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Exact inference in Bayesian networks and applications in
forensic statistics

Ivar Simonsson

Department of Mathematical Sciences
Chalmers University of Technology and University of Gothenburg

Abstract

Bayesian networks (BNs) are commonly used when describing and analyzing relationships
between interacting variables. Approximate methods for performing calculations on BNs are
widely used and well developed. Methods for performing exact calculations on BNs also exist
but are not always considered, partly because these methods demand strong restrictions on
the structure of the BN. Part of this thesis focuses on developing methods for exact calcula-
tions in order make them applicable to larger classes of BNs. More specifically, we study the
variable elimination (VE) algorithm, which traditionally can only be applied to finite BNs,
Gaussian BNs, and combinations of these two types. We argue that, when implementing the
VE algorithm, it is important to properly define a set of factors that represents the condi-
tional probability distributions of the BN in a suitable way. Furthermore, one should strive
for defining this factor set in such a way that it is closed under the local operations performed
by the algorithm: reduction, multiplication, and marginalization. For situations when this is
not possible, we suggest a new version of the VE algorithm, which is recursive and makes use
of numerical integration. We exemplify the use of this new version by implementing it on Γ-
Gaussian BNs, i.e., Gaussian BNs in which the precision of Gaussian variables can be modeled
with gamma distributed variables.

Bayesian networks are widely used within forensic statistics, especially within familial rela-
tionship inference. In this field, one uses DNA data and knowledge about genetic inheritance
to make calculations on probabilities of familial relationships. When doing this, one needs not
only DNA from the people to be investigated, but also data base information about population
allele frequencies. The possibility of mutations makes these calculations harder, and it is impor-
tant to employ a reasonable mutation model to make the calculations precise. We argue that
many existing mutation models alter the population frequencies, which is both a mathematical
nuisance and a potential problem when results are interpreted. As a solution to this, we suggest
several methods for stabilizing mutation models, i.e., tuning them so that they no longer alter
the population frequencies.

Keywords: Bayesian networks, exact inference, variable elimination, forensic statistics, famil-
ial relationship inference, mutation models
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Chapter 1

Introduction

Bayesian networks can be used in a wide variety of applications and the intuitive
way they can be constructed makes them suitable for modeling large classes of
problems. Inference on Bayesian networks is less intuitive and is often performed
approximately using simulation methods. There is also software that can per-
form exact inference on Bayesian networks, both for general use, for example
HUGIN1 and GeNIe2, and for more subject specific use, for example Familias3.
However, algorithms for exact inference are limited to rather narrow subclasses
of Bayesian networks. One of the main themes in this PhD project has been
to extend the classes of Bayesian networks for which the existing algorithms
can be implemented. Another important theme has been familial relationship
inference, a subfield of forensic statistics. Therefore, it feels natural to include
the following three parts in this thesis: Bayesian networks and exact inference,
forensic statistics, and familial relationship inference.

In Chapter 2 we first introduce Bayesian networks and, following [11], we
then continue by describing the variable elimination algorithm, which is a gen-
eral tool for performing exact inference on Bayesian networks. The idea behind
this algorithm is to identify smaller components of the network, associated with
the so-called factors, and define local operations on these, instead of consider-
ing the whole network at once. Although the algorithm is presented in a very
general setting, one has to study the structure of the factors more carefully to
be able to use it in practice. The way the factors of the network are repre-
sented must realistically be unified in order to make implementations possible.
Meanwhile, the form of the factors depends on the distributions of the random
variables in the network.

In Chaper 3 we give a brief introduction to forensic statistics, mainly based

1http://www.hugin.com/
2http://www.bayesfusion.com/
3http://familias.no/english/

1



2 CHAPTER 1. INTRODUCTION

on [14]. As for Bayesian networks in general, it is often intuitive to formulate the
structure of the networks representing legal cases. However, which variables to
include in the network, and how to define them properly, is worth investigating
carefully. Generally, it is desirable to include many variables in the network in
order to make the interaction between them less complicated, rather than to
have a small network with interactions that are hard to specify. Moreover, one
often needs to collaborate with field experts in order to define the conditional
probability distributions accurately before applying the theory in Chapter 2 to
perform calculations.

Chapter 4 is a brief introduction to the area of familial relationship inference
from DNA data. This can be seen as a subfield of general forensic science, and
the network formulations can be recognized from the previous chapters. When
making inference within this area, there are a lot of complicating issues that
need to be accounted for in the model formulation as a whole, see [10]. One of
these issues, namely the possibility of mutations, is the focus of Paper I, hence
it is also described in detail in Chapter 4.



Chapter 2

Bayesian networks

A pioneering work and standard reference within the theory of Bayesian net-
works is the book Probabilistic Reasoning in Intelligent Systems from 1988 by
Judea Pearl, [13]. Later key references include [5] and [11], the latter being an
inspiring source for the notations and structure of this chapter. In what follows
we will give an introduction to Bayesian networks and how one can perform
exact inference on them.

2.1 Terminology and notation

A graph G = (V,E) consists of a collection of nodes (or vertices) V and a
collection of edges E. Each edge in E connects two nodes in V and if these
nodes are the same, the edge is said to be a loop. An edge pointing from
one node to another is said to be directed, and if E only consists of directed
edges, then G is said to be a directed graph. A directed path in G is a series of
alternating nodes and edges v1e1v2e2 · · · vn−1en−1vn, such that ei points from
vi towards vi+1, for all i. If v1 = vn, then this path is called a cycle. Directed
acyclic graphs (DAGs), i.e., directed graphs with no cycles, are of particular
interest to us. Note that a loop is actually a cycle, so a DAG can not have
loops. From now on, all graphs we consider will be DAGs.

A node v ∈ V from which there is an edge pointing towards another node
u ∈ V is called a parent of u, and the set of parents of u is denoted by PaGu .
Often it is clear what the underlying graph is, and we omit the superscript G.

We will use calligraphic letters to denote sets of random variables, e.g.,
X = {X1, . . . , Xn} and Y = {Y1, . . . , Ym}, and we will use boldface for random
vectors, e.g., X = (X1, . . . , Xn) and Y = (Y1, . . . , Ym). We can perform set
operations, for example Z = X ∪Y and Z = X \ Y, which by extension defines
a random vector Z form X and Y. We will by V al(X) denote the range of
a random variable X, i.e., the set of possible values the variable can attain.

3



4 CHAPTER 2. BAYESIAN NETWORKS

Similarly, for a random vector X = (X1, . . . , Xn) we use V al(X) to denote the
product set V al(X1)× · · · × V al(Xn).

We will study graphs whose nodes represent random variables. We say that
G = (V,E) is a graph over a set of random variables X if each node in V
represents a single random variable in X , and if each random variable in X is
represented by a single node in V . Even though it is somewhat dubious, we
will write X when referring both to the random variable X and to the node in
the graph that represents X. Moreover, when we write PaX we will mean the
random variables that are represented by the parents of the node in the graph
that represents X.

A Baysian network (BN) over a set of random variables X consists of a
DAG G whose nodes correspond to variables in X , together with a probability
distribution over X , whose density fulfills

π(X1, . . . , Xn) =
n∏

i=1

π(Xi|PaXi
). (2.1)

Equation (2.1) is called the chain rule for Bayesian networks and the individ-
ual factors on the right-hand side are the conditional probability distributions
(CPDs) of the network. Note that the information contained in the CPDs is
the only information needed to recreate the BN since the network structure is
implicit: we draw an arrow from Xi towards Xj if and only if Xi ∈ PaXj .

2.2 The variable elimination algorithm

Using Equation (2.1), we can reasonably effectively perform exact computations
on Bayesian networks. For example, if we have a BN over a set of random
variables X and we have evidence y on some vector Y whose variables are in X ,
then the conditional density π(X|Y = y) for some variable X ∈ X \ Y can be
computed with the variable elimination (VE) algorithm. The relevant objects
that are being used in this algorithm are called factors. A factor over a set of
random variables is simply defined as a non-negative real valued function on
the range of the variables.

Definition 1. A factor, φ, over a set of random variables X = {X1, . . . , Xn} is
a function from V al(X) to R≥0. The set X is called the scope of φ.

Initially, before running the algorithm, the factors will consist of the CPDs of
the given network. The algorithm will then sequentially perform a series of
operations on these factors. If we have evidence about some variables in the
network, the first step is to introduce this evidence. Within the algorithm, this
is called factor reduction and is formally defined as follows.
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Definition 2 (Factor reduction). Let φ be a factor over a set of variables X and
assume that we have evidence on some other set of variables Y = {Y1, . . . , Ym} ⊆
X , so that Y = y for some y ∈ V al(Y). The factor reduction of φ with respect
to the evidenceY = y is a new factor φ′ over Z = X\Y such that φ′(z) = φ(z,y)
for all z ∈ V al(Z). The new factor φ′ is sometimes denoted by φ[Y = y].

Note that a factor is just a function of multiple variables. One way to interpret
factor reduction is that we are fixing a subset of the variables of a multivariate
function.

From Definition 2, we see that if Y = X , the resulting factor is simply a real
number and its scope will be the empty set. It will later be clear that a factor
with empty scope only affects the rest of the algorithm by a scaling factor and
since we are dealing with probabilities we might as well perform this scaling in
the end of the algorithm with a normalization step. Hence, if we are about to
reduce a factor with respect to its entire scope, we simply remove the factor
instead.

After performing factor reduction on each affected factor, it is time to start
eliminating variables. Eliminating a variableX consists of two major steps. The
first step consists of multiplying all factors whose scope includes X, and in the
second step this product is marginalized in order to obtain a factor that does
not include X, and hence X is eliminated. Mathematically, we can describe
these steps by

φ′ =
∫

V al(X)


∏

φ∈Φ′

φ


 dX,

where Φ′ is the set of factors whose scope contains X . Note that if X is discrete,
the integral is a sum.

Formally, we define two operations to perform this variable elimination,
namely factor multiplication and factor marginalization.

Definition 3 (Factor multiplication). The factor multiplication of two factors,
φ1 over X and φ2 over Y, is a new factor φ over Z = X ∪ Y such that φ(z) =
φ1(x)φ2(y) for all z ∈ V al(Z).

Definition 4 (Factor marginalization). Let φ be a factor over Z and let {X ,Y}
be a partition of Z. The factor marginalization of φ with respect to Y is another
factor φ′ over X , such that

φ′(X) =

∫

V al(Y)

φ(X,Y)dY (2.2)

whenever this integral exists. When performing factor marginalization, we will
say that we marginalize out Y from φ.
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Again, if Y is discrete in (2.2), the integral is a sum. In fact, Y could also be
partly discrete and partly continuous, in which case (2.2) should be interpreted
accordingly. The discussion succeeding Definition 2 also applies here, hence if
X = ∅ in Definition 4, we simply remove the resulting factor.

The operations of Definitions 2-4 will be called the local operations, since
they act locally on the network. With help of these operations we can formalize
the VE algorithm. As input, we need to specify the BN and all its CPDs, and
we also need to specify the query variables, i.e., the variables (usually only one)
whose distributions we want to compute. As optional input we can specify
evidence, i.e., observed variables. Variables that are neither observed nor part
of the query are called elimination variables because we will eliminate them all,
one by one. In Algorithm 1 below we present the VE algorithm in pseudo code.

Algorithm 1 VariableElimination(Π,X ,y)
Require: A set Π of CPDs of the BN, query variables X , and evidence y
1: Construct factors Φ = {φ1, . . . , φN} from the CPDs in Π
2: Partition the set of variables into query X , evidence Y and elimination Z
3: for all i = 1, . . . , N do
4: Replace φi by φi[Y = y]
5: end for
6: Fix an ordering Z1, . . . , Zk of the variables in Z
7: for i = 1, . . . , k do
8: Φ′ ← {φ ∈ Φ : Zi ∈ Scope(φ)}
9: Φ′′ ← Φ \ Φ′

10: ψ ←∏
φ∈Φ′ φ {factor multiplication}

11: ρ←
∫
Zi
ψ(·)dZi {factor marginalization}

12: Φ← Φ′′ ∪ {ρ}
13: end for
14: return Φ

2.3 Existing work – a few special cases

A big challenge in implementing the VE algorithm lies in how to best represent
the factors we need. We will are not able to implement the algorithm for the
most general BNs in which the only restriction on the CPDs is that they have to
be probability distributions. We simply can not represent this level of generality
in implementations, and therefore we put restrictions on the BNs.

Let us start by looking at finite networks, i.e., networks in which all variables
have a finite range, where we can represent all CPDs, and thus all initial factors
in the algorithm, as finite vectors. It is not too hard to conclude that all factors
that show up later in the algorithm are also representable by finite vectors. This
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follows from the fact that the set of finite vectors is closed under the local op-
erations, i.e., applying any of the operations in Definitions 2-4 on finite vectors
results in a finite vector. So, it is possible to implement Algorithm 1 so that it
works for all finite BNs (at least assuming unlimited space and time). There
exists some software for this, for example both the aforementioned HUGIN and
GeNIe can handle this.

2.3.1 Gaussian Bayesian networks – canonical forms

Apart from finite BNs, the “golden” class of networks for which the VE algorithm
is implementable is the class of Gaussian Bayesian networks.

Definition 5. We say that a Bayesian network over X = {X1, . . . , Xn} is
Gaussian if for each i = 1, . . . , n, we have that Xi|PaXi

∼ N (µi, σ
2
i ), where

µi = α+
m∑

k=1

βkYk.

Here Y1, . . . , Ym are the parents of Xi and σ2
i , α, β1, . . . , βm are all real valued

constants.

A good way to implement the algorithm for Gaussian BNs is to use a fac-
tor type that is called canonical forms in [11] and conditional Gaussian (CG)
potentials in [5]. We will use the former name.

Definition 6. Let X be a random vector and let φ be a factor over X . We say
that φ is a canonical form, denoted by C(X;K,h, g) (or simply C(K,h, g)), if it
can be written as

φ(X) = C(X;K,h, g) = exp

(
−1

2
XTKX+ hTX+ g

)
(2.3)

where K ∈ Rn×n is symmetric, h ∈ Rn and g ∈ R.

As presented in [11], the density of a normally distributed vector, X ∼ N (µ,Σ),
can be written on canonical form with





K = Σ−1

h = Σ−1µ

g = − 1
2µ

TΣ−1µ− n
2 log (2π)− 1

2 log |Σ|.
(2.4)

This relation is not hard to prove and can be hinted at by observing that
both the Gaussian density and the canonical forms are natural exponentials
of a quadratic polynomial. In fact, there is a duality between the Gaussian
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density and a subset of canonical forms. As seen in Definition 6, there is a
constant parameter g in the parameterization of canonical forms and there is
no restriction that a canonical form has to integrate to one, or even to a finite
number. We have the following proposition, which will be useful later on.

Proposition 1. If X = (X1, . . . , Xn) is a normally distributed random vector
with mean µ and covariance matrix Σ, then its density is a canonical form over
X , with parameters given by (2.4). Conversely, if φ(X) = C(X;K,h, g) is a
canonical form over a random vector X, with K positive definite, then φ(X) is
proportional to the normal density for X, with Σ = K−1 and µ = K−1h.

The VE algorithm can be smoothly implemented for finite BNs, since the
set of finite dimensional vectors is closed under the local operations. Except
for some cases of marginalization, which we will be able to avoid, the set of
canonical forms is also closed under the local operations, hence we are able to
implement the VE algorithm for these networks as well.

2.3.2 Mixed networks

So far we have seen that the VE algorithm is implementable for finite BNs
and for Gaussian BNs. A natural next step is to investigate whether it also
works on networks in which some nodes have a finite range and the rest are
normally distributed. After all, the construction of such Bayesian networks
should be straightforward. It turns out that this is indeed possible if we impose
the restriction that finite variables have exclusively finite parents and that the
CPDs of each Gaussian variable is, for a fixed configuration of its finite parents,
as in Definition 5. We use the name mixed networks for the networks that obey
these restrictions.

The type of factors that show up when implementing the VE algorithm for
mixed networks are the following.

Definition 7. Let φ be a factor over a set of random variables Z = X ∪ Y,
where each X ∈ X is finite, and each Y ∈ Y is continuous. We say that φ is a
canonical table if for each x ∈ V al(X), it can be written as

φ(x,Y) =
n∑

i=1

φi(Y), (2.5)

where each φi(Y) can be written in the form (2.3).

The choice of using the word table is motivated by the intuitive way of inter-
preting these factors. For each configuration of the finite variables, we have an
entry (which is just an element of the corresponding finite vector if the factor
is completely finite) and each entry is a sum of canonical forms. If one does
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not find this intuition appealing, a canonical table could equally well be seen
as simply a collection of functions of the form (2.5), where each such function
is connected to a configuration of the finite variables in the scope of the factor.
Nonetheless, we will continue to use the word table.

The local operations on canonical tables will be different depending on the
circumstances. For example, factor marginalization will be performed differ-
ently depending on what kind of variable, finite or continuous, we are about
to marginalize out. The resulting factor will also look slightly different. When
constructing the initial canonical tables from a mixed Gaussian BN, we will
always have n = 1 in (2.5). However, when we marginalize finite variables out
of the factor, n will increase. We present a more general approach for mixing
continuous and finite variables in Paper III.

In [5], it is suggested that instead of allowing sums of canonical forms in the
canonical tables, the marginalization operation should be done approximately,
using so called weak marginalization. Using Proposition 1, one identifies a Gaus-
sian density with each term in the resulting sum of factors. It is then possible
to produce the mean and the covariance matrix of the random vector that this
sum is a distribution for. Even though this random vector is not Gaussian,
one returns the density of a Gaussian random vector with the produced mean
and covariance matrix, which is reformulated to a canonical form again using
Proposition 1.

We will refrain from explicitly specifying the local operations on canonical
tables, partly because they are already determined implicitly by Definitions 2- 4,
and partly because it is notationally rather messy.

2.4 An extension

As mentioned earlier, if we want to implement the VE algorithm for a specific
class of BNs, it is very convenient to find a corresponding factor class that is
closed under the local operations. Unfortunately, it turns out that the examples
given in Section 2.3 are, at least to our knowledge, the only cases where this
has been done in a general way.

An interesting question is therefore, whether we can do something else when
closedness can not be achieved. In general, for a particular class of BNs, we
could attempt to proceed as follows.

1. Create a set of factors that includes all possible CPDs that can occur in
this class.

2. Check whether this set also includes all factors that will be created within
the algorithm, and if

a) yes, go to Step 3.
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b) no, extend the factor set to also include the factors that could be
created within the algorithm, and go back to Step 2.

3. Implement the algorithm for the current set of factors.

In the completely finite and Gaussian cases, we would reach Step 2a directly
and never reach Step 2b.

In Paper II, we introduce a class of BNs that is based on a Gaussian BN
but has one additional variable: a gamma distributed variable to model the
precision of the Gaussian variables in the network. Applying Step 1 to this BN,
we see that both the gamma variable (denoted by τ below) and the Gaussian
variables have CPDs that can be written in the form

exp

(
τ

(
−1

2
XTKX+ hTX + g

)
+ a log(τ) + b

)
. (2.6)

It turns out (see the details in Paper II) that the factor set defined as the set
of factors that can be written in the form (2.6) is closed under factor reduction
and factor multiplication but not quite closed under factor marginalization.
While marginalizing such a factor with respect to a variable in X leads to a
factor within this set, marginalization with respect to the gamma distributed
variable τ leads to a factor outside this set. Therefore, we end up in Step 2b
above. Trying to extend the factor set and repeat this process will lead to
more complications. The extended factor set will be of much more complicated
structure than (2.6) and it will not be closed under the local operations.

Unfortunately, this is generally what happens when one tries to apply the
rather naïve thought process presented in Steps 1-3 above. The problem is that
when one tries to extend the factor set, the structure of the factors becomes
too complicated and the parameters too many and it ends up being unfeasible
to represent the factors in code. It seems that we not only want the factor set
to be closed under the local operations but we also want the factor structure
and parameterization to be compact enough so that we are able to store and
manipulate the factors in a computer.

In Paper II, we solve this problem by defining our factor set as the factors
that can be written in the form (2.6). We then make sure that the marginal-
ization that takes us out of this set, i.e., the marginalization w.r.t. τ , is done
in the end, after all other marginalizations. This is possible since there is only
one gamma variable, so there is only one problematic marginalization.

The ad hoc type of solutions in Paper II are, in our experience, what needs to
be done when closedness under the local operations is not achieved for particular
classes of BNs. In Paper III, we have a more general approach and we adopt
a more thorough procedure than the thought process with Steps 1-3 above,
namely we introduce the notion of families and prefamilies. Families are factor
sets that are closed under all three local operations while prefamilies are closed
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under factor reduction and factor multiplication but not necessarily under factor
marginalization. We then define a new, recursive variable elimination algorithm
that uses numerical integration instead of marginalization in the case when
marginalization would take us out of the prefamily. At first it may seem that
this approach would lead to computations of high-dimensional integrals, but, as
exemplified in Paper III, this can sometimes be avoided thanks to the recursive
nature of the algorithm.





Chapter 3

Forensic statistics

In forensic science we are often concerned with assessing how some particular
evidence, E, influences a legal case. If the case is two-sided, i.e., if there are two
competing hypotheses, H1 and H2, we ultimately want to consider the relation-
ship between the probabilities of each hypothesis, after taking the evidence into
account. More precisely, we consider the posterior odds, i.e., the ratio between
Pr(H1|E) and Pr(H2|E). A key mathematical tool in order to produce the
posterior odds is Bayes’ rule on odds form, which says that the posterior odds
is equal to the likelihood ratio times the prior odds, or more formally:

Pr(H1|E)

Pr(H2|E)
=

Pr(E|H1)

Pr(E|H2)
× Pr(H1)

Pr(H2)
. (3.1)

As we can see, we need both the likelihood ratio and the prior odds in order
to compute the posterior odds. The prior odds is in general affected by various
circumstantial factors and it is usually up to the legal experts to produce it.
The forensic scientist is left with what can be affected by the data, i.e., the
likelihood ratio.

Example 1. Consider a case in which the prosecution claims that a particular
man has committed a burglary, but the defense claims that he is innocent.
Formally we have

Hp: The man committed the burglary

Hd: The man is innocent

where the subscripts represent the prosecution and the defense, respectively. A
broken window is found at the crime scene and glass fragments are found on
the jacket of the suspect.

13
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This is typically the point where the forensic scientist is consulted: a suspect
is identified and some evidence has been collected that could possibly tie the
suspect to the crime scene. Using (3.1), we want to update our beliefs in the
hypotheses via the likelihood ratio, which could be computed as

Pr(E|Hp)

Pr(E|Hd)
=

Pr(Ec, Es|Hp)

Pr(Ec|Hd) Pr(Es|Hd)
. (3.2)

Here we have split up the evidence into Ec and Es, which denote the evidence
from the crime scene and from the suspect, respectively. We have also used that

Pr(Ec, Es|Hd) = Pr(Ec|Hd) Pr(Es|Hd)

which is true since Ec and Es are independent if the suspect is innocent1.
Moreover, in this example the evidence from the crime scene is not dependent on
which hypothesis is true, hence Pr(Ec|Hp) = Pr(Ec|Hd). This will convert (3.2)
into

Pr(E|Hp)

Pr(E|Hd)
=

Pr(Es|Ec, Hp)

Pr(Es|Hd)
(3.3)

which is ultimately the way we compute the likelihood ratio.
So we have to produce two probabilities, Pr(Es|Hd) and Pr(Es|Ec, Hp). As

long as the hypotheses are formulated on the source level (see Secion 3.1 below),
we usually estimate Pr(Es|Hd) by doing comparisons towards data bases to see
how common this type of evidence is in general. The value of Pr(Es|Ec, Hp)
on the other hand, is a measure of similarity between Ec and Es, and the
estimation procedure will be different depending on what kind of evidence we
have. When glass evidence is collected, as in Example 1, one could measure the
refractive index (RI), which is a measure of the optical density of the glass, see
for example [15] (there are also other methods for analyzing glass data, see for
example [6]). We then have to estimate the probability of observing Es given
the type of glass found on the crime scene and given that the suspect is guilty.

The evidence Ec and Es above are named after their source, i.e., the crime
scene and the suspect. Evidence is sometimes classified into control evidence,
whose source is known, and recovered evidence, whose source is unknown. In
the example above, Ec would be control evidence and Es recovered evidence.
However, it is not always the case that the control evidence comes from the
crime scene and the recovered evidence from the suspect. If instead of a broken
window, we had found blood stains on the crime scene, then these blood stains
will constitute the recovered evidence and blood samples taken from the suspect
would be the control evidence. There are also other classifications of evidence,
see [1] for a more thorough discussion on this.

1Actually, in some cases Ec and Es are only approximately independent given Hd, but
for simplicity we do not elaborate more on that now.



3.1. PROPOSITION LEVELS 15

Before proceeding, we realize that we also have to take into account case
specific background information that is not directly related to the evidence.
This can include, for example, eyewitness testimonies and relevant information
about the suspect, and we will denote this general collection of background
information by I. If we incorporate I into (3.3) we get

Pr(E|Hp, I)

Pr(E|Hd, I)
=

Pr(Es|Ec, Hp, I)

Pr(Es|Hd, I)
.

3.1 Proposition levels

The hypotheses Hp and Hd above are formulated solely with the court’s decision
in mind. However, it is not always appropriate for the forensic scientist to
consider propositions of this kind directly, simply because the evidence at hand
is not directly connected to guilt. In [4], Cook et al. introduced three levels for
propositions: source level (level 1), activity level (level 2) and offense level (level
3). The hypotheses introduced in Example 1 are on the offense level because
they are statements about the guilt of the suspect. We could reformulate these
hypotheses in the following way.

Hp: The suspect broke the window at the crime scene

Hd: The suspect did not break the window at the crime scene

These are statements about the breaking of the glass, hence they are on the
activity level. We could also formulate hypotheses on the source level:

Hp: The glass fragments on the jacket come from the broken window at
the crime scene

Hd: They come from some other source

It is tempting to say that these three pairs of hypotheses will give rise to the same
conclusions and that it does not matter which pair we address. To argue that
the choice of proposition level matters, consider first the difference between the
offense level and the activity level propositions in this case. It is possible that the
suspect committed the burglary even though someone else (or something else)
broke the window. He could have had an accomplice who broke the window,
or the window could have already been broken when the suspect arrived at the
crime scene. On the other hand, it is also possible, although maybe more far-
fetched, that the suspect did not commit the burglary even though he broke the
window. The suspect might have been the accomplice who broke the window
in order to then leave the crime scene. However, this last example would imply
that both hypotheses at the offense level are false.
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Maybe even more apparent in this case is the difference between the activity
level and the source level. The suspect might be a suspect because he is known
by the police from previous crimes and he might frequently come into contact
with broken glass. Even if the glass from the suspect does not come from the
broken window, he might have broken the window by for example throwing a
rock through it. On the other hand, if the glass fragments on the jacket come
from the window, they could have been planted there by the real offenders.

In general, the forensic scientist will have more authority regarding propo-
sitions on the source level, simply because the statements in these propositions
are more closely related to their expert knowledge. Often it requires additional
information and assumptions to be able to answer questions about guilt. This is
a dilemma since the court is ultimately concerned with the offense level propo-
sitions. In order to answer questions on the offense level, we need to first answer
questions on the source level, then consider how other circumstances affect the
answer if the level is raised.

One example of circumstances that might affect this is who the suspect is
and why he has become a suspect. Was he found in connection to the crime
scene at the approximate time of the crime, or was he found in the same neigh-
borhood two days later, or is he a suspect because of other related crimes he
has committed? Another example might be what we know about the burglary.
Are there witnesses who can confirm how the window was broken or do we even
know that the window was broken by a person? It seems that a forensic scien-
tist needs to be careful not to draw conclusions based on circumstances that are
outside the area of expertise. A more general discussion of this major dilemma
can be found in [4], which also includes a more detailed discussion about the
particular glass example.

3.2 Bayesian networks in Forensic Science

The dilemma of using the correct level on the propositions could be broken down
into smaller units. A natural approach is to start with modeling the source level
propositions properly, and then investigate how various factors could affect the
conclusions if we raise the proposition level. If we want to model this in a
Bayesian network, we could introduce variables on several proposition levels.
Consider the following example, introduced in [14].

Example 2. A single blood stain is found on a crime scene and there is a suspect
from whom a blood sample is taken. As discussed above, the court is ultimately
concerned with propositions on the offense level, hence the hypotheses could
initially be that the suspect committed the crime (Hp) and that the suspect is
innocent (Hd). We should have a variable for this in the network, call it H.
The values of this variable should indicate which hypothesis is true, for example
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H = 0 corresponds to Hp being true and H = 1 corresponds to Hd being true.
Since we are ultimately interested in the hypotheses on this level, it is the node
H that will be our query node. Which other variables do we want to include in
the Bayesian network that models the case? Naturally it makes sense to have a
node for the evidence, call it E. Could we add an edge directly from H to E?
Probably, but it could be complex to specify the conditional distribution of E
given H, there are simply too many factors that will affect this. On the other
hand, the question that the forensic scientist really can answer is whether or not
the blood stain was left by the suspect. So let’s add a node for this uncertainty,
call it F . Moreover, we could wonder if the blood stain was left by the offender.
This is important because only if the blood stain was left by the offender does it
make sense to consider the blood stain as evidence for guilt. Let G denote the
node that represents whether or not the blood stain was left by the offender.

Now we consider edges again. It should be clear that F depends on H since
it is less likely that the suspect left the blood stain if he is innocent. On the
other hand, the guilt of the suspect should not be affected by the activity of the
offender, unless we can make connections between the suspect and the offender.
This implies that H and G are independent, but that they are dependent con-
ditionally on F . This is achieved if G is a parent of F . Finally, it is clear that
the evidence E should only have F as its parent. The resulting graph can be
seen in Figure 3.1.

H

E

F

G

1

Figure 3.1: A graph visualizing the dependencies between the variables in Ex-
ample 2.

The networks is very small and the calculations in Example 2 are done by
hand in [14]. The prior probability that the blood stain at the crime scene came
from the offender, i.e., the distribution of G, should arguably be left to the court
experts to decide upon. Specifying the distribution of H could be done in two
ways. The first option is to leave this problem to the court as well, use their
prior for the distribution of H, and then compute the posteriors directly with
our algorithm. The second option is to simply put a Bernoulli(p = 0.5) prior on
H, which means that our algorithm will produce the LR, and we have to account
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for the prior for H separately. What is left implicit in the formulation of the
network of Example 2 is how we compute the probability that the crime scene
blood stain and the blood sample of the suspect comes from the same source. In
ideal situations this is very easy since DNA profiles are almost unique. However,
while the quality of the blood sample from the suspect will be almost flawless,
this is seldom true for the blood stain from the crime scene. In reality this needs
to be handled properly, see for example [3].

The introduction of the node G in Example 2 could be seen as a way to
model how background information, included in the letter I earlier, affects the
network. Other nodes could also be added to incorporate I more explicitly. For
example, if there is a possibility that there were more than one offender, we
have to rethink the inclusion of the node G. Again, see [14] for more details.

A graph similar to the one in Figure 3.1 can also be made for the case in
Example 1. Then it might be appropriate to have hypothesis nodes on all three
activity levels, call them HO, HA, and HS for offense, activity and source, re-
spectively. If this is done, HO should be a parent of HA, which should be a
parent of HS . These hypothesis nodes could also be affected by the background
information in I. For example, we could add a node as a parent of HS repre-
senting the possibility that glass fragments were planted on the suspect’s jacket
by the real offenders. Or we could add a parent to HA representing in what
way the window was broken. In any case, we would want HS to be a parent
of the evidence node. Using the same idea as in the earlier discussion about
Example 1, we split the evidence node into two, EC and ES , hence we want HS

to be a parent of both these nodes. As for the interaction between F and E
in Example 2, the interaction between HS and its children in this case has not
been discussed much. Note that this interaction is probably the one in which
most trust is put on the forensic scientist. While the specifications of the other
parts of the network could be done in collaboration with the court, how the
data affect the source level propositions should be left entirely to the forensic
scientist.

So how is this important interaction modeled? So far we have only mentioned
that we should consult some data bases, but we have not talked about how this
can be done. In fact, this interaction could also be modeled with Bayesian
networks.

In Paper II, we do this for glass evidence, i.e., refractive index measurements.
Generally, when one measures the refractive index of glass, repeated measure-
ments are done, hence we would get several observations from each source. We
denote by xC,j and xS,j the j:th measurements of the glass source from the
crime scene and the suspect, respectively. In this case, we also have n data
base glass sources i = 1, . . . , n, on each of which we have measurements xij . We
then assume that the measurements from each glass source i = 1, . . . , n, C, S are
normally distributed around some source specific means, θ1, . . . , θn, θC , θS . In
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turn, these means are drawn from some normal prior θ. What we hope for with
this model is to judge if the difference between the measurements xC,j and xS,j
is larger than one would expect the difference within a group of measurements
xi1, . . . , xik to be. In Paper II, we introduce a gamma distributed variable to
model the variance of all normally distributed variables in the network. The
resulting network can be seen in Figure 2 in Paper II in which we also have a
hypothesis node, H, as query node.





Chapter 4

Familial relationship inference

In Chapter 3 we discussed the role of a forensic scientist in general, and the use
of Bayesian networks as a tool to break down and to understand complicated
circumstances. In this chapter, we will focus on an important type of forensic
cases, namely familial relationships. In Paper I, possible solutions to a particu-
lar problem that arises from the mathematical tools used in familial relationship
cases are discussed.

When using DNA data from different people in order to investigate relation-
ships between them, or more specifically to determine which pedigree connects
them, certain types of locations in the DNA-strands, called markers or loci
(singular: loci), are looked at. At these markers, each person has one out of
several different variants, called alleles. We can draw conclusions about familial
relationships from these markers since the alleles are transferred from parent to
offspring. More specifically, we investigate autosomal markers, which have two
alleles, one inherited from the mother and one inherited from the father. We
will use the notation a/b to indicate that a certain individual has alleles a and
b at a particular (autosomal) marker, sometimes we will say that a person has
genotype a/b. The order of the letters will not be relevant, hence b/a = a/b.
There are a few different types of markers one could look at. The most common
type in forensic applications is called short tandem repeat (STR), see [10] or [2]
for a detailed description. We will almost exclusively be concerned with STR
markers.

In general, when making inference on familial relationships with DNA data,
there are quite a few mechanisms that need to be modeled. We will not go
through them all here but in [10], these are categorized into three different levels:
population level, pedigree level and observational level. Population level models
regard the treatment of founder alleles, i.e., how we should handle genotypes
for persons in the pedigree with no parents. Observational level models try
to account for complications that can occur in data collection, for example

21
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measurement errors and mixtures (i.e., cases where measurements are performed
on mixtures of DNA from several sources). Here, we will concentrate on pedigree
level modeling, i.e., the transmissions of alleles between generations, and we
will make simplifying assumptions regarding population and observational level
modeling. For example, we will assume Hardy-Weinberg equilibrium, see [2],
and flawless data collection.

There is a number of different softwares available to make inference on famil-
ial relationship cases from DNA data, for example the aforementioned Familias1.
For a more thorough review, see [9].

4.1 Likelihood ratio computations from pedigrees

The hypotheses in familial relationship cases are statements that a person X is
related to another person Y in a particular way. These statements are state-
ments about the pedigree, hence we can formulate our hypotheses in terms of
pedigrees and draw them in graphs. Let’s consider an example.

4.1.1 A simple example

A man claims to be the father of a child and the mother is not available for
genotyping. We are asked to assist in judging the credibility of the man’s claim.
We want to consider two hypotheses, (H1) ’the man is the father of the child’,
and (H2) ’the man is not the father of the child’. The pedigrees representing
these hypotheses can be seen in Figure 4.1. Furthermore, we have data on one
marker at which the putative father has alleles a/a and the child has alleles a/b.

PF

CH

PF

CH

H1 H2

1

Figure 4.1: Two pedigrees representing two competing hypotheses. The putative
father is denoted by PF and the child by CH.

The pedigrees in Figure 4.1 are of the simplest kind but there is no real
limit of how complicated they can be in general. As in this example, it is not
uncommon that one of the pedigrees is unconnected, representing a person (or

1http://familias.no/english/
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a group of people) being unrelated to the rest of the members in the family
tree. Our task now is to compute the likelihood ratio Pr(E|H1)/Pr(E|H2),
where the evidence, E, is the genotypes we have observed. The likelihoods
themselves are probabilities that we observe these genotypes when choosing
people at random from the population (given the corresponding pedigree). In
order to compute such probabilities, we have to make comparisons towards data
bases to see how common the observed alleles are among the population. More
specifically, for each marker we assume knowledge of the population frequency
vector, π = (π1, . . . , πn), which describes the frequencies of alleles among the
relevant population, at that specific marker.

Now we return to the likelihood ratio computation. If we split up the evi-
dence into EPF and ECH , which consists of the genotype of PF and CH respec-
tively, we have that

Pr(E|Hi) = Pr(EPF , ECH |Hi) = Pr(ECH |EPF , Hi) Pr(EPF |Hi)

for i = 1, 2. Since the genotype of PF has the same distribution under H1

and H2, we have that Pr(EPF |H1) = Pr(EPF |H2). We can see that these
factors will cancel each other out in the likelihood ratio. Under H1, given that
the father has genotype a/a, we know that he will transmit allele a to the
child, hence the child’s allele b must come from the mother (if we disregard
the complications discussed in Section 4.2). The probability that an unknown
mother will transmit allele b to CH is equal to πb, which is then our value
for Pr(ECH |EPF , H1). On the other hand, under H2 the genotype of CH is
independent of PF, hence we draw them from the population frequency and
obtain Pr(ECH |EPF , H2) = 2πaπb, where the factor 2 can be explained by the
fact that the order of the alleles is irrelevant. We conclude that the likelihood
ratio for H1 against H2 is 1/2πa.

4.1.2 Data on several markers

When using STR markers in real familial relationship cases, we usually have
data on more than one marker, normally around 15. In general, the inheritance
for these markers are not completely independent of each other, see Chapter 4
of [10]. However, assuming independence is somewhat standard and a rather
good approximation for most marker sets, hence we will make this assumption
from now on.

Suppose we are in the same case as in Section 4.1.1, with one putative father
and one child, but that we have data on 15 markers instead of just one. We
denote the evidence by E = {E1, . . . , E15} and, as usual, we want to compute
the likelihood ratio Pr(E|H1)/Pr(E|H2). Since the markers are assumed to be
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independent, each of the likelihoods can be factorized as

Pr(E|Hi) =
15∏

k=1

Pr(Ek|Hi)

for i = 1, 2. This will make sure that we can make a similar factorization for
the whole likelihood ratio, hence

LR =
Pr(E|H1)

Pr(E|H2)
=

15∏

k=1

LRk =
15∏

k=1

Pr(Ek|H1)

Pr(Ek|H2)
, (4.1)

i.e., we simply have to repeat the calculations of Section 4.1.1 fifteen times.

4.1.3 Computations using Bayesian networks

It is not hard to see that pedigrees of Section 4.1.1 can be viewed as Bayesian
networks. In spite of this, the computations performed in this section do not
use the same method of analysis and the same terminology as is presented in
Chapters 2 and 3. However, it is of course possible to use the theory presented
in Chapter 2 to perform the computations in familial relationship cases as well,
see for example [7], [8], [14] and [12].

Recall the pedigree representing H1 in Figure 4.1. There is an edge pointing
from PF to CH because, under H1, PF is the father of CH. If we want to
perform the analysis of Chapter 2 on this network, we need to define its different
components in a more specific way. In particular, we need to specify the random
variables that PF and CH should represent, i.e., we need to specify what values
they can attain and we need to specify their CPDs. While this can be done
directly on the graphs in Figure 4.1, each specification will be quite complex. If
we have n possible alleles at the current marker, there are n2 possible genotypes
a person can have. To specify the distribution of the child’s genotype given the
genotype of the father, we need to specify n4−n2 probabilities. Moreover, many
of these probabilities are non-trivial to produce. Therefore, it is much more
convenient to increase the number of nodes and let each genotype be represented
by two nodes. For example, we could name the nodes PFMA, PFPA, CHMA
and CHPA, for putative father’s maternal allele, putative father’s paternal allele,
etc. The problem is now that we will never be able to have evidence on these
nodes since we never know which of the alleles on an autosomal marker is
paternal and which is maternal. Hence, we also want to add nodes for the
genotypes of the people, we call them PFG and CHG, and these nodes will
be determined by the paternal and maternal alleles in a deterministic way. In
Figure 4.2 we present the final graph.

The CPDs needed to be specified in accordance with the graph in Figure 4.2
are straightforward to produce. The variables without parents are just drawn
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PFMA PFPA

PFG

CHPA CHMA

CHG

1

Figure 4.2: A Bayesian network graph that could be used to calculate the
likelihood for H1 in the example of Section 4.1.1.

from the population frequency π, and the genotype nodes are deterministically
given by their parents. What remains is the node CHPA, which is equal to
PFMA or PFPA with equal probability. Then we can apply the variable elimi-
nation algorithm in Chapter 2 to compute the desired likelihood. Naturally, we
should produce a similar network for H2 in order to finally be able to produce
the likelihood ratio.

The general approach of using Bayesian network analysis to perform infer-
ence in DNA cases can handle quite a lot of complications and features. In
Section 3.2, we already presented the idea of including a hypothesis node in
a Bayesian network and this can of course be done here as well. In general,
nodes can be added in many different ways to model difficulties on population,
pedigree and observational levels. In [8], this is done neatly on a number of
examples by locally isolating the mechanisms to be modeled. One of the most
important such mechanisms is mutations.

4.2 Mutations

The calculations made to compute the likelihood ratio in Section 4.1.1 did not
include many random elements. The only randomness in the transmission of
alleles from one generation to the next was in the choice of whether the paternal
or maternal allele is transferred to the child. This is an oversimplification of
reality, partly because mutations might happen. An allele transmitted from a
parent to its offspring might show up as another allele in the offspring. The
following example shows that, although mutations are rare, we need to account
for them in our calculations.
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Example 3. Consider the same setup as in the example in Section 4.1.1 but
instead of data on just one marker, we have data on 15 markers. The hypotheses
are the same. On marker number 15, PF has alleles a/a and CH has alleles b/c,
while on markers 1-14 the alleles of PF and CH agree in a similar way as in the
example of Section 4.1.1, i.e., there is at least one match between the alleles of
PF and CH. According to the discussion in Section 4.1.2, we want to compute
each likelihood ratio LRk separately. With the same way of reasoning as in
Section 4.1.1, we have that

LRk =
Pr(ECH,k|EPF,k, H1)

Pr(ECH,k|EPF,k, H2)

where ECH,k and EPF,k denote the genotypes on marker k. Given that PF
is the real father of CH and given that PF has genotype a/a, according to
our reasoning so far, it is impossible for CH to have genotype b/c. Hence, we
must have that Pr(ECH,15|EPF,15, H1) = 0, which implies that LR15 = 0 and
LR = 0.

So can we make the indisputable conclusion that PF is not the real father of
CH in this example? Even though our calculations suggest it, this is not what
should be done since mutations might have occurred. In fact, agreeing alleles
on 14 out of 15 markers is usually quite strong evidence that PF is the real
father of CH. So in order for LR computations to be useful, they need to take
the possibility of mutations into account.

A mathematical model for the mutation process should for each allele i
specify the probability of mutation to each other allele j. It is not hard to make
the conclusion that we can view this as a time homogeneous finite state Markov
chain. If we denote the mutation probabilities by mij and the transition matrix
for the corresponding Markov chain by M , we have

M =




m11 m12 · · · m1n

m21 m22 · · · m2n

...
...

. . .
...

mn1 mn2 · · · mnn


 .

In this context, we will call such a matrix a mutation matrix and it completely
specifies the mutation process. The diagonal elements mii are the probabilities
of no mutation from the corresponding allele, hence 1 −mii is the probability
of mutation from allele i.

The elements of mutation matrices are not directly estimated from data and
there are a few reasons for this. Firstly, for some STR markers there are more
than 70 possible alleles, hence there are more than 702 ≈ 5 000 parameters
to estimate. To make things worse, the probability of mutation is very small,
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usually smaller than 0.005, and the probability of seeing a specific mutation,
from an allele a to another specified allele b, is even smaller. In many cases there
are no observations of such mutations, hence the frequency estimate would be
zero. Moreover, in many cases there is no way of knowing for sure that a
mutation has (not) occurred. For example if a father with a/b and a mother
with a/b have a child with a/a, even though unlikely, one of the parents could
have transmitted a mutated b allele to the child. However, we would ’observe’
this particular occurrence as a non-mutation case.

So instead of estimating mutation matrices using frequencies, we settle for
parametric models motivated by a mixture of biological knowledge, simplic-
ity and mathematical tractability. In Paper I, we present the most common
mutation models.

It turns out that even when we are able to construct a biologically reasonable
mutation model, we can still run into problems. To see an example of this, we
redo the computations in Example 3 by using a mutation matrix M . As one
would guess, we will not get LR15 = 0 now. We have that

Pr(ECH,15|EPF,15, H1) =

=Pr(Mutation from a to b) Pr(CH maternal allele is c)+
+Pr(Mutation from a to c) Pr(CH maternal allele is b) =
=mabπc +macπb.

The other likelihood is not affected by mutations at all since H2 contains no
inheritances. We get that Pr(ECH,15|EPF,15, H2) = 2πbπc, hence

LR15 =
mabπc +macπb

2πbπc
. (4.2)

Recall the pedigrees in Figure 4.1 which we used to represent the hypotheses H1

and H2. Now we will consider an alternative way of formulating these pedigrees.

Example 4. Again, we have the same setup as in the example in Section 4.1.1.
However, here we will use the pedigrees in Figure 4.3 to represent H1 and
H2. The idea is that, instead of drawing the child’s maternal allele from the
population frequency π, we add an unknown mother in the pedigree whose
alleles we draw from π, and then use the mutation model to obtain the child’s
maternal allele. The derivations made to produce (4.2) are the same in this case,
however, Pr(CH maternal allele is i) has changed. Let λ be the distribution of
the child’s maternal allele, i.e., λ = πM . Then we will end up with

LR15 =
mabλc +macλb
πbλc + πcλb

(4.3)

which will in general not be equal to (4.2).
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PF

CH

M PF

CH

M

H1 H2

1

Figure 4.3: An alternative way to represent the hypotheses in the example in
Section 4.1.1 using pedigrees.

Now we should be curious and ask if it is a problem that the two approaches
to the same problem yield different results, and if so, why is it a problem?
Well, there is no convincing argument about which of the two sets of pedigrees,
the ones in Figure 4.1 or the ones in Figure 4.3, should be preferred. Both of
them perfectly explain the hypotheses we are interested in and there are even
different practices among the established softwares regarding the inclusion of
untested parents. Even though the difference between (4.2) and (4.3) might be
small in most cases, the final LR is a product of these individual LRs, hence the
difference could easily be magnified. Moreover, the people that would interpret
the results, for example the parties in a paternity dispute, usually have no
insight in the computation of the likelihood ratio. Therefore, the discrepancy
in the answers, how small it may be, could undermine the authority of the used
software. If two seemingly equivalent formulations give rise to different answers,
which of them, if any, should be trusted?

The discussion regarding Example 4, and in particular equations (4.2) and
(4.3), suggests that the problem is avoided if λ = π, i.e., if πM = π. Hence,
we are looking for mutation matrices whose stationary distribution is equal to
the allele population frequency. In Paper I, we call such mutation matrices sta-
tionary and we discuss a number of different approaches to produce stationary
mutation matrices.



Chapter 5

Summary of papers

Paper I

In this paper, we discuss the necessity for stationary mutation matrices and
present a few popular ways for modeling the mutation process, some of which
give rise to stationary mutation matrices. However, we believe that it is im-
portant to keep focus on the biological soundness of the mutation model. Sta-
tionarity should not by default supercede the aim to model the real mutation
process in a reasonable way. Therefore, we propose a method of stabilizing mu-
tation matrices. The idea is to start with an existing and biologically reasonable
mutation matrix, M , and change it as little as possible to obtain a stationary
mutation matrix S, i.e., we want πS = π, where π is the population frequency
vector. The new mutation matrix S is then called a stabilization of M and
the goal is that S inherits the properties from M that makes it biologically
reasonable.

Now we have to decide on what we mean by changing a matrix “as little
as possible”. In this paper we do this by comparing matrices element-wise and
considering how much exchanging two matrices would alter likelihood ratio cal-
culations for some common pedigrees. We conclude that a reasonable measure
of closeness between mutation matrices is

fratio(M,S) = max

{
max
i,j

{
mij

sij

}
,max
i,j

{
sij
mij

}}
. (5.1)

So given a matrix M , we are looking for a matrix S fulfilling πS = π and
minimizing fratio.

It turns out that it is necessary to impose more restrictions on a stabilization.
In particular, it is often necessary to have better control of the diagonal elements
of stabilizations. Recall that the diagonal elements in a mutation matrix specify
the probability of non-mutation and we want them to be quite a lot larger than
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the off-diagonal elements. We suggest a few different mechanisms for controlling
the size of the diagonal elements. These mechanisms give rise to three different
stabilization methods which we define in this paper. We also provide theoretical
results for their existence and we use them on data. The results are mixed and
for some markers we have to make the conclusion that stationary mutation
models are not recommendable.

Paper II

In this paper, we focus on the variable elimination algorithm and which classes
of BNs it can be used for. We describe how it can be implemented on Gaussian
BNs using the canonical forms of Definition 6. Inspired by this, we propose a
new class of networks constructed by adding a gamma distributed variable to
model the precision of the Gaussian variables in a Gaussian BN. Here, we make
the restriction that the precision of all Gaussian variables in the network needs
to be modeled by the gamma variable.

As described in Chapter 2, when implementing the VE algorithm for a spe-
cific class of BNs, it is important to identify the appropriate factor set. The
BNs we consider in this paper give rise to factors in the form (2.6) which we call
Γ -canonical forms. We also present how the local operations work on these fac-
tors but it turns out that the Γ -canonical forms are not quite closed under the
local operations. One important result in this paper is that marginalizing the
gamma variable τ out of a Γ -canonical form will result in a factor that is propor-
tional to the (multivariate) Student-t distribution. In fact, this marginalization
is the only local operation that will result in something else than a Γ -canonical
form, i.e., using the language of Paper III, it is the only operation that will take
us out of the prefamily. We also apply the theory presented in this paper to the
glass data described in Section 3.2.

Paper III

In this paper, we further extend the classes of BNs for which we can perform
exact inference. The usual problem that occurs when one tries to implement
the variable elimination algorithm for a specific class of BNs is the difficulty
of defining a factor set that is closed under factor marginalization. This in-
sight led us to define prefamilies, i.e., factor sets that are not necessarily closed
under marginalization, and to construct an algorithm that performs variable
elimination on prefamilies. We present the prefamily variable elimination algo-
rithm, which is a recursive version of the VE algorithm that can be applied to
prefamilies. The recursive nature of this algorithm allows us to use numerical
integration whenever marginalization results in a factor outside the prefamily.
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The idea of the prefamily variable elimination algorithm came up when work-
ing with Gaussian BNs and trying to model the precision of Gaussian variables
in a more flexible way than in the rather restrictive networks of Paper II. We
demonstrate the prefamily variable elimination by implementing it on this class
of networks, which we in this paper call Γ -Gaussian BNs. Algorithm 4 of this
paper describes our implementation of the algorithm that is meant to be applied
to Γ -Gaussian BNs. This implementation contains a few tricks that are helpful
in specific situations.

Another important contribution is the handling of finite variables. Including
finite variables in an otherwise continuous network will not alter the possibility
for performing exact inference, given that no finite variables have continuous
parents. This is well known and is usually presented together with variable elim-
ination on Gaussian BNs. In this paper we present this extension in a general
way. We keep track of what happens with the appearance of the corresponding
factor set and we prove that the (pre)family property is preserved under this
extension.
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