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We consider charged particle motion in a strong electromagnetic field of an arbitrary configuration

and find a universal behaviour: for sufficient field strengths, the radiation losses lead to a general

tendency of the charge to move along the direction that locally yields zero acceleration orthogonal

to the direction of motion. This corresponds to the suppression of radiation losses according to both

classical and quantum considerations. We show that such a radiation-free direction (RFD) exists at

each point of an arbitrary electromagnetic field, while the time-scale of approaching this direction

decreases with the increase in field strength. In the case of a sufficiently strong electromagnetic

field, at each point of space, the charges mainly move and form currents along the local RFD, while

the deviation of their motion from RFD can be calculated to determine their incoherent emission.

This forms a general description of particle, and therefore plasma, dynamics in strong electromag-

netic fields, the latter being generated by state-of-the-art lasers or in astrophysical environments.
VC 2018 Author(s). All article content, except where otherwise noted, is licensed under a Creative
Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
https://doi.org/10.1063/1.5047799

I. INTRODUCTION

The development of state-of-the-art high-intensity laser

systems has spurred renewed interest in radiation reaction and

its effect on particle dynamics in strong electromagnetic fields.1

The nature of radiation reaction has been a long-standing issue

in the literature,2–5 and the developments over the last decade

have further clarified various aspects of this effect (for a review,

see Refs. 2, 3, and 5–8). The fundamental structure of radiation

reaction has been discussed in Refs. 9 and 10, the quantum

nature of radiation reaction has been analyzed in, e.g., Refs.

11–18, while the effect of dissipation on electron motion has

been considered in Refs. 19–25. The interest in this field has

been further increased by the discovery of several somewhat

counter-intuitive phenomena, such as straggling,26,27 quench-

ing,28 radiation reaction trapping in traveling waves,29 as well

as normal (NRT)30 and anomalous31 radiative trapping (ART)

in standing waves. Despite continuous efforts to develop ana-

lytical approaches,20,22,24,32–34 the high degree of nonlinearity

in many cases restricts the analysis to qualitative explana-

tions, assisted by numerical simulations. General theoretical

approaches can be useful for building a more comprehensive

picture and developing experimental concepts at upcoming

laser facilities.35–38 Phenomena due to radiation reaction

can be exploited for creating exotic sources of particles and

radiation,39–44 as well as extreme states of matter.45,46

In this paper, we demonstrate that a charged particle,

moving in an arbitrary electromagnetic field, tends to move

along a direction that locally yields zero lateral (orthogonal

to the direction of motion) acceleration. The timescale at

which this direction is approached decreases with increasing

intensity. We derive an explicit expression for this direction,

estimate the time-scale of approach, and present a general

description of particle and plasma dynamics in strong fields,

based on these findings.

II. THE RADIATION-FREE DIRECTION

Let us consider an arbitrary electromagnetic field and its

effect on a charged particle at an arbitrary point of space and

time. One may ask if there exists a direction of motion n for

which the particle does not experience any lateral accelera-

tion, i.e., E� ðE � nÞn ¼ �ðv=cÞðn� BÞ, where v is the par-

ticle speed, c is the speed of light, and E (B) is the local

electric (magnetic) field vector. If a particle moves along

such a direction with relativistic speed, the particle would

predominantly not experience any radiation losses, since the

lateral acceleration provides the dominant loss mechanism in

both classical and quantum descriptions. We call this the

radiation-free direction (RFD) and consider the problem of

finding this direction in the generic case.

The problem can be formulated in an algebraic way by

expressing the sought vector n through its coordinates in the

orthogonal system of coordinates spanned by the vectors

B; E� ðE � BÞB=B2 and E�B (if any of these vectors is

equal to zero, the solution can be obtained under more spe-

cific and simple consideration). The statement of the prob-

lem then leads to a set of equations that can be solved and

analyzed. However, to obtain some physical insights, we

derive the solution using vector analysis. In order not to dis-

tract the reader, we postpone this analysis (see Sec. VI) and

outline the conclusions that are crucial for further analysis.

For any local field vectors, there exists always exactly

one radiation-free direction that depends continuously on E

and B according to the expression
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n6
RFD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
u� u2
p

E� Bð Þ6 1� uð ÞBEþ u E � Bð ÞB=B
� �n o

� E2B2 � u E� Bð Þ2
h i�1=2

; (1)

where the superscript denotes the sign of the charge and the

value of u is given in the ultra-relativistic case by the expres-

sion (see Eq. (16) for the general case)

u ¼ 2
B2

E2 þ B2

1�
ffiffiffiffiffiffiffiffiffiffiffiffi
1� w
p

w
; w ¼ 4 E� Bð Þ2

E2 þ B2ð Þ2
: (2)

The only exception is the case when E<B and the ðE � BÞ
changes the sign; in this case, nRFD changes discontinuously

and the problem formally admits two solutions exactly at

ðE � BÞ ¼ 0. In order to show this, we provide the following

graphical illustration (Fig. 1) of nRFD as the functional of

vectors E and B.

Since the result depends on the relative orientation of

vectors E and B, the functional (1) can be shown through

varying the electric field components perpendicular (E?=B)

and parallel (Ek=B) to the magnetic field vector B. In Fig. 1,

we present in such a way the view of nþRFD (i.e., for positive

charge), while n�RFD can be obtained through inverting the

component perpendicular to E� B.

In Fig. 2, we demonstrate the correctness of the obtained

result through direct computation of lateral acceleration for

the case of Ek ¼ B=2.

III. APPROACHING THE RADIATION-FREE DIRECTION

Let us now discuss why the RFD plays an important role

for understanding radiation-dominated dynamics. In this sec-

tion, we show that intense radiation losses lead to a general

tendency of charged particles to align their propagation

directions along the local RFD, i.e., n6
RFD computed for local

E and B vectors (see Fig. 3).

Radiation reaction gives a change of the particle’s

momentum, and this change is orientated almost exactly

against the direction of propagation in the ultra-relativistic

case. It is clear that this mismatch of the directions is not

crucial for understanding the radiation-dominated dynamics,

since, e.g., different radiation-induced trapping phenomena

are observed in simulations under the assumption that the

recoil from the radiation is always orientated exactly anti-

parallel to the direction of propagation. Thus, radiation reac-

tion itself cannot be directly responsible for the change of

the direction of motion. Radiation reaction changes the

FIG. 1. Illustrating nþRFDðE;BÞ by fixing B (blue arrow) and varying the end

point of E, keeping its starting point in the centre. For each position of the

end point, the gray arrow shows the projection of nþRFD on the plane spanned

by E and B, while the colour denotes the normal component.

FIG. 2. Confirmation of the analytical results through a direct computation of the lateral acceleration for Ek=B ¼ 1=2, as a function of E?=B. The amplitude of

lateral acceleration (cyan shades) and the solution provided with the nþRFD functional (red curves) are shown on the planes for varied polar angle h (relative to

the E� B direction) and azimuthal angle u (relative to the B direction) of the direction of motion.
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direction of propagation indirectly, through reducing the par-

ticle energy, so that the Lorentz force starts to affect the

direction of propagation more strongly. We will now show

that this results in approaching the RFD (1).

Suppose that a particle has the velocity v, such that

v ¼ vRFD þ Dv, where vRFD is the radiation-free velocity and

Dv is a small deviation thereof. The effects of radiation reac-

tion can be discrete and stochastic, but for our analysis, it is

sufficient to consider a continuous effect (we stress that our

general result is valid independent of this choice of the radia-

tion reaction treatment), where the radiation reaction force is

given by FRR ¼ �0:37m2c�h�2v2=3v. This gives the averaged

force in the limit of v� 1, where v ¼ cF?=ES is the quan-

tum efficiency parameter for a particle experiencing a force

of magnitude F? across its motion, and ES ¼ m2c3=�h is the

Schwinger-Sauter field.7 The equation for the evolution of

the particles momentum p is

d

dt
p ¼ Eþ 1

c
vRFD þ Dvð Þ � Bþ FRR

¼ ek þ FRR þ
1

c
Dv� b1 þ

1

c
Dv� b2; (3)

where the electric field E is decomposed into the sum of the

parallel (ek) and perpendicular (e?) components relative to

the RFD, while the magnetic field B is decomposed into the

sum of the component b1 lying in and b2 perpendicular to

the plane spanned by vRFD and v. The expression ðe? þ vRFD

�B=cÞ is, by definition, identically zero and has been

removed from the second line. We can now determine the

effect of all four remaining terms in the sense of causing

either approach to or deflection from the RFD. According to

our treatment, the second term is parallel to v and thus gives

no direct effect in this sense. Neither does the third term

because it is perpendicular to the plane spanned by vRFD and

v. To determine the role of the first and the last terms, we

can estimate the change of v in terms of @ðDvÞ=@t. We first

note that in the relativistic limit jvj ¼ jvRFDj ¼ c, the angle

between Dv and v (and also vRFD) is / ¼ arccosðDv=ð2cÞÞ
� p=2, and thus, it is close to p=2 also in the case of highly

relativistic motion, which we are considering here. As one

can see, both the first and last terms are almost parallel to the

direction of motion. However, in terms of @ðDvÞ=@t, the first

term provides the effect that is of the order of ½ek=ðmccÞ�2
cos / � ½ek=ðmccÞ�ðDv=cÞ, while the effect of the last term

is ½b2=ðmccÞ� ðDv=cÞcos / � ½b2=ðmccÞ�ðDv=cÞ2. As we see,

in terms of small Dv, the last term gives the second order

effect and thus the approach to or deviation from the

FIG. 3. The result of simulation of the particles’ motion for the field amplitude a¼ 104. The position of particles is shown at (a) t¼ 0.03 and (b) t¼ 0.75. For each

particle, we show the xy-projection of the direction of motion (green arrow) and of the RFD calculated for the local field (black arrow). The temporal evolution of par-

ticle distribution P(d, t) in deviation angle d is shown in (c). See supplementary video for the entire evolution. Multimedia view: https://doi.org/10.1063/1.5047799.1
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radiation-free direction is governed by the electric field com-

ponent parallel to the RFD, i.e., ek.
Of two counter-orientated directions that yield zero lat-

eral acceleration, the RFD direction (1) is defined so that ek
points towards the radiation-free motion, making Dv smaller

[with exceptions of (E¼ 0) and ðE ¼ B;E?BÞ]. Thus, the

force of ek acts so that a particle approaches the radiation-

free direction. In fact, even if Dv is not small, the approach

to the RFD can be understood as follows. The motion along

the RFD is upheld by the electric field, while the motion in

the transverse direction gets exhausted by radiation losses in

an irreplaceable way.

In order to obtain the time-scale of this behaviour, we

rewrite Eq. (3) in terms of the relativistic c factor and the

angle d of deviation from the RFD. We obtain

mc
dc
dt
¼ ek cos d� A cek sin d

� �2=3
;

mcc
dd
dt
¼ �ek sin d; (4)

where ek ¼ jekj and A ¼ 0:37aE
1=3
S ; a � 1=137 is the fine-

structure constant hereafter. Here, we used the rate of radia-

tion losses in the limit of strong fields computed in the

framework of quantum electrodynamics (QED). The system

(4) is an autonomous system of differential equations, which

is accessible for the analytical study via its phase plane.

However, the crucial features and estimates can be obtained

with the following simple analysis. First, we assume that

d	 1. From the first equation of (4), we see that the particle

can gain energy until the Lorentz force (the first term)

becomes balanced by the radiation reaction (the second

term). The smaller the deviation is, the higher the values of c
can be achieved. The limiting case of balance between these

terms corresponds to the radiation-dominated regime.47,48

For this limit, we can determine the relation

c�1 � d A3=2e
�1=2

k : (5)

Using the second equation in (4), we obtain

d

dt
d ¼ �d2=sRFD; (6)

where sRFD, the typical time-scale of approaching to the

radiation-free direction, is given by

sRFD ¼ ð0:37aÞ�3=2 mc

eðekESÞ1=2
� 7100

mc

eðekESÞ1=2
; (7)

where e is the charge of the positron. As one can see from

Eq. (6), the particle indeed approaches the RFD (d ¼ 0),

with temporal evolution

dðtÞ � sRFD=t: (8)

For the upcoming high-intensity lasers with an expected

peak intensity of about 1023 W/cm2, the estimate (7) gives

sRFD � 0.3 fs, which is 10 times less than the wave period of

laser radiation. This means that the tendency discussed here

can play a significant role in the upcoming experiments.

During the particle motion, the RFD changes because of

the time-dependence of the electromagnetic fields experienced

by the particle. Assuming that the RFD changes with a typical

frequency x of the electromagnetic field, we can determine the

typical value of the deviation angle as a function of the field

amplitude a given in relativistic units (mcx=e)

hdi � 7100=
ffiffiffiffiffiffiffi
aaS

p
; (9)

where aS ¼ mc2=�hx is the Schwinger-Sauter field given in

relativistic units relative to the frequency x.

If we consider hdi < p=8 as the criterion for the effect

to appear in a prominent way, the amplitude necessary for

this and the corresponding value of v can be estimated as

aRFD � 3� 108a�1
S ; vRFD � 1017a�3

S ; (10)

where we estimated c � a from Eq. (5). For high-intensity

lasers (wavelength k ¼ 1 lm, �hx � 1:24 eV; aS � 0:4� 106),

we estimate aRFD � 103 and vRFD � 1, which motivates the

use of expression for the radiation losses in the high v range.

However, since vRFD � x3, for larger wavelengths and, in

particular, in astrophysical environments, the amplitude neces-

sary for the appearance of radiation-dominated dynamics can

be achieved for vRFD 	 1, i.e., without the prominent role of

pair production and other strong-field QED phenomena. We

can perform the same analysis for the radiation losses in the

classical form (for v	 1) Fcl
RR ¼ �ð2=3Þm2c�h�2v2v. In this

case, we can again obtain Eqs. (6) and (8) but with

scl
RFD � 14

mc

ee
3=2

k E
�1=2
S

: (11)

Using this, we can obtain the following estimates:

acl
RFD � 10a

1=3
S ; vcl

RFD � 100a
�1=3
S : (12)

As we can see, these estimates can also be relevant for high-

intensity lasers. However, the obtained estimates are still

rough, since we, for example, do not account for the time-

scale of reaching the assumed balance between the Lorentz

force and the radiation reaction [Eq. (4)]. Our main intention

here was to show the origin of the effect and obtain some typ-

ical scales, while some more precise results are presented and

discussed in Sec. V on the basis on numerical simulations.

We also would like to note that the assumed here continu-
ous form of radiation reaction is not crucial for understanding

the mechanism and performing the estimates. Indeed, losing

momentum in discreet portions still has the same effect of mak-

ing the particle relativistically “lighter” and thus more sensitive

for the change in the direction by the Lorentz force. After each

emission, the particle is re-accelerated more towards the RFD

than in other directions. Although the approach to the RFD

appears as a robust phenomenon, the discreetness and stochas-

ticity of emission can lead to spreading of the distributions rela-

tive to classical results and cause other effects.12,13,18 We

discuss some effects of this type also in Sec. V.

IV. OCCURRENCE OF RADIATION-FREE MOTION

A. Anomalous radiative trapping

One consequence of radiation-free motion is the phe-

nomenon of anomalous radiative trapping (ART).31 The
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explanation given in Ref. 31 is based on the emergence of

radiation-free motion for linearly polarized electromagnetic

standing waves (see Fig. 1(c) in Ref. 31). Here, we can esti-

mate the threshold amplitude aART
th for this effect, using

Eq. (7). In order for particles to migrate from the vicinity of

an electric field node [where the particles are accumulated

by normal radiation trapping (NRT)], the radiation-

dominated motion should appear in a small (enough) neigh-

borhood around this point. According to Fig. 1(c) in Ref. 31,

the typical spread of particles around the magnetic field node

in the NRT regime is about 1/10 of the wavelength and the

typical electric field strength at this point is about 1/10 of the

standing-wave amplitude. Therefore, radiation-free motion

can dominate the particle dynamics if, e.g., sRFD is less than

one eighth of the wave period. Equation (7) then yields

aART
th � 2000 (in relativistic units), which is fully consistent

with the threshold determined numerically in Ref. 31 (see

Fig. 1(a) of that reference).

B. Radiation reaction trapping

The phenomenon of radiation reaction trapping29 is

another case that can be explained within the current frame-

work. For radiation reaction trapping, particles tend to

co-propagate with an intense laser pulse. From the analysis

presented here, we see that the role of the radiation reaction

is to reduce the gamma factor of the electrons so that the

Lorentz force can quickly deflect the particles towards the

RFD. It is straightforward to see that for the case of a travel-

ing plane wave with the electric and magnetic fields equal

and perpendicular to each other, the radiation-free direction

coincides with the wave vector or the direction of laser pulse

propagation (see Fig. 1). Once the particles come close to

this direction, they can propagate for a long time together

with the pulse. However, since in this case the electric field

vector is orientated perpendicular to the radiation-free direc-

tion, the estimate of the typical time of approaching this

direction requires further analysis of Eq. (3). Note that the

problem of particle motion in a plane wave admits an exact

analytical solution.23 However, the general tendency of

particles towards the co-motion with the plane wave in the

case of strong losses is known from the following qualitative

argument.2 Since the particles receive energy through absorb-

ing momentum exactly in the wave vector direction but lose

the energy through emitting photons in various directions, the

energy balance gradually leads to the motion along the wave

vector. As a simple particular example for the RFD tendency,

this known behavior supports our conclusions.

C. Plasma dynamics

For sufficiently strong fields, the convergence (8) to the

RFD can be faster than the typical timescale of the field. In

this case, particles will follow the local RFD at each point of

spacetime, creating currents that in turn will affect the elec-

tromagnetic fields. Using this as a key assumption, we can

obtain a self-consistent description of such radiation-

dominated plasma dynamics in the form

@tfi þ cn6
RFDðE;BÞ � rfi ¼ 0; (13)

@tfk þ vk � rfk þ qk Eþ vk

c
� B

� �
� @fk
@pk

¼ 0; (14)

with q ¼
P

k qk

Ð
fkd3pþ

P
i qifi and j ¼

P
k qk

Ð
fkvkd3p

þ
P

i qificn6
RFDðE;BÞ being the charge density and current

density, respectively, and the particle velocity given by vk

¼ pk½1þ p2
k=ðmkcÞ2��1=2=mk. Here, the index i denotes par-

ticles that undergo radiation-free motion and k denotes other

particles (for example, heavier ions), fi and fk are the respec-

tive distribution functions, and the self-consistent fields are

governed by Maxwell’s equations with the currents and

charge densities generated by the above distribution func-

tions. Note that this description does not imply the absence

of radiation, which can be obtained through the evolution of

RFD and the gamma factor across the obtained trajectories.

This description can also be extended by accounting for the

related particles’ redistribution between the radiation-free

trajectories (as a second order effect).

V. NUMERICAL BENCHMARKING

We analyze our analytical approach and identify its range

of applicability, by performing simulations of the exact equa-

tions of motion. We considered an array of positrons moving

in an arbitrary chosen configuration of the electromagnetic

field that has a typical frequency x and amplitude a in relativ-

istic units. For this purpose, we consider eight linearly polar-

ized plane waves each having the frequency of x or x/2 and

propagating in a positive or negative direction of the x or y
axis of a right-handed coordinate system {x, y, z}. The waves

have arbitrarily chosen phases and polarization and arbitrarily

chosen amplitudes with the average value of 0.475a. We use

dimensionless time t and coordinates x and y, normalized by

the period T¼ 2p/x and wavelength k ¼ 1 lm, respectively.

The field structure is uniform along z and has a period of

2 along both the x and y directions. Initially, the positrons

have random momenta of typical scale mca and are placed

equidistantly within this periodic region. We employ peri-

odic boundary conditions during their motion, computed in

the given field. Radiation reaction is accounted for through

photon emission events according to the QED rate expres-

sions as it is described in Ref. 8. We present the result of our

simulation for the case of a¼ 104 in Fig. 3. One can clearly

see that within a period of time of about 0.05T, the particles

on average start to move along the RFD, and after that, the

deviation angle remains small on average, i.e., the directions

of particle motion (green arrows) systematically approach

the local RFD (black arrows).

During the motion of a particle, the local fields change

smoothly in time and so does RFD most of the time.

However, if Ek changes sign and E? < B, the RFD changes

suddenly (see Fig. 1). (This explains the large deviations

observable for some particles in Fig. 3.) We can thus distin-

guish two qualitatively different regimes of motion and

emission: the regime of smooth evolution of the RFD and

the regime of sudden change of the RFD. In the former case,

the lateral acceleration is determined by the speed of RFD

rotation during the particle motion. In this regime, the devia-

tion angle remains small and this results in a moderate lateral
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acceleration and the emission of photons under relatively

small values of v. Thus, in this regime, a particle continu-

ously gains energy and emits it predominantly in the form of

relatively low-energy photons. In the latter case, the devia-

tion angle and the lateral acceleration instantaneously

become large and this results in the emission of high-energy

photons with large values of v. In this case, a particle can

emit a significant portion of the gained energy in the form of

a single photon. The effect of radiation quenching28 can

delay this event, but after the emission of photons, the parti-

cle starts to emit more frequently and again follow the

motion along the RFD.

The case of Ek 
 0 deserves a separate consideration as

it corresponds to both a linearly polarized standing wave and

a dipole wave, which both can enable the ART effect.31 In

this case, ðE � BÞ ¼ 0 is maintained during the motion, while

the regimes of E>B and E<B appear one after another. A

brief analysis of the particles’ dynamics and the way it leads

to the appearance of the ART phenomenon as a consequence

of the tendency to the RFD is discussed in Ref. 31; a more

detailed analysis can be found in Ref. 34. Note that during

the particle motion in the ART regime, E? becomes less

than B and the particles enter the bifurcation regime (see Fig.

1). If a particle continues the motion perpendicular to B

(since the Lorentz force points along this plane), the particle

starts to move having a large deviation angle and thus signifi-

cant lateral acceleration. This means that the emission hap-

pens under large values of v, which favors the emission of

high-energy photons. This underlies the efficiency of the

concept proposed for the generation of GeV photons at the

upcoming laser facilities based on the ART dynamics in a

dipole wave.43 In this paper, the total power of a laser facility

was varied in the range from 7 to 40 PW, and for the consid-

ered field configuration, this corresponds to the peak field

amplitudes in the range from a� 2000 to a� 5000. This

means that the approach suggested here can be useful for the-

oretical studies related to upcoming high-intensity laser

facilities.35–38

To identify the applicability of the proposed approach

for different field strengths, we perform the described simu-

lations for a range of values of the amplitude a, and for each

case, we determine the average deviation angle hdi for the

second half of the simulation. The result of this study is

shown in Fig. 4 together with the estimate (9). Although one

can see a reasonable agreement, the expression (9) systemati-

cally underestimates the typical deviation angle. One reason

for this is the fact that when obtaining the expression (9), we

do not account for the regime of deviation from RFD during

its sudden change. However, it is important that the estimate

(9) reproduces the general tendency and thus explains the

origin of the observed dynamics. For the physics of high-

intensity laser-plasma interactions (see scales for k ¼ 1 lm),

a systematic approach of the particles to the RFD appears at

intensities �1023 W/cm2. This becomes dominating for

intensities above 1025 W/cm2, which are expected to be

reached at the large-scale high-intensity laser facilities of the

next generation. Note that at high field strengths, the effects

of strong-field QED can take place. In this case, the tendency

of particles to move along the RFD can still provide useful

insights, while, for example, the effect of pair production can

be included as a source term in Eq. (13).

VI. GEOMETRICAL DERIVATION OF THE
RADIATION-FREE DIRECTION

In this section, we rigorously demonstrate the exis-

tence of RFD for the arbitrary case and derive the explicit

expression for the n6
RFDðE;BÞ functional. As we mentioned

in Sec. II, the problem statement is to find the direction

that yields zero lateral acceleration, i.e., E� ðE � nÞnþ
ðv=cÞ ðn� BÞ ¼ 0.

Let P be an arbitrary point in a three dimensional space

for vectors E and B and consider a sphere with the centre in

the point Pþ ð1=2ÞE and the radius jEj=2 [see Fig. 5(a)].

We associate each point D of this sphere with the direction

of propagation orientated along the vector d ¼ D� P. We

now define a point G ¼ Pþ E. The vector FE
? ¼ D�G is

FIG. 4. The dependency of the average

deviation angle hdi on the field ampli-

tude in relativistic units. The results

obtained numerically with different

models for the radiation reaction are

shown with solid curves (see the

description in the diagram), and the

result of the estimate (9) is shown with

a dashed curve.
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then the transverse component, relative to the particle direc-

tion of motion, of the Lorentz force due to the electric field

(for simplicity, we assume the charge to be equal to unity

here).

The magnetic part of the Lorentz force F
B is always per-

pendicular to the magnetic field vector B and the direction of

the particle motion. The transverse component FB
? thus coin-

cides with FB. In order for FB
? to cancel FE

?, the latter has to

be perpendicular to the magnetic field vector. We are there-

fore restricted to consider directions corresponding to a point

on the circle formed by the intersection of the sphere with

the plane passing through the point G, being perpendicular

to B. For all points of this circle, FE
??B holds. Moreover, on

this circle, FB
? and FE

? are also parallel to each other. (The

only exception is the case of the vector d being parallel to

the vector B, which results in FB
? ¼ 0, thus not contradicting

the final conclusions of this section). Indeed, if the vectors d

and B are not parallel, then for the planes perpendicular to

these vectors and passing through the point D, there is a sin-

gle line of intersection. Both FB
? and FE

? have to be parallel

to this line, as each of them lies in both planes. Thus, FB
? and

FE
? are parallel to each other.

As a result, in order for the particle to have zero lateral

acceleration, we only need to request that jFB
?j ¼ jFE

?j (as

will be shown, one of the solutions of this equation corre-

sponds to the opposite orientations of the vectors, thus can-

celling each other).

Let us consider a point Q, which belongs to the circle and

is opposite to the point G. The segment PQ is parallel to B.

We define a as the angle between E and B. The length of the

QG segment is then jQGj ¼ E sin a. We define b as the angle

between segments QG and QD. The value of b 2 ½�p=2; p=2�
defines the position of the point D on the circle. Thus, jFE

?j
¼ jDGj ¼ E sin aj sin bj:

Suppose v is the particle’s velocity vector, and v? is its

component across the vector B. Then, the ratio jv?j=jvj
¼ v?=v is equal to the ratio of the lengths of the segment QD

to the one of the segment PD in the right-angled triangle

PQD. As a result, we obtain

jFB
?j ¼

v?
c

B ¼ v

c

B sin a cos bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2aþ sin2a cos2b

p : (15)

Equating jFB
?j and jFE

?j, we obtain the equation u2 sin2a
¼ uðk þ 1Þ � k for the unknown quantity u ¼ sin2b, where

k ¼ ðv=cÞ2ðB=EÞ2. One can show that in the range 0< u< 1,

this equation always only has the solution

u ¼
k1=2 þ k�1=2ð Þ � k1=2 þ k�1=2ð Þ2 � 4 sin2a

h i1=2

2k�1=2 sin2a
: (16)

Assuming v� c and using ðE� BÞ2 ¼ E2B2 sin2a, we have

in the ultra-relativistic case

u ¼ 2
B2

E2 þ B2

1�
ffiffiffiffiffiffiffiffiffiffiffiffi
1� w
p

w
; w ¼ 4 E� Bð Þ2

E2 þ B2ð Þ2
: (17)

As one can see, the maximal value of w is unity and thus

u is always real. For each u, there are two values of b that

give sin2b ¼ u. One of these corresponds to the case of the

opposite orientation of the electric and magnetic compo-

nents, cancelling each other. Using the geometry of Fig.

5(a), we derive the expression (1) presented in the beginning

of the article.

VII. CONCLUSIONS

In this paper, we have analysed particle motion in the

limit of strong radiation reaction. We have shown that for

arbitrary electric and magnetic fields, there is always one

direction of propagation that leads to the absence of lateral

acceleration. We also demonstrate that the particles approach

this direction within a finite, characteristic time, and we

derive expressions for the representative dynamics of this

approach towards the radiation-free direction. We discuss

how our conclusions can provide a possibility to analyze and

understand particle and plasma dynamics in strong fields.
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