
The potential to use QSAR to populate ecotoxicity characterisation factors
for simplified LCIA and chemical prioritisation

Downloaded from: https://research.chalmers.se, 2025-06-18 04:00 UTC

Citation for the original published paper (version of record):
Holmquist, H., Lexén, J., Rahmberg, M. et al (2018). The potential to use QSAR to populate
ecotoxicity characterisation factors for simplified LCIA
and chemical prioritisation. International Journal of Life Cycle Assessment, 23(11): 2208-2216.
http://dx.doi.org/10.1007/s11367-018-1452-x

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)



LCIA OF IMPACTS ON HUMAN HEALTH AND ECOSYSTEMS

The potential to use QSAR to populate ecotoxicity characterisation
factors for simplified LCIA and chemical prioritisation

Hanna Holmquist1 & Jenny Lexén2
& Magnus Rahmberg2

& Ullrika Sahlin3
& Julia Grönholdt Palm3

& Tomas Rydberg2

Received: 10 October 2017 /Accepted: 14 February 2018 /Published online: 12 April 2018
# The Author(s) 2018

Abstract
Purpose Today’s chemical society use and emit an enormous number of different, potentially ecotoxic, chemicals to the envi-
ronment. The vast majority of substances do not have characterisation factors describing their ecotoxicity potential. A first stage,
high throughput, screening tool is needed for prioritisation of which substances need further measures.
Methods USEtox characterisation factors were calculated in this work based on data generated by quantitative structure-activity
relationship (QSAR) models to expand substance coverage where characterisation factors were missing. Existing QSARmodels
for physico-chemical data and ecotoxicity were used, and to further fill data gaps, an algae QSAR model was developed. The
existing USEtox characterisation factors were used as reference to evaluate the impact from the use of QSARs to generate input
data to USEtox, with focus on ecotoxicity data. An inventory of chemicals that make up the Swedish societal stock of plastic
additives, and their associated predicted emissions, was used as a case study to rank chemicals according to their ecotoxicity
potential.
Results and discussion For the 210 chemicals in the inventory, only 41 had characterisation factors in the USEtox database. With
the use of QSAR generated substance data, an additional 89 characterisation factors could be calculated, substantially improving
substance coverage in the ranking. The choice of QSAR model was shown to be important for the reliability of the results, but
also with the best correlated model results, the discrepancies between characterisation factors based on estimated data and
experimental data were very large.
Conclusions The use of QSAR estimated data as basis for calculation of characterisation factors, and the further use of those
factors for ranking based on ecotoxicity potential, was assessed as a feasible way to gather substance data for large datasets.
However, further research and development of the guidance on how to make use of estimated data is needed to achieve
improvement of the accuracy of the results.

Keywords Characterisation factors . Plastic additives . Prioritisation . QSAR . USEtox

1 Introduction

Every day a wide variety of chemicals are emitted into
the environment from a multitude of sources. These
emissions and the subsequent pollution of the natural
environment and potential exposure of living organisms
and humans may pose a risk to the ecosystem and hu-
man health (UNEP 2012). To efficiently reduce this risk
by implementing reduction measures or substitution, it
is necessary to identify chemical emissions of concern
(e.g. Egeghy et al. 2011; von der Ohe et al. 2011). The
reason for concern should be based on the potential
negative effect of the chemicals rather than only emitted
amount. Chemical risk assessment is one way to obtain
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the relevant information (e.g. van Leeuwen and
Vermeire 2007), but that is generally a very time-
consuming process. There is a need for a fast and
easy-to-use screening tool, based on (eco)toxicity poten-
tial but not necessarily a full risk assessment, to be able
to do a first prioritisation for large datasets.

The USEtox model can be used to integrate data on
chemical fate and effect into measures of potential impact
and should thus have a good potential to be used for
prioritisation of chemicals. USEtox is a scientifically based,
consensus model to characterise potential impacts on human
health and freshwater aquatic ecosystems from a product (or
service) life cycle (Hauschild et al. 2008; Rosenbaum et al.
2008). With the USEtox model, a large number of charac-
terisation factors (CFs) have been published but the model
can also be used to calculate new CFs. To run the USEtox
model is a fast process, but the collection of necessary sub-
stance data, in particular the (eco)toxicological data, can be
time-consuming, especially if the chemical inventory is
large.

The use of (quantitative) structure-activity relation-
ships (QSAR) models for the estimation of the proper-
ties of chemicals for which data are needed can be one
way to speed up the screening process, especially for
cases where experimental data are lacking. A QSAR
model is a relation between chemical structure and a
property of the chemical compound (ECHA 2016;
OECD 2007b). The features of a chemical structure
are captured by a set of chemical descriptors that are
used to predict characteristics of the chemical. In com-
parison to other data collection methods, QSARs are
fast and have the potential to cover many substances.
The substance coverage is dependent of the model do-
main and, in contrast to, e.g. Regulation (EC) No 1907/
2006 of the European Parliament and of the Council on
the Registration, Evaluation, Authorisation and
Restriction of Chemicals (REACH) registration data, in-
dependent of the substance manufacturing volumes. In
addition, estimated data, e.g. by QSARs, are likely to
increase in importance as authorities such as the
European Chemicals Agency promote a reduced use of
animal testing (ECHA 2017).

The aim of the present study was to test if the use of
substance data predicted by QSARs can be one way to
use the USEtox model as part of a fast and easy screen-
ing tool, with broad coverage, for ranking within large
datasets based on ecotoxicity potential. For this purpose,
an emission inventory for a wide range of plastic addi-
tives, such as pigments, flame retardants, stabilisers and
plasticisers, was used as a case study. The focus of the
present study was on ecosystem effects, and thus, tox-
icity data on human health were not collected or
predicted.

2 Methods

2.1 The USEtox model

With the USEtox model, (eco)toxicity CFs integrate the fate,
exposure and effects of a chemical after emission into the
environment. Emission compartment specific CFs are calcu-
lated from the product of matrices containing fate factors (FF),
freshwater ecosystem exposure factors (XF) and freshwater
aquatic ecosystem toxicity effect factors (EF) (Eq. (1)). The
CFs provide the means to convert the chemical emissions into
impact scores (IS) and thus compare chemical emissions
based on (eco)toxicity potential.

CF ¼ EF XF FF ð1Þ

Each of the factors (FF, XF and EF) is calculated with the
use of substance specific data on physico-chemical properties
as well as (eco)toxicological effects. The obligatory parame-
ters for organic substances, necessary to provide the model
with, are listed in Table 1. Remaining parameters can be esti-
mated with model internal estimation routines, as long as the
substance is within the model domain.

USEtox CFs are defined as recommended if the EF is based
on data from three trophic levels and indicative if the
ecotoxicity data cover less than three different trophic levels
(Huijbregts et al. 2015b). The standard ecotoxicological test
set for aquatic organisms covers primary producers, inverte-
brates and fish, often as algae, the water flea Daphnia magna
and fish such as rainbow trout or fathead minnow.

To calculate CFs in this study, the USEtox model version
2.02 was applied. The focus of the present study was on eco-
system effects and thus only ecotoxicity CFs were calculated.
The model user manual (Huijbregts et al. 2015a) and the man-
ual for the organic substance database (Huijbregts et al.
2015b) were used as basis for the workflow and data

Table 1 Parameters required for organic substances in USEtox 2.02

Parameter Symbol Unit

Molar mass MW g/mol

pKa chemical class pKaChemClass –

pKa base reaction pKa.gain –

pKa acid reaction pKa.loss –

Partitioning coefficient between
n-octanol and water

KOW L/L

Vapour pressure (at 25 °C) Pvap25 Pa

Solubility (at 25 °C) Sol25 mg/L

Rate constant degradation in air kdegA 1/s

Rate constant degradation in water kdegW 1/s

Rate constant degradation in sediment kdegSd 1/s

Rate constant degradation in soil kdegSl 1/s

Source: Huijbregts et al. 2015a; Table 2
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collection. The USEtox manuals (Huijbregts et al. 2015a;
Huijbregts et al. 2015b) recommend the use of experimental
data but provide guidance also to the use of estimated data for
the physico-chemical data collection. Indeed, many of the
existing USEtox CFs have fate factors based on estimated
data. The USEtox manuals do however not give any further
guidance on the estimation of ecotoxicological effects, and
thus, the identification of available models, suitable for the
purpose, was part of the present study.

2.2 Chemical inventory

The research programme ChEmiTecs has developed a simple
method for an initial approximation of emissions of organic
chemicals from products containing plastic materials
(Bilitewski et al. 2012). The method has been used to estimate
annual emissions of organic chemicals from the accumulated
stock of products containing plastic materials in the Swedish
society. The output from this modelling approach was rough
emission estimates for 210 specified organic substances, and
those were used as our case study inventory. More recent
estimates based on a rough extrapolation from a much smaller
sample of parallel calculations with a more sophisticated mod-
el indicate that the emissions in the first inventory were
overestimated by, on average, a factor of in the order of 100
but with very large individual variations among substances
and materials (Palm Cousins et al. 2018; Rydberg and Lexén
2016). In the study presented here, however, the original plas-
tic additives inventory serves well as a case study to test the
usability of QSAR-based CFs (the inventory is included in the
Electronic Supplementary Material). The absolute magnitude
of emissions is not the key feature of this paper but that these
plastic additives have varying physico-chemical and ecotoxi-
cological properties, which is why it is of interest not only to
assess the emission loads but also the chemicals’ potential to
exert negative impacts on the environment (and humans
though that was not part of the present study). For the majority
of these substances, 169 of 210, USEtox characterisation fac-
tors (CFs) were not available.

2.3 Estimation of substance data with QSARs

The 210 substances in the plastic additive inventory were each
identified by name, chemical abstract service (CAS) number
and simplified molecular-input line-entry system (SMILES)
codes. QSAR models were run, aiming to generate the rele-
vant physico-chemical properties as well as ecotoxicological
data for CF calculation with USEtox for all 210 substances.
USEtox manuals give detailed guidance on how to obtain
physico-chemical data by estimation methods if experimental
data are lacking. Therefore, focus on model selection evalua-
tion was placed on the ecotoxicity data, for which detailed
guidance is lacking for generation of estimated data.

Existing QSAR models were used and selected based on the
relevance for the purpose, i.e. whether the generated data were
relevant as input data to USEtox. The existing QSAR models
have already been validated, and model validation was not
part of the scope of the present study. It should be noted that
a QSAR model is only valid in its applicability domain, and
any model used should specify if the prediction of a chemical
property is in or out of the domain. The SMILES codes were
used as input to the QSAR models.

2.3.1 Physico-chemical properties

Physical chemical properties were predicted with the U.S.
Environmental Protection Agency Estimation Program
Interface (EPI) Suite, version 4.11 (US EPA 2012). The EPI
Suite model is recommended for use in the USEtox manuals
and the guidelines therein were followed. Substance data for
CF calculation were only collected or estimated for the param-
eters listed as necessary in the USEtox manual (Huijbregts
et al. 2015a), see Table 1. The application domain of EPI
Suite is organic chemicals, and inorganic as well as organo-
metallic chemicals are outside the model domain. The plastic
additives chemical inventory contained some organometallic
substances which were thus outside the model domain, and
physico-chemical properties obtained were not assessed as
valid, but not removed from the dataset. Whether the EPI
Suite training sets contain substances similar to the plastic
additives in the case study inventory was not controlled as it
was considered to be out of scope for the fast screening aimed
for here. Although the USEtox manual states that preference
should be given to experimental values only estimated values
were used. The reason was that differences between estimated
and experimental values for the water solubility were very
large for some substances, and we reasoned that using only
the estimated values (for all parameters), we would achieve a
better comparability between results within the dataset. These
differences can be due to measurement errors or variability in
experimental data or predictive errors in the QSAR estimates.
The SPARC software is recommended in the USEtox man-
ual for prediction of acid and base dissociation constants
(pKa/pKb) (Huijbregts et al. 2015b), but this is a commer-
cial software available at a fee. Acid and base dissociation
constants were not estimated, as we are here focussing on
the ecotoxicological data, and all substances were entered
into the USEtox model as neutral substances, with
pKa.gain 0 and pKa.loss 14. The ignorance of dissociation
properties adds uncertainty to the results, especially for an-
ionic substances (Rybacka and Andersson 2016). This is
however in line with previous versions of USEtox where
dissociating substances were not modelled differently to
neutral substances but flagged as interim. The physico-
chemical data used to calculate the CFs are included in
the Electronic Supplementary Material.
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2.3.2 Aquatic ecotoxicity data

There are several guidelines available for the use of QSAR.
These guidelines describe how to use and report QSAR. They
all are in various aspects based on the OECD principles of
QSAR. These principles were agreed on in 2004 and pub-
lished in the Guidance Document on the Validation of
(Quantitative) Structure Activity Relationship [(Q)SAR]
Models (OECD 2007a). The OECD principles states: to facil-
itate the consideration of a QSAR model for regulatory pur-
poses, the model should be associated with the following
information:

1. A defined endpoint
2. An unambiguous algorithm
3. A defined domain of applicability
4. Appropriate measures of goodness-of-fit, robustness and

predictivity
5. A mechanistic interpretation, if possible

The criteria listed above were applied when choosing
QSAR models to be used for calculation of the aquatic
ecotoxicity.

Since EPI Suite is recommended for the estimation of
physico-chemical data, its Ecological Structure Activity
Relationships (ECOSAR) Predictive Model was a natu-
ral starting point to generate aquatic ecotoxicity data.
ECOSAR model v.1.11, included in the EPI Suite pack-
age, was applied for the purpose. The ECOSAR model
domain cover organic chemicals and inorganic
chemicals, organometallic chemicals and polymers are
out of domain. The ECOSAR model domain has further
restrictions based on the limitations of the training set
(not investigated further herein), and the model gives
results also for substances that are not within the model
domain, thus potentially introducing large uncertainties.
ECOSAR was run for the full dataset, including the
organometallics out of model domain. The endpoints
estimated were fish LC50 (concentration where 50% of
the population exhibit a response) 96 h, daphnia EC50

48 h and green algae EC50 72 h. When more than one
datum was estimated for each endpoint, the lowest da-
tum was selected for the further modelling since false
positives (i.e. overestimated ecotoxicity) are preferable
to false negatives (underestimated ecotoxicity) in a
screening context.

Given the uncertainty introduced with ECOSAR, aquatic
ecotoxicity data were also estimated with the Toxicity
Estimation Software Tool (TEST), version 4.2.1, also from
US Environmental Protection Agency (US EPA 2016). The
endpoints estimated were fathead minnow LC50 96 h and
Daphnia magna LC50 48 h. They were estimated by the con-
sensus model in TEST as it has been shown that consensus

models give a better estimate of the toxicity and also covers a
larger applicable domain than the individual models (Zhu
et al. 2008). The consensus model is the average value from
the predicted values for several different methods. The result
from the consensus model is only based on the methods which
have predicted results in the applicability domain of the cor-
responding model, i.e. the uncertainty from using results for
substances outside the model domain was removed.

A QSAR for algae toxic i ty (endpoint EC50

Pseudokirchneriella subcapitata (72–96 h)) was developed
to complement the TEST model with a third phylum. The
QSAR model was built using partial least square (PLS)
regression with molecular descriptors calculated from the
Dragon 6.0 software (TALETE 2014) and experimental
algal toxicity data on 80 substances (Grönholdt Palm
2014). The model has a defined applicability domain and
model performance was evaluated as satisfying with re-
spect to training (n = 48, R2 = 0.86, RMSEE = 0.53) and
testing (n = 22, Q2CV= 0.72, RMSEP = 0.97).

The above described procedure generated three aquatic
ecotoxicity datasets, listed in Table 2. These datasets were used
for calculation of QSAR-based CFs with USEtox. The estimat-
ed values for E/LC50 were used for calculation of the concen-
tration where 50% of species are exposed above their E/LC50

(i.e. the HC50), which is needed in USEtox for the calculation
of the ecotoxicological effect factor (EF). Chronic HC50 values
are preferable, but in this case, only acute data were estimated.
Instead, the chronic-equivalent was derived by dividing the
acute values by 2 (the acute-to-chronic extrapolation factor)
as described in Huijbregts et al. (2015a). The EFs are listed in
the Electronic Supplementary Material.

Other ecotoxicity QSAR models and data estimation
methods are available, e.g. via the OECD QSAR tool-
box (OECD 2011), but not used herein. The ECOSAR
QSARs are incorporated into the OECD QSAR Toolbox
together with additional QSARs for fathead minnow
(Pimephales promelas). The OECD QSAR Toolbox con-
tains other functionalities for data gap filling, in addi-
tion to QSARs, but the automated workflows are for
fish endpoints only (QSAR Toolbox version 4.1) and
the categorisation procedure for read-across is not

Table 2 Datasets used for calculation of USEtox characterisation
factors

Dataset Data generator

Physico chemical data Ecotoxicological data

1 EPI Suite ECOSAR

2 EPI Suite TEST

3 EPI Suite TEST + algae model

Int J Life Cycle Assess (2018) 23:2208–2216 2211



simple, and the result depends on the experience and
skills of the modeller (Dimitrov et al. 2016).

2.4 Assessing the relevance of QSAR-based CFs

The reliability of the QSAR-based CFs was evaluated
by the difference and correlation to the USEtox CFs
based on the organic substances database of USEtox
2.02. Possible differences were further evaluated by
studying correlations on the factors FF, IF and EF and
by between substance comparisons. The substances in
the inventory that had USEtox CFs were not organome-
tallics or polymers and were thus within the broad mod-
el domain definitions as described above. The strength
of the linear relationship between the USEtox CFs and
the QSAR-based CFs (datasets 1–3; Table 2) was eval-
uated by comparing the squared correlation coefficients
(R2) from regression analysis where the QSAR-based
CFs were regressed on the USEtox CFs. Pairwise com-
parisons of the differences between the QSAR-based
CFs and the USEtox CFs were made to evaluate which
QSAR-based CFs that deviated the least from the
USEtox CFs. To explore the impact of the modelling
choices in the parameterisation for the FF, i.e. the in-
clusion of only estimated data and the ignorance of
dissociation constants (see Sect. 2.3.1), CFs based on
physico-chemical data with preference to experimental
da ta as recommended in the USEtox manua l
(Huijbregts et al. 2015b) were calculated for the limited
dataset that already had USEtox CFs (dataset 4; data
listed in the Electronic Supplementary Material). For
this limited dataset, to further explore the impacts of
the deviations from the USEtox manuals, dissociation
constants were estimated by use of Marvin Sketch
17.24 (ChemAxon 2017) and included in the input data
(substances with pKa > 14 or < 0 were included as
neutrals).

2.5 Calculation of impact score and ranking
of chemicals

IS (Eq. (2)) for the plastics additives were calculated accord-
ing to the principles in the USEtox manual (Huijbregts et al.
2015a). The emission inventory was based on diffuse emis-
sions from plastic products and since majority of the products
will probably be in air, 90% of emissions were arbitrarily
assigned to urban air and the remaining 10% of emission to
continental freshwater.

ISaq:ecotox: ¼ CFf :w: �M f :w: þ CFu:a: �M u:a: ð2Þ

(IS = impact score in comparative toxic units (CTUe), f.w.
= freshwater, u.a. = urban air, M = emitted mass)

The IS was used to rank the plastic additive emissions
according to their relative aquatic ecotoxicity potential. The
plastic additives were grouped into functional categories for
comparison of functional group ranking based on emitted
mass and ecotoxicity potential.

3 Results

3.1 Assessing the relevance of QSAR-based CFs

Of the new QSAR-based CFs, there was an overlap with the 41
USEtox CFs for 38 and 35 substances, respectively, using the
ECOSAR model (dataset 1) and TEST model (dataset 2) as
ecotoxicity data generator. The 35 substances in dataset 2 were
also included in dataset 1, and the ECOSARmodel was able to
generate ecotoxicity data for three additional substances. With
the addition of algae data from the algae model (dataset 3), the
dataset of overlapping CFs was reduced to only 10 substances.
These overlapping CF datasets were used for the further anal-
ysis to assess the relevance of the QSAR-based CFs. The data
were strongly skewed and were log10-transformed to adjust this
skewedness. No apparent outliers were noticeable in the log-
transformed datasets, and all data were included in the analysis.

Figure 1a shows the correlation between the ECOSAR
based CFs and the USEtox CFs, which has an evident large
variation; the explained variance (R2) for the regression of the
log-transformed data ranged from 15 to 51%, depending on
emission compartment. Figure 1b shows that the TEST based
CFs, based on ecotoxicity data for only fish and daphnia, were
better correlated to the USEtox CFs; R2 for the regression of
the log-transformed data ranged from 78 to 86%, depending
on emission compartment. The improvement in CF correla-
tion when the TEST model was used to derive EF instead of
the ECOSAR model cannot be explained by the exclusion of
substances out of model domain as there was almost a com-
plete overlap in the datasets. With the addition of algae data,
the dataset was reduced to only 10 substances, which limit the
possibilities for conclusions. Also for this small dataset, cor-
relations between CFs were low; R2 for the regression of the
log10-transformed data ranged from 48 to 85%, depending on
emission compartment. Residual errors (RE) and parameter
estimates from the linear regression model of log-
transformed CFs based on QSAR data (ecotoxicological data
from the TEST model) by the log-transformed CFs from
USEtox are listed in Table 3. The constant for the slope of
the line (β1) was not different from 1 (p < 0.05), and the inter-
cept was between 0.51 and 0.81, depending on emission com-
partment. Since the slope does not significantly differ from 1,
the untransformed relationship between the CFs based on es-
timated data and the USEtox CFs is equal to 10β0, approxi-
mately 3-6 and thus on average predicting a higher ecotoxicity
potential than the USEtox CFs. The 95% confidence intervals

2212 Int J Life Cycle Assess (2018) 23:2208–2216



for the regression (± 2 RE), equal multiplication, respectively
division, with (10RE)2 for the untransformed relationship:
300–500 CTUe, depending on emission compartment.

To further illustrate the differences in CFs based on es-
timated data and USEtox CFs, Fig. 2 shows boxplots for
the differences between the QSAR-based CFs and USEtox
CFs. The spread around zero, i.e. no deviation between
USEtox CF and the CF based on estimated data, is smaller

for the TEST based CFs compared to those based on
ECOSAR data. Still, the deviations are large for some sub-
stances, especially for the freshwater compartment, and the
median deviation for CFs based on ecotoxicological data
generated by TEST was 0.1, 350 and 0.31 for emissions to
urban air, continental freshwater and agricultural soil,
respectively.

To try and explain the variance observed between CFs from
USEtox and the QSAR-based CFs, FF, XF and EFs were
compared by regression of the QSAR-based factors on the
USEtox factors. There was a large variation in the FFs and
fitting a line to the log-transformed data, the adjusted R2 was
39 and 24% for the FF for freshwater and emission to urban air
and freshwater, respectively. These differences apply for all
the QSAR-based CFs as the same data for physico-chemical
parameters were used. Data for the obligatory input parame-
ters (Table 1) that deviated the most from USEtox substance
data were data for water solubility and chemical class classi-
fication (acid/base/amphoteric/neutral). The median differ-
ence in FF between the QSAR-based and USEtox FFs was
− 0.17 and − 0.045 days for the freshwater compartment and
emissions to freshwater and urban air, respectively. The XFs
showed a good correlation and the adjusted R2 was 93% for
the untransformed data. Three highly lipophilic substances
could be identified as possible outliers and those were predict-
ed to be less bioavailable by the QSAR-based approach com-
pared to the USEtox XF. The correlation between the EF
based on TEST-generated data and USEtox EF was slightly
better compared to the FFs; with the adjustedR2 at 43% for the
log-transformed EFs. The median difference in EF was how-
ever as large as 1295 PAF × m3/kg between TEST and
USEtox and 16,288 PAF ×m3/kg for ECOSAR and USEtox.
Since the deviation was smaller, the QSAR-based CFs using
the TEST model to estimate ecotoxicity data generated the
CFs most similar to the USEtox CFs in this case. The distri-
bution of deviations also shows that the EF was the more
influential factor between the EF and the FF as the deviation
was larger and the CF is directly proportional these factors.

Giving priority to experimental data, and accounting for
dissociation (additional CFs calculated for a the limited
dataset; see Sect. 2.3.1), improved the CFs similarity with
USEtox CFs as this procedure was in line with the USEtox
procedures, but the improvement was minor. Correlation anal-
ysis between the USEtox CFs and the CFs calculated with
QSAR data for ecotoxicity (generated by the TEST model)
and experimental data when available, but otherwise estimated
data for physico-chemical properties, showed an explained var-
iance between 80 and 85% (cf. R2 78–85% when only estimat-
ed data were used). For this correlation analysis, one substance
(CAS 6683-19-8, tetrakis methylene(3,5-di-t-butyl-4-
hydroxyhydrocinnamate)methan) was removed from the
dataset since it was considered an outlier due to the large devi-
ation between the estimated KOW and the experimental KOW.

Table 3 Residual error (RE) and parameter estimates for the regression
models where log10-transformed CFs based on estimated data (TEST
model used for ecotoxicity) were regressed on log10-transformed CFs
from USEtox, for emissions to urban air, freshwater and agricultural soil

Term Estimate Lower 95% Upper 95%

Emission to urban air

RE 1.32

Intercept, β0 0.51 0.049 0.98

Constant, β1 0.94 0.76 1.1

Emission to freshwater

RE 1.24

Intercept, β0 0.81 0.25 1.4

Constant, β1 0.95 0.79 1.1

Emission to agricultural soil

RE 1.35

Intercept, β0 0.66 0.19 1.1

Constant, β1 0.99 0.86 1.1

Int J Life Cycle Assess (2018) 23:2208–2216 2213
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3.2 New characterisation factors for plastic additives

The use of QSAR generated data improved the coverage
of CFs for the plastic additives chemical inventory
greatly, going from 41 to 170, or 124, depending on
model selection (Table 4). The algae model developed
within the present study did not cover more than 28 of
the substances in the inventory but can be used together
with USEtox CFs to improve coverage if CFs based on
three trophic levels are needed. All CFs calculated with-
in the present study are made available in the Electronic
Supplementary Material.

3.3 Uncertainty and precision

The precision, with regard to model uncertainty, of the
USEtox CFs is within a factor of 10–100 for freshwater
ecotoxicity, and this needs to be considered when
assessing contributions to the total toxicity score
(Rosenbaum et al. 2008). Eleven to 15 substances (de-
pending on emission compartment), out of the 210, con-
tributed significantly to the total sum of CF, considering
the model uncertainty (substances with a CF that con-
tribute to more than 1% of the sum of CFs).

In addition to the model uncertainty, there is also
parameter uncertainty. Parameter uncertainty exists also
in the USEtox CFs and is likely increased in the
QSAR-based CFs calculated within the present study.
To quantify the additional uncertainty, introduced by
the use of estimated data instead of experimental data,
the statistical procedure that Rosenbaum et al. (2008)
applied in the model comparison, based on McKone
(1993) was applied also here. A 95% confidence inter-
val was used to generate a quantification of the orders
of magnitude of the added uncertainty. The 95% confi-
dence interval for the regression estimate was division/
multiplication with 300–500 CTUe and, in analogy to
Rosenbaum et al. (2008), the factor describing the ad-
ditional uncertainty approximately 100–1000. Adding
this uncertainty to the model uncertainty makes the total
uncertainty three to five orders of magnitude and thus
impractical for implementation. In this case, with the
plastic additives, the CFs range over 18 orders of mag-
nitude or more and it would be possible to differentiate
between substances contributing to the risk score and
those with no significant contribution. But the large
bulk of substances would still have an unknown contri-
bution score if uncertainties were accounted for.

3.4 Prioritisation and ranking of chemical emissions

The TEST-based CFs (dataset 2) were used to generate IS,
since those were the QSAR-based CFs most similar to the
USEtox CFs. The IS integrate the emitted amount from the
emissions inventory with the fate, exposure and effect as
quantified in the CF. Taking the above-mentioned uncertainty
into account, 37-86 substances could be identified as the ones

Table 4 Characterisation factors available or possible to calculate with
QSAR-data, for the inventory of 210 plastic additive chemicals

USEtox ECOSAR TEST TEST + algae
model

TEST + algae
model + USEtox

41 170 124 28 59
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Fig. 2 Boxplots for the pairwise
differences between and the
characterisation factors based on
QSAR-data and the USEtox
characterisation factors



with the highest ecotoxicity potential as those were within
three to five orders of magnitude of the total IS. The sub-
stances giving the largest contributions to the overall
ecotoxicity potential score belong to several different func-
tionality categories, e.g. pigments, flame retardants,
stabilisers, plasticisers and lubricants. Flame retardants and
plasticisers were estimated to be emitted in the largest
amounts contributing to 36 and 28% of total emissions, re-
spectively, with the remaining additive categories contributing
with less than 10% each to the total emitted amount. The IS on
the other hand imply that also pigments and stabilisers (bio)
impose a risk as also they contribute with more than 10% to
the total IS.

4 Discussion and conclusions

The main aim of this study was to assess the possibilities to
use QSAR-based data in the LCIA model USEtox to rank
chemical emissions according to the predicted relative aquatic
ecotoxicity potential. The results show that QSAR data can
indeed be used for a fast calculation of CFs with the USEtox
model and that those CFs could be used to make prioritisation
in large inventories as substance coverage can be markedly
increased compared to if only existing USEtox CFs are used.
However, it was also shown that substantial uncertainty was
added to the CFs, limiting the current practical use. The choice
of QSARmodel was shown to be crucial for the relevance and
robustness of the outcome and in the present study two
ecotoxicity estimation models were used, and the TEST mod-
el was shown to provide the best estimations when data were
to be used to calculate CFs as similar as possible to USEtox
CFs, despite that it only cover species from two trophic levels.

Alfonsín et al. (2014), Igos et al. (2014) and Roos et al.
(2017) could show that the effect data is by far the most influ-
ential parameter when CFs are calculated with the USEtox
model, and our results are in line with this finding as we could
see that the variation in the EF was the most important contrib-
utor to the variation seen in the CF in the comparison between
the QSAR-based CFs and the USEtox CFs. Interestingly, we
could also see that the FF can be another important contributor
to the CF variation, since there was a large difference in
property data for some substances and parameters. Recently,
Roos et al. (2017) proposed the increased use of QSAR esti-
mated data to calculate CFs as a way to fill data gaps where
experimental data are missing. Roos et al. (2017) assigned the
CF qualitative uncertainty scores indicating high uncertainty for
CFs calculated based on estimated data alone. The present
study, with a large QSAR-based dataset, quantitatively shows
how large the uncertainties can be as the additional uncertainty
from the use of QSARs to generate input data was quantified to
a factor 100–1000. In the present study, the USEtox CFs, with
FF based on estimated and experimental data, and EF mainly

based on experimental data, were considered the baseline, not
considering uncertainties in that dataset. The uncertainty quan-
tified herein could therefore be under- or overestimated in rela-
tion to the true uncertainty. In any case, since the added uncer-
tainty is large, further studies investigating how QSAR models
can be used for calculation of CFs are needed. This includes
population also of the input data for calculation of the FF and
XF, e.g. dissociation constants, but mainly an expanded over-
view and comparison between available and relevant models to
generate ecotoxicity data.

It can be argued that experimental data made available under
the REACH legislation should be the first-hand choice for pop-
ulation of the USEtox model input data. Several authors have
indeed tested the usability of European data sources, e.g.Müller
et al. (2017), Saouter et al. (2017a, b), and have concluded that
the USEtoxmodel and procedures need to be adapted tomake it
possible to use all available data, e.g. by allowing the use of
chronic data expressed in other forms than EC50. Despite the
huge increase in data availability for experimental data on
physico-chemicals properties as well as (eco)toxicity that
comes with the REACH registrations, a parallel line of work
on the inclusion of estimated (QSAR) data in CF calculation is
also warranted, as QSAR data will probably be an important
data source in the future in any case, as the reduction of animal
testing is one of the EU goals (ECHA 2017).

In addition to the model and parameter uncertainty, there is
also uncertainty added from the limitations of model scope,
e.g. that USEtox only includes freshwater ecotoxicity and thus
excludes effects in the marine or benthic compartments. Other
models are available and depending on model structure and
scope the results can differ, for example, Mattila et al. (2011)
compared three models and identified USEtox to give a lot of
focus to metals, and thus, metal contribution will be given a
high weight using USEtox in cases where the inventory con-
tain metals.

To conclude, the use of QSAR models to generate data for
calculation of CFs has potential to fill data gaps and allow for
a first screening of large inventories based on ecotoxicity po-
tential. The uncertainty added by using estimated data is how-
ever a limiting factor, and further research is needed to devel-
op recommendations on what models to use and possibly also
to develop better models.
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