ(γ)rfg
(9)

where Rw, rγ and rfg are wheel radius, transmission gear
ratio and final drive ratio, respectively.

It follows from (5) and (8) that the maximum longitudinal
force the engine can deliver, Fmax(E, γ), can be expressed
as a function of kinetic energy and transmission gear,
which will be illustrated later.

3. CONTROL PROBLEM FORMULATION

The problem is formulated to minimize aggregated fuel
consumption, by integrating the fuel mass rate µ(M,ω).
As integration is performed in distance, a division with
speed takes place ∫ sf

0

µ(M,ω)

v(s)
ds (10)

where sf is the final position at the end of the route.
By replacing the engine speed and torque with the ve-
hicle kinetic energy and longitudinal force according to
(5) and (8), it is possible to derive a three-dimensional
map µw(Fw, E, γ). Then, the addressed problem can be
formulated as

min
Fw,Fbrk,γ

∫ sf

0

µw(Fw, E, γ)

√
m

2E(s)
ds (11a)

subject to

t′(s) =

√
m

2E(s)
(11b)

E′(s) = Fw(s) + Fbrk(s)− c̃aE(s)− Fα(s) (11c)

E(s) ∈ m

2
[v2min(s), v2max(s)] (11d)

Fbrk(s) ≤ 0 (11e)

Fw(s) ∈ [0, Fmax(E, γ)] (11f)

γ(s) ∈ {1, 2, ..., γmax} (11g)

t(0) = t0, E(0) =
mv20

2
(11h)

t(sf) ≤ tf (11i)

where v0, vmin and vmax are initial speed, minimum
allowable and maximum allowable speeds respectively.
Furthermore, t0, tf and sf are initial travel time, final travel
time and final position respectively. Moreover, Fmax(E, γ)
is maximum longitudinal force at the wheel side of the
vehicle for given kinetic energy and selected gear. It should
be mentioned that Fw, Fbrk and γ are trajectories in terms
of s, however it is not written explicitly for simplicity in
the above formulation and in several later formulations.
The constraints (11b)-(11f) are enforced for all s ∈ [0, sf].
Problem (11) is a mixed-integer, non-convex and dynamic
nonlinear program. It has two states, t and E, two real-
valued control variables, Fw and Fbrk, and one integer
control variable, γ.

3.1 Driving cycle and velocity constraints

In the studied scenario, a vehicle is traveling over a
long horizon in a possibly hilly terrain from Södertälje
to Norrköping in Sweden. The driving cycle is the same
as it is considered by Eriksson et al. (2016), but with
different sampling interval. The reference speed trajectory
is constructed based on the preferred cruising speed set
by the driver, or set automatically by a telemetry system,
using speed filter, see (Murgovski et al., 2016). However,
the reference is not necessarily tracked by the vehicle, but
can vary within the range of [vmin(s), vmax(s)]. According
to the obtained reference speed trajectory, the final travel
time is the time to reach final position where the vehicle is
driven by reference speed, vr within the receding horizon
as

t(sf) ≤ tf =

∫ sf

0

ds

vr(s)
. (12)

4. COMPUTATIONALLY EFFICIENT ALGORITHM

This section provides several steps that reformulate prob-
lem (11) into a problem that can be solved more efficiently.
These steps include 1) a non-approximate bi-level formu-
lation that enables decoupling the gear selection from the
dynamic optimization problem; 2) insights from necessary
PMP conditions; and 3) approximations that allow the
resulting smooth, nonlinear dynamic problem to be solved
by SQP, in RTI framework.

4.1 Decoupling of integer variables

It is possible to rewrite problem (11) as a bi-level program

min
Fw,Fbrk

∫ sf

0

µw(Fw, E, γ
∗)

√
m

2E(s)
ds (13a)

subject to: (11b)-(11e), (11h), (11i),

Fw(s) ∈ [0, Fmax(E, γ∗)] (13b)

γ∗(s) = argminγ µ(Fw, E, γ) (13c)

subject to: γ(s) ∈ {1, 2, ..., γmax} (13d)

Fw(s) ∈ [0, Fmax(E, γ)] (13e)
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Fig. 2. Optimal gear selection for all feasible operating
points in longitudinal force and vehicle speed.

where gear optimization has been moved to the lower-
level task. It can be observed in (13) that all the system
dynamics (states) belong to the higher level task, while
the lower-level task is simply a static problem.

It should be reemphasized that since ICE and transmission
system are both modeled statically, it is valid to solve the
gear selection problem independently from the upper-level
task in the lower-level task in (13), by optimizing gear for
any feasible combination of values of Fw and E. Then, the
gear selection problem can be approached by gridding the
feasible sets for Fw and E and solving

f∗γ (Fw, E) = argminγ µw(Fw, E, γ) (14a)

subject to: γ ∈ {1, 2, ..., γmax} (14b)

Fw ∈ F ⊆ [0, Fmax(E, γ)] (14c)

E ∈ E ⊆ m[ω2
idle, ω

2
max]R2(γ)/2 (14d)

where the sets F , E are discrete, ωidle is the engine idling
speed and ωmax is the maximum speed, above which the
engine torque drops to zero. Here, f∗γ (Fw, E) is a two-
dimensional map, illustrated in Fig. 2, which holds the
optimal gear choices for all force-speed combinations. As a
consequence, the three-dimensional fuel map µw(Fw, E, γ)
and the two dimensional force limit Fmax(E, γ) can be
replaced by a two-dimensional and a one dimensional map,
respectively,

µ∗γ(Fw, E) = µw(Fw, E, f
∗
γ (Fw, E)) (15)

Fγmax(E) = max
γ

Fmax(E, γ). (16)

The optimal fuel map including its force limit is illustrated
in Fig. 3.

4.2 Necessary conditions for optimality

Here, the idea is to adjoin dynamics of the travel time
to the objective. Therefore, the non-convex constraint re-
garding to the travel time constraint is omitted and its
influence on the optimization problem is considered in the
objective function. After the optimal gear map is decided,
the properties of the resulting dynamic optimization prob-
lem (13) can be investigated from the necessary condition
for optimality in PMP

λ′
∗
t (s) = −

(
∂H(·)
∂t

)∗
= 0, λ′

∗
E(s) = −

(
∂H(·)
∂E

)∗
(17)
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where the Hamiltonian is defined as

H(·) = µ∗γ(Fw, E)

√
m

2E(s)
+ λt(s)

√
m

2E(s)

+ λE(s)(Fw(s) + Fbrk(s)− c̃aE(s)− Fα(s)).

(18)

It can be concluded from (17) that λ∗t has to be a constant,
since the Hamiltonian is not an explicit function of travel
time and the time is a strictly monotonically increasing
function that may activate constraint (11i) only at the
final instant. This property can be exploited to formulate
the following dynamic optimization problem

min
Fw,Fbrk

∫ sf

0

(
µ∗γ(Fw, E)

√
m

2E(s)
+ λ∗t

√
m

2E(s)

)
ds

subject to

E′(s) = Fw(s) + Fbrk(s)− caE(s)− Fα(s) (19a)

E(s) ∈ m

2
[v2min(s), v2max(s)] (19b)

Fbrk(s) ≤ 0 (19c)

Fw(s) ∈ [0, Fγmax(E)] (19d)

E(0) =
mv20

2
(19e)

where the travel time dynamics have been adjoined to the
objective, given the optimal costate λ∗t that satisfies the
final time constraint (11i). For more information about
PMP theory and its applications in automotive industry,
see, e.g. (Pontryagin et al., 1962), (Murgovski et al.,
2013b), and references therein.

In turn, the optimal costate λ∗t can be obtained as a
solution of a two-point boundary value problem (2PBVP),
where the optimal solution is expected to result in a travel
time that is as close as possible to tf , since arriving
sooner at the destination requires more fuel, in general.
The solution of the 2PBVP can be obtained by repeatedly
solving problem (19) using the following algorithm:

(1) Solve problem (19) for a given λ
(k)
t and simulate

forward the time dynamics with the optimal control,

in order to obtain the difference ∆t
(k)
f = tf − t(sf).

(2) If ∆t
(k)
f ≤ threshold, terminate the loop.

(3) Update λ
(k+1)
t = λ

(k)
t + δ sign(∆t

(k)
f ).

(4) If sign(∆t
(k)
f ) 6= sign(∆t

(k−1)
f ), then δ ← δ/2.

(5) Start new iteration, i.e. k ← k + 1 and go to (1).
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Problem (19) is a dynamic nonlinear program that can
be solved in several ways. Due to having only a single
state, the kinetic energy, problem (19) can be solved with
Dynamic Programming (DP), which could be computa-
tional efficient for short look-ahead horizons. As the goal
of this paper is to optimize over a long look-ahead horizon,
possibly to the end of the route, approximation steps are
investigated to further decrease the computational effort.

4.3 Sequential quadratic programming

Once the constraint on travel time is adjoined to the ob-
jective, the resulting optimization problem can be solved
directly. The basic idea of direct methods (DM) is to
derive direct transcription of optimal control problem,
which is basically the approximations of state and actu-
ator trajectories to different forms of functions. Therefore,
the original optimal control problem is transformed to a
discrete optimization problem. To gain more insight of
DM in automotive applications, see e.g., (Asprion et al.,
2014) and (Macian et al., 2018). Problem (19) includes two
look-up tables, µ∗γ(Fw, E) and Fγmax(E), which are fitted
here with analytic expressions. The fuel consumption is
approximated by the following function

µ̃∗γ(Fw, v) = a0 + a1v
3(s) + a2v(s)Fw(s) (20)

with a0, a1, a2 ≥ 0. Similar functions have been investi-
gated by Murgovski et al. (2016); Hovgard et al. (2018),
where higher order terms in speed and force (or torque)
have been included. Fig. 4 shows that for the studied
engine model it is sufficient to use a first order term in
Fw, although it is possible, without significant increase in
computational effort, to include higher order terms as well.

Then, considering kinetic energy instead of velocity the
term in the objective,

µ̃∗γ(Fw, E)

√
m

2E(s)
=

a0
√
m√

2E(s)
+

2a1
m
E(s) + a2Fw(s)

becomes a convex second order cone function in E and Fw.
Accordingly, the stage cost in problem (19),

V (E,Fw) =
(a0 + λ∗t )

√
m√

2E(s)
+

2a1
m
E(s) + a2Fw(s) (21)

is also a convex second order cone function.
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The force limit Fγmax(E) is approximated by

F̃γmax(E) = b0 +
b1
√
m√

E(s)
(22)

where b1 resembles the maximum engine power, as it can
be alternatively written as a division of power with vehicle
speed. The approximated force limit is an inner approxi-
mation of the original force for speeds above 8 km/h, see
Fig. 5, which is acceptable for the highway scenarios inves-
tigated in this paper. The obtained inner approximation
is the solution of a linear program. (See Appendix A for
details.)

The resulting optimization problem is not convex, due to
the nonlinear term f(E) = 1/

√
E(s) in (22), which due

to the sign of b1 is a convex function (a convex problem,
though, requires a concave function here). Therefore, lin-

earizing it about a trajectory Ê(s),

flin(E, Ê) = f(Ê) +
df(E)

dE

∣∣∣∣
Ê

(E(s)− Ê(s)) (23)

provides a convex inner approximation. This allows de-
veloping a computationally efficient SQP based on RTI
(Diehl, 2001).

RTI exploits the iterative nature of MPC, by spreading the
sequential programming iterations over the MPC updates.
The idea is to solve only one convex program in each MPC
update, which significantly reduces computational effort
and allows the usage of standard convex solvers. The trade-
off is the early termination of the sequential algorithm,
which may not converge to an optimum, especially in
the initial MPC stages. However, as it has been shown
that the approximation (23) is conservative, see 5, it can
be guaranteed that despite possibly being suboptimal, all
obtained solutions (if such solutions exist) are also feasible
in the original non-approximate problem.

The resulting optimization problem is a convex second
order cone program (SOCP), which can be solved ef-
ficiently with off the shelf solvers. However, to further
reduce computational effort, we propose to approximate
the stage cost as a quadratic function, since QP technology
is more mature than SOCP, and can, in general, be solved
more efficiently. Thus, a second order approximation is
performed about Ê,



fquad(E, Ê) = flin(E, Ê) +
1

2

d2f(E)

dE2

∣∣∣∣
Ê

(E(s)− Ê(s))2

and the stage cost is approximated by

Ṽ (·) = fquad(E, Ê)
(a0 + λ∗t )

√
m√

2
+

2a1
m
E(s) + a2Fw(s).

Finally, the dynamic optimization problem can be sum-
marized as the QP,

min
Fw,Fbrk

∫ sf

0

(
Ṽ (E,Fw, Ê) +Q(·)

)
ds

subject to

E′(s) = Fw(s) + Fbrk(s)− caE(s)− Fα(s) (24a)

E(s) ∈ m

2
[v2min(s), v2max(s)] (24b)

Fbrk(s) ≤ 0 (24c)

Fw(s) ∈ [0, b0 + b1
√
mflin(E, Ê)] (24d)

E(0) =
mv20

2
(24e)

where the term Q in the objective is a standard term in the
SQP framework that provides additional search direction
towards the optimal solution that also minimizes the
linearization error. It includes Hessian of the Lagrangian
and Jacobian of the objective function, with respect to
the optimization variables. For further details, see Nocedal
and Wright (2006). It has been found in this paper that the
linearized constraint on the force limit gets rarely activated
and the term Q has little influence on the convergence.
Therefore, it has been assumed to be zero.

After each QP iteration, the trajectory about which the
problem is linearized is updated by moving towards the
direction of the current optimal solution, i.e.

Ê(k+1)(s) = Ê(k)(s) + β(E∗(k)(s)− Ê(k)(s)) (25)

where β is the step size that regulates the convergence
rate.

5. RESULTS

In this section, optimal velocity profile as well as longitu-
dinal force and braking force of the vehicle in the wheel
side are shown. In addition, convergence of the proposed
algorithm to the optimal solution is demonstrated. Finally,
the computation time for different sampling intervals of
the entire horizon is calculated. These investigations are
done for single conventional vehicle scenario driving in the
driving cycle from Södertälje to Norrköping.

5.1 Optimal velocity

As shown in Fig. 6a, velocity profile of the vehicle is opti-
mized, where the vehicle is driving in a hilly topography.
Considering Fig. 6b, it can be observed that the proposed
algorithm properly reduces braking by fully utilizing the
accumulation of kinetic energy. In other words, it can be
noticed that before reaching a steep downhill, the algo-
rithm decelerates the vehicle until the minimum allowed
speed is reached, thus emptying the kinetic energy buffer.
During the following downhill segment, the vehicle builds
up kinetic energy, until the upper speed limit is reached.
As there is no additional room for storing kinetic energy
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Fig. 6. (a) Optimal velocity profile together with road
topography, (b) longitudinal force and braking force.

after maximum speed is reached, the vehicle will eventually
need to apply the brakes. Although being fuel optimal,
the resulting velocity trajectory may not be a comfortable
one. This indicates that in order to have smoother velocity
profile, discomfort penalties also need to be included as
a part of the cost function, e.g. penalties on longitudinal
acceleration and jerk. Alternatively, you may directly write
the space derivatives. This is possible, since the problem
is still kept in continuous space, e.g.

min
Fw,Fbrk

∫ sf

0

(
Ṽ (E,Fw, Ê) + w1E

′2(s) + w2E
′′2(s)

)
ds

where, w1 and w2 are weighting parameters. Here, the
preferred cruising speed is set to 80km/h, where the
optimal velocity is allowed to vary between upper and
lower bounds. The maximum allowed travel time has
been computed as 5371 seconds. Furthermore, calculated
costate of time is 0.0048kg/s. Weighting parameters, w1

and w2, are assumed to be 100 and 1000 respectively.
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Fig. 7. Convergence of the algorithm; in the first two
iterations total cost converges rapidly to the optimum.

5.2 Algorithm convergence

As it is mentioned earlier for the studied driving cycle
the gear trajectory is optimized offline in the lower level
of the optimization problem. Consequently the SQP (24)
converges to local optimum in 5 iterations, see Fig. 7. The
local optimum value is obtained by solving the SOCP (19),
where there is no approximation in the objective function.
It should be noticed that the initial value of the objective
function is calculated based on the obtained kinetic energy
and longitudinal force from the speed prefilter. Rest of
objective function values are obtained by solving the SQP.
Here, the sampling interval and convergence step are
assumed as N = 400 and β = 0.96 respectively. Relative
linearization error is less than 0.01%. For future studies,
it is possible to solve one QP in each MPC update rather
than waiting for the convergence by solving SQP, since
the value of the objective function in the second iteration
(the solution of SQP in the first iteration) is very close to
the local optimum and it is highly possible to reach the
local optimum in the long horizon by solving the MPC
algorithm.

5.3 Computation time

For the considered driving cycle with various sampling
intervals, the computation time of ECOS for solving prob-
lem (24) is demonstrated in Fig. 8. It should be men-
tioned that the iterations for finding the costate of time
is not included here and Fig. 8 shows the needed time
for solving a single QP for a given costate of time value,
because the idea is to search for the optimal costate across
MPC updates. After moving the horizon the next MPC
is solved, then the costate of time is updated based on
the algorithm given in 4.2. The PC properties are: 6600K
CPU at 2.81GHz and 16GB RAM. It can be observed
that for higher sampling intervals, the computational time
increases. Thus, for real-time applications, it is preferable
to have small sampling interval, however the information
on the topography should not be lost.
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Fig. 8. Computation time of the algorithm increases with
the number of samples.

6. CONCLUSION

In this paper, a fast predictive control approach for a
heavy-duty vehicle driving in a possibly hilly terrain is
presented, where the traveling horizon can be stretched to
hundreds of kilometers. The control architecture includes
two levels, which decouple gear selection from real-valued
decisions. Optimal gear selection and fuel consumption
maps for feasible longitudinal force and kinetic energy
pairs are computed by offline optimization. The remain-
ing nonlinear dynamic problem is considered as on-line
optimization, where the travel time is adjoined to the
objective function and sequential quadratic programming
is employed to calculate optimal velocity profile of the
vehicle. The proposed algorithm shows interesting results
in respect of convergence rate and computation time,
which are important factors for a computationally efficient
approach over a long look-ahead horizon.

Appendix A. APPROXIMATION OF MAXIMUM
LONGITUDINAL FORCE

To approximate the maximum force limit for speeds above
8km/h, (22), as an inner approximation of the original
nonlinear and non-smooth limit, a linear program is solved
as:

min
x

(
fTx

)
subject to

Ax ≤ b
where

f = −
[

vmax − v1
ln(vmax)− ln(v1)

]
, x =

[
x1
x2

]
and

A =
[
1 1
v

]
, b = Fmax(v)

where the vehicle speed, v is allowed to vary between two
limits

v ∈ [v1, vmax]

where v1 = 8km/h and vmax is the maximum reachable
speed by the vehicle. In this formulation, the idea is to
minimize the area between the original force limit and the
inner approximation.
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