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Abstract

As one of the widely used applications in wireless sensor networks, target

tracking has attracted considerable attention. Although many tracking tech-

niques have been developed, it is still a challenging problem if the network is

under cyber attacks. Inaccurate or false information is maliciously broadcast

by the compromised nodes to their neighbors. They are likely to threaten

the security of the system and result in performance deterioration. In this

paper, a distributed Kalman filtering technique with trust-based dynamic

combination strategy is developed to improve resilience against cyber at-

tacks. Furthermore, it is efficient in terms of communication load, only local

instantaneous estimates are exchanged with the neighboring nodes. Numeri-

cal results are provided to evaluate the performance of the proposed approach

by considering random, false data injection and replay attacks.
Keywords: Distributed Kalman filtering, information fusion, wireless
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1. Introduction

Wireless sensor network (WSN) combines a large number of low-power

and low-cost tiny sensors with limited processing and communicating re-

sources [1, 2]. It has a wide range of applications, including collaborative

target tracking [3, 4], control of unmanned aerial vehicles [5, 6], automated

vehicle guidance [7, 8] and smart grids [9]. The major benefit of WSNs

is that they perform in-network cooperative and distributed processing [10].

These computationally efficient distributed processing techniques are scalable

with respect to network size and suitable for real-time implementation [11].

For example, system monitoring and security control for large scale power

grids are challenging problems as envisioned by smart grids [12]. Therefore,

distributed processing techniques are desirable to incorporate adaptability

to dynamic network topologies and flexible reconfiguration for subnetwork

faults [13]. Decentralized Kalman filtering is one of the fundamental infor-

mation processing techniques in WSNs [14]. Due to its underlying state space

model that accounts for observational noise, it has proven to be advantageous

in terms of enhanced accuracy and faster convergence rates.

Information fusion plays an important role in distributed processing strate-

gies. In general, it can be classified into four categories: signal or measure-

ment level (low-level), feature or attributes level (medium-level), decision

level (high-level) and combination of various level of information (multilevel)

[15]. Here, we focus on distributed Kalman filtering algorithms in which each

node only shares local estimates with its single-hop neighbors [16]. With

covariance and cross-covariance information available, the linear gains mini-
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mizing the mean squared error have been proposed in [17]. This information

is typically known locally for distributed processing scenarios. Hence, dif-

ferent strategies have been exploited to deal with unknown cross-covariance

matrices. Simple topology-based static techniques are proposed by ignoring

the correlations. Typical static combination rules include uniform, maximum

degree, metropolis, relative degree-variance or no cooperation [18, 19]. How-

ever, such static combination rules are sensitive to the variation of signal and

noise statistics across the network. Alternatively, the unknown correlations

can be explicitly modeled. Covariance intersection was proposed in [20] for

fusion without knowing correlations. Since then, lots of variants have been

proposed in [21, 22, 23, 24] and the computational complexity is further re-

duced in [25, 26, 27, 28]. Recently, ellipsoidal intersection is presented in [29],

it provides smaller covariances than the bounds obtained with covariance in-

tersection. In [30, 31], efficient adaptive combination schemes are developed

to handle the variation of node profiles across the network. Please refer to

[14] for a bibliographic review.

Most of the existing distributed Kalman filtering techniques assume that

all the nodes are working properly [14]. However, WSN is a specific cyber-

physical system and it poses unique security challenges [32, 33, 34, 35].

Firstly, to make networks economically viable, sensors have limited compu-

tation and communication capabilities. Secondly, sensors are often deployed

in accessible areas, increasing the risks of physical attacks. Thirdly, sensor

networks interact closely with environments and people, posing new security

problems. Attackers may cause serious security issues to WSN by launching

cyber attacks, such as random [36], false data injection (FDI) [37, 38, 39, 40]
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and replay attacks [41, 42]. As mentioned in [43], very few studies have been

directed to distributed state estimation under cyber attacks, where infor-

mation is exchanged between neighboring nodes. Such a scheme has some

potential risks of being attacked, once a node or communication link is com-

promised, the false data or information is diffused to the whole network.

To address these security challenges, trust-based distributed Kalman fil-

tering approach is proposed in [44]. It is a high level fusion based technique,

only local estimates are exchanged. Dynamic combiners are determined by

information accuracy of the estimated covariance matrix or belief divergence

of the current estimates. Recently, multi-agent filtering scheme is combined

with trust-based scheme for distributed state estimation in smart grids [45].

For trust based scheme, each agent associates a trust metric to its neighbors,

information from the untrusted nodes is disregarded. While one limitation of

these methods is that subject judgment is required to choose the threshold.

In this paper, a new trust-based distributed Kalman filtering approach is

proposed, it is resilient against cyber attacks, such as random, false data in-

jection and replay attacks. Different from [44, 45], both the estimated states

and error covariance matrices are exchanged between the neighboring nodes.

Because error covariance matrix provides useful information about the accu-

racy or uncertainty of the estimated states. Meanwhile, K-means clustering

is utilized to classify the trusted and untrusted nodes, it is one of the sim-

plest unsupervised learning algorithms to solve the clustering problem [46].

The performance of the proposed approach is evaluated in target tracking,

meanwhile, it can be applied to other applications, such as distributed power

system state estimation in smart grids. A brief comparison of distributed
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Kalman filtering techniques under different cyber attacks is given in Table

1.

Table 1: Comparison of Distributed Kalman Filtering Techniques under Cyber Attacks

Algorithm Fusion Level Combiner Random FDI Replay
[47] High Static 7 7 7

[48] High Dynamic 3 7 7

[30, 49, 50] Low and High Dynamic 3 7 7

[18, 31] High Dynamic 3 7 3

[44, 45] High (state) Dynamic 3 3 3

Proposed High (state and variance) Dynamic 3 3 3

Our contributions are summarized as follows:

• A new trust-based distributed Kalman filtering technique is proposed

to enhance the resilience against cyber attacks. Different from the

existing works, both local state estimate and error covariance matrix

are exchanged between the neighboring nodes.

• In order to bypass the bad data detection techniques utilized by the

defender, attacker may compromise state and error covariance matrix

independently. To enhance the attack resilience of the proposed ap-

proach, for each node, the combiners for state and covariance matrix

are calculated independently.

• Communication load of the proposed approach is lower than that of

the low level measurement fusion scheme. Furthermore, compromised

nodes detection and localization are byproducts of the proposed ap-

proach. Besides distributed Kalman filtering, the proposed fusion strat-

egy can be applied to other distributed filtering techniques.
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The rest of the paper is organized as follows. In Section 2, problem for-

mulation and preliminaries about Kalman filtering are provided. In Section

3, the proposed trust-based Kalman filtering for distributed estimation over

WSN is introduced. Numerical results are given in Section 4. Finally, the

paper is concluded in Section 5.

2. Problem Formulation

The Kalman filter model assumes that the current system state xt evolved

from the prior state xt−1 according to the following equation:

xt = Atxt−1 +wt, (1)

where xt is the system state vector at time t, At is the state transition matrix

and process noise wt is zero mean multivariate normally distributed random

variable with covariance Qt [51]. Measurement of the system yt is given by

yt = Htxt + vt, (2)

where Ht is the transformation or measurement matrix and measurement

noise vt is zero mean multivariate normally distributed random variable with

covariance Rt. For distributed Kalman filter, the model is defined in a similar

manner. At node k, the linear measurement equation is given by

yk,t = Hk,txt + vk,t, (3)
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where Hk,t is the measurement matrix and Rk,t is the covariance matrix of

measurement noise vk,t.

As shown in Fig.1, distributed Kalman filtering based target tracking

in WSN with compromised nodes is considered in this paper. Inaccurate or

false estimates are broadcast by the compromised nodes. We assume that less

than half of the nodes are under cyber attacks. To evaluate the performance
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Figure 1: Target tracking in wireless sensor networks with unreliable nodes. The unreli-
ability may be caused by noisy operational environments and/or cyber attacks.

of the proposed approach, the following cyber attacks are considered:

1. Random Attack: The attacker simply manipulates the sensor observa-

tions with a random attack vector. The random attack can be launched

at any time point and could be a long-term continuous attack or a

short-term intermittent attack.

2. False Data Injection Attack: The adversary can bypass the existing

bad data detection schemes and introduce arbitrary errors to system

states without being detected by system operators.
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3. Replay Attack: The attacker replays a previous snapshot of a valid

communication packet sequence that contains measurements to deceive

the system.

3. Trust-Based Diffusion Kalman Filtering

Distributed Kalman filter starts from prior mean x̃k,0|−1 and covariance

P̃k,0|−1, where x̃k,i|j denotes the estimate of xi at node k given observations

up to time j and P̃k,i|j is the covariance matrix of the estimation error [49].

3.1. Measurement-Update:

Let us first define

Gk,t = Rk,t +Hk,tP̃k,t|t−1H
∗
k,t, (4)

where ∗ denotes conjugate transposition. With predicted state x̃k,t|t−1 and

covariance P̃k,t|t−1 available, the state is updated as

x̃k,t|t = x̃k,t|t−1 + P̃k,t|t−1H
∗
k,tG

−1
k,trk,t, (5)

where

rk,t = yk,t −Hk,tx̃k,t|t−1, (6)

and covariance is updated as

P̃k,t|t = P̃k,t|t−1 − P̃k,t|t−1H
∗
k,tG

−1
k,tHk,tP̃k,t|t−1. (7)
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Let Nk be the single-hop physical neighbors of node k and includes itself.

State x̃k,t|t and covariance P̃k,t|t are exchanged within nodes in Nk,

3.2. Trust-Based Information Fusion

Combiner ck,t plays a critical role at information fusion stage, it even

influences the performance of the whole network. In general, larger weights

should be assigned to the reliable nodes with accurate local estimates. The

objective is to construct the weights, that are adaptable to the variation of

the estimates. The adaptation is achieved using locally available information

at every node. In this sense, the algorithm is fully distributed, accessing

to global information is not required. Communication burden and energy

consumption of the sensors are reduced [52].

The simplest unsupervised learning algorithm K-means is used to clas-

sify the estimates into trust and untrust clusters. The proposed approach is

majority voting based. Cluster with the largest number of elements is consid-

ered as the trusted set, while the other untrusted clusters are ignored. The

number of clusters is required to apply K-means algorithm and it can be

determined by using hierarchical maximum likelihood clustering approach

[53, 54]. Because majority of the nodes are working properly, for simplic-

ity, a suboptimal solution is considered. Two clusters are assumed to avoid

estimating the actual number of clusters.

For node k, our objective is to put the nk available estimates {x̃ℓ,t|t, ℓ ∈

Nk} into two clusters, which are parameterized by mean vectors m(g), g =

1, 2. Squared Euclidean distance d(zi, zj) is used to describe the distance
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between two points zi and zj, which is defined as

d(zi, zj) = ∥zi − zj∥22 , (8)

where ∥ · ∥2 denotes ℓ2-norm.

The two-step iterative clustering algorithm includes an assignment step

and an update step. In the beginning, m(1) and m(2) are initialized with

random values.

Assignment Step. Estimate state x̃ℓ,t|t is assigned to cluster g, if

g = argmin
c

{
d
(
m(c), x̃ℓ,t|t

)}
, c = 1, 2. (9)

Let r
(g)
ℓ be the indicator to describe the assignment of x̃ℓ,t|t to cluster g.

In the assignment step, if mean m(g) is closer to the estimate state, then

r
(g)
ℓ = 1, otherwise r

(g)
ℓ = 0.

Update Step. To match the sample mean of the data points that have been

assigned to that cluster, means are updated as fellows:

m(c) =

∑
ℓ r

(c)
ℓ x̃ℓ,t|t∑
ℓ r

(c)
ℓ

, ℓ ∈ Nk, and c = 1, 2. (10)

Repeat the assignment and update steps until the assignments do not change.

Let k(c) =
∑

ℓ r
(c)
ℓ , ℓ ∈ Nk be the number of data points belongs to cluster c,

and

gk = argmax
c

k(c), c = 1, 2. (11)
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Then only the data points within cluster gk are considered as trusted esti-

mates, the corresponding nodes are denoted as Ck, the other untrusted nodes

are ignored. Let card(Ck) be the cardinality of set Ck, which measures the

number of elements of the set.

The weight is computed as

wk←l,t =
1

card(Ck)
, for l ∈ Ck. (12)

Let p̃k,t|t = diag
{
P̃k,t|t

}
, where operator diag{·} returns a column vector

of the main diagonal elements of a matrix. For node k, the nk available

estimates {p̃ℓ,t|t, ℓ ∈ Nk} are put into two clusters. Let Dk be the trusted

node set, the weight is computed as

λk←l,t =
1

card(Dk)
, for l ∈ Dk. (13)

Refined estimation of the state and variance are given by

x̃k,t|t =
∑
l∈Ck

wk←l,tx̃l,t|t, (14)

and

P̃k,t|t =
∑
l∈Dk

λk←l,tP̃l,t|t. (15)

3.3. Time-Update

With x̃k,t|t and P̃k,t|t, the time-updates are implemented as

x̃k,t+1|t = Atx̃k,t|t, (16)
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and

P̃k,t+1|t = AtP̃k,t|tA
∗
t +Qt. (17)

The proposed trust-based distributed Kalman filtering technique is sum-

marized in Algorithm 1.

Algorithm 1: Trust Based Distributed Kalman Filtering

Initialize x̃k,0|−1 and P̃k,0|−1, for k = 1, 2, · · · , N .
for t = 0 to tmax do

for k = 1 to N do
/* Measurement-Update */
Estimate x̃k,t|t and P̃k,t|t using (5) and (7).

end
for k = 1 to N do

Exchange x̃l,t|t and P̃l,t|t with node k, ℓ ∈ Nk.
/* Information Fusion */

Compute wk,t and λk,t using (12) and (13).
Estimate x̃k,t|t and P̃k,t|t using (14) and (15).
/* Time-Update */
Update x̃k,t+1|t and P̃k,t+1|t using (16) and (17).

end
end

4. Simulation Results

Computer simulations have been carried out to evaluate the performance

of the proposed approach by comparing with uniform [55] and relative degree-

variance [56] fusion schemes. Cyber attacks, such as random, false data
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injection (FDI) and replay attacks are considered. As shown in Fig.2, a fully

connected WSN with 7 nodes is considered. Nodes 02, 04 and 06 are under

cyber attacks. For simplicity, we assume that both At and Hk,t are time

01

02

03

06

05

04

07

02

0406

Without Attack

Under Cyber Attack

Figure 2: A WSN with 7 nodes, nodes 02, 04 and 06 are under cyber attacks.

invariant. The system parameters are as follows:

A =


1 0 1 0

0 1 0 1

0 0 1 0

0 0 0 1

 and Hk =

1 0 0 0

0 1 0 0

 . (18)

The states are initialized as x̃k,0|−1 =
[
10 10 1 0

]T
, P̃k,0|−1 = 10I4, co-

variance Q = 0.1I4 and Rk = σ2I2. Here In denotes the identity matrix of

size n.

4.1. Random Attack

The attacker simply manipulates the sensor measurements with a ran-

domly generated attack vector. The attack can be launched at any point in
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time. It might be a long-term continuous attack or a short-term attack. The

actual trajectory and the estimated trajectory using the proposed trust-based

information fusion approach, as well as the trajectory estimated by the noisy

node is shown in Fig. 3. The corresponding root-mean-square error (RMSE)

performance results are shown in Fig. 4.

For uniform and relative degree-variance weighting schemes, both trust

and untrust nodes are used for information fusion. They are not robust to

random attacks. The error is mainly caused by the compromised nodes. The

greater the attack strength, the larger the RMSE. Compared with uniform

scheme, better performance is achieved for relative degree-variance scheme.

Because smaller weights are given for the compromised nodes. The random

attack is mitigated to some extend. For the proposed scheme, since clustering

techniques are used to classify the nodes into trust and untrust sets. Only the

trust nodes are used for information fusion. The effects of the compromised

nodes are eliminated. Therefore, it is robust to the random attack and lowest

RMSE is achieved.

4.2. False Data Injection Attack

For FDI attack, it assumes that the attacker knows the system model and

the parameters. It can bypass the residual based bad data detection tech-

niques that are widely used by the system operators. To launch the attack,

attack vector ak,t|t is added to the local estimate x̃k,t|t. In the simulation,

the elements of the attack vector is generated from a normal distribution

N(µ, σ2) with mean µ and standard deviation σ.

The actual trajectory and the estimated trajectory using the proposed

trust-based diffusion approach, as well as the trajectory estimated by the
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Figure 3: The actual trajectory and the estimated trajectory using the proposed trust-
based information fusion approach, as well as the trajectory estimated by the noisy node.
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Figure 4: The instantaneous RMSE for uniform [55], relative degree-variance [56] and
the proposed trust-based fusion schemes under different SNR scenarios.

node under FDI attack are shown in Fig. 5. The corresponding RMSE

performance results are shown in Fig. 6.

For uniform and relative degree-variance weighting schemes, all the 7
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nodes are used for information fusion. They are not robust to FDI attacks

and the compromised nodes will cause large estimation errors. Better perfor-

mance is achieved for relative degree-variance scheme as compared to uniform

weighting scheme. Larger µ and/or σ will contribute to larger RMSE. For

the proposed scheme, only the trusted nodes are used for information fusion.

It is robust and the effects of FDI attacks are eliminated. Compared with

the other two schemes, lowest RMSE is achieved for the proposed scheme.

5 10 15 20 25 30 35 40
−70

−60

−50

−40

−30

−20

−10

0

10

20

x

y

 

 

Node with FDI Attack: µ = 5, σ = 2
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Figure 5: The actual trajectory and the estimated trajectory using the proposed trust-
based information fusion approach, as well as the trajectory estimated by the node under
FDI attack.

4.3. Reply Attack

In the last simulation, reply attack is considered. The attacker replays

previous snapshots of a valid communication packet sequence that contains

local estimates to deceive the system. For the three compromised nodes, the

previous states are used to launch replay attacks. At time t, for nodes 02, 04

and 06, x̃t−τ , τ = 1, 2, 3, are broadcast to their neighboring nodes. Since they
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Figure 6: The instantaneous RMSE for uniform [55], relative degree-variance [56] and
the proposed trust-based fusion schemes under FDI attacks, SNR = 10 dB.

are the actual states of the system, so they can bypass the residual based

bad data detection schemes.

The actual trajectory and the estimated trajectory using the proposed

trust-based approach is shown in Fig. 7. The corresponding RMSE perfor-

mance results are shown in Fig. 8. For uniform and relative degree-variance

weighting schemes, as in the previous two simulations, they are not robust

to replay attacks. While for the proposed approach, it outperforms the other

two schemes and again lowest RMSE is achieved.

Remark 1. The proposed approach is a majority voting based scheme. As

shown in the simulation results, robust performance is achieved for the pro-

posed approach, provided that a minority of the sensors are compromised. It

might be a realistic assumption. Because the attacker is either limited access

to nodes, due to physical protection by system operators, or limited resources

to compromise large scale networks [37]. While for the proposed trust-based
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Figure 7: The actual trajectory and the estimated trajectory using the proposed trust-
based diffusion approach, three nodes are under replay attacks.
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Figure 8: The instantaneous RMSE for uniform [55], relative degree-variance [56] and
the proposed trust-based fusion schemes under replay attacks, SNR = 10 dB.

approach, the limitation can be overcome by introducing a subset of secured

nodes, which are special nodes that can be highly trusted [57].
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5. Conclusion

We propose a trust-based distributed Kalman filtering scheme for target

tracking under malicious cyber attacks. Clustering technique is adapted to

remove the bad data and/or the inaccurate estimates. After clustering, a

dynamic combiner is obtained. Furthermore, it is robust to the cyber attacks,

such as random, false data injection and reply attacks. And compromised

nodes detection and localization are byproducts of the proposed approach.

Even though the proposed technique is introduced in target tracking, the key

idea can be applied to other applications, such as navigation, smart grids.
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