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Summary

The challenge of assessing emerging technologies with life cycle assessment (LCA) has been
increasingly discussed in the LCA field. In this article, we propose a definition of prospective
LCA: An LCA is prospective when the (emerging) technology studied is in an early phase
of development (e.g., small-scale production), but the technology is modeled at a future,
more-developed phase (e.g., large-scale production). Methodological choices in prospective
LCA must be adapted to reflect this goal of assessing environmental impacts of emerging
technologies, which deviates from the typical goals of conventional LCA studies. The aim of
the article is to provide a number of recommendations for how to conduct such prospective
assessments in a relevant manner. The recommendations are based on a detailed review of
selected prospective LCA case studies, mainly from the areas of nanomaterials, biomaterials,
and energy technologies. We find that it is important to include technology alternatives that
are relevant for the future in prospective LCA studies. Predictive scenarios and scenario
ranges are two general approaches to prospective inventory modeling of both foreground
and background systems. Many different data sources are available for prospective modeling
of the foreground system: scientific articles; patents; expert interviews; unpublished exper-
imental data; and process modeling. However, we caution against temporal mismatches
between foreground and background systems, and recommend that foreground and back-
ground system impacts be reported separately in order to increase the usefulness of the
results in other prospective studies.
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Introduction

Most life cycle assessment (LCA) studies have some kind
of future-oriented feature. For example, LCA can be used to
investigate how to best improve the environmental perfor-
mance of an existing product in the near future. But there
are LCA studies that have a clearer future-oriented scope, since
they study technologies at an early stage of development. Such
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Email: rickard.arvidsson@chalmers.se, Web: www.chalmers.se/en/staff/Pages/rickard-arvidsson.aspx

© 2017 by Yale University
DOI: 10.1111/jiec.12690 Editor managing review: Annie Levasseur

Volume 22, Number 6

technologies may not have reached the market yet or have
merely been introduced into minor niche markets. Some may
even exist only in experimental settings, such as laboratory-
scale production or as prototypes. In this article, such future-
oriented LCA studies of emerging technologies are referred to as
prospective LCA studies. We here propose a formal definition of
prospective LCA in order to facilitate further discussions. Fur-
thermore, the aim of this article is to discuss and analyze three
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Figure 1 Schematic illustration of the technology diffusion, knowledge, and design freedom curves. In order for an LCA to be prospective,
the technology should be in the formative phase or early growth phase at the current time of the assessment (t0) and should be modeled at
a future time (tf) in the saturation phase or late in the growth phase. LCA = life cycle assessment.

methodological aspects of particular importance for the goal,
scope, and inventory modelling in prospective LCA: choice
of technology alternatives; modeling of foreground systems (in-
cluding production scale); and modeling of background systems.
This aim will be fulfilled by drawing on experiences from con-
ducted LCA case studies of emerging technologies. The sections
of this article will be structured around these aspects, followed
by a concluding section with recommendations.

A number of previous studies have discussed different as-
pects of prospective LCA, sometimes under different names.
They typically depart from the design paradox, which can also
be referred to as the Collingridge dilemma after Collingridge
(1980). This dilemma says that at an early stage of technolog-
ical development, the possibility to alter and control is high
(i.e., there are many degrees of freedom in the development),
but the knowledge about the technology is sparse. At a later
stage of development, more knowledge exists, but the possibility
to alter the technology is reduced (i.e., most design parame-
ters have been locked). This means that an LCA conducted
at an early stage can have a larger influence on technology
development. As discussed by Sandin and colleagues (2014),
prospective LCA can play important roles in early research
and development by providing environmental guidance, and by
supporting scale-up. However, it also means that data scarcity
challenges, which exist in conventional LCA as well, are exac-
erbated in prospective LCA (Hetherington et al. 2014). When
first mentioned, the term prospective LCA was used to denote
what is presently referred to as consequential LCA (Tillman
2000). It has since been clarified that both consequential and at-
tributional studies can be prospective or retrospective (Sandén
and Karlström 2007; Hillman and Sandén 2008; Herrmann
et al. 2014). Prospective LCA deals with technologies in the
future, whereas retrospective studies deal with products in the
past, regardless of other modeling approaches. An early use of
the specific term prospective LCA in the title of an article was
by Spielmann and colleagues (2005), who conducted an LCA
on transport systems using scenario modeling. The term has
since then also been used in the titles of LCA case studies of

emerging technologies such as antibacterial T-shirts (Walser
et al. 2011; Manda et al. 2015), membrane filtration systems for
drinking water (Manda et al. 2014), production of the nanoma-
terial graphene (Arvidsson et al. 2014), and electric vehicles
(Zimmermann et al. 2015).

It should be noted that the discussion about attributional
versus consequential LCA is not the topic of this article, but
has recently been discussed to great extent elsewhere (Zamagni
et al. 2012; Brandão et al. 2014; Dale and Kim 2014; Plevin
et al. 2014; Suh and Yang 2014). The examples and discussions
in this article, however, refer to prospective attributional LCA.

Method and Materials

Definition of Prospective Life Cycle Assessment

What sets prospective LCA apart from conventional LCA?
Consider an LCA study with the product and its system modeled
at time tm. In conventional LCA studies of existing products,
and when the next product generation is compared to the cur-
rent version, the situation is typically that tm�t0, where t0 stands
for the current time at which the assessment is conducted. The
term prospective LCA, as used in this article, refers to studies
of emerging technologies in early development stages, when
there are still opportunities to use environmental guidance for
major alterations. In order to capture the potential future en-
vironmental impacts of a technology in such cases, the system
modeled is placed in a more distant future tf in prospective LCA
studies, so that tm�tf.

Adoption of technologies typically follows a technology dif-
fusion curve, starting in a formative phase, continuing into a
growth phase, and ending in a saturation phase (Grübler 1998;
Jacobsson and Bergek 2004; Abernathy and Utterback 1978).
The above-mentioned Collingridge dilemma is related to tech-
nical diffusion. Technological maturity, and hence knowledge
about the technology, increases with diffusion, while the de-
grees of freedom decrease. These three curves are shown in
figure 1, representing: technology diffusion, knowledge about
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the technology, and design freedom. In order to provide rele-
vant guidance at an early stage when alterations are still possi-
ble, t0 should be in the formative phase or early in the growth
phase. Contrarily, it is of interest to model the technology in
the saturation phase or late in the growth phase, since it is at
this time the technology’s full environmental performance is
realized. A typical example of a prospective LCA study setup
would be an early- or laboratory-stage technology envisioned
at a future point of mass production and use. Prospective LCA
thus deals with more radical technological change that occurs
over longer time frames, rather than incremental changes close
in time.

Related to the technology diffusion curve in figure 1 are the
concepts of technology readiness level (TRL) (US DOD 2011;
EC 2014) and manufacturing readiness level (MRL) (US DOD
2015). The TRL scale indicates how far the technology has
evolved in the formative phase and ends when the technology
has been demonstrated in real applications. Since TRL regards
only the formative phase, the technology studied in a prospec-
tive LCA can be at different TRL at t0. However, the technology
is modeled as having the highest TRL, since real applications
must have been demonstrated for a technology to enter the
growth phase. For MRL, low values indicate laboratory-scale
production (i.e., formative phase) and higher values indicate
mass production (i.e., growth or saturation phase). The technol-
ogy is thus modeled as having the highest MRL in prospective
LCA studies, but must have a lower MRL at t0.

Case-Study Approach and Selection

Experience from conducted case studies is valuable for
method development in LCA since it provides proof of concept
and reveals need for adjustment (Baumann and Tillman 2004).
Since there has been no established terminology for prospec-
tive LCA before, it is difficult to conduct a systematic literature
review to identify case studies. We have instead chosen to do
an in-depth reading of a nonexhaustive number of prospective
attributional LCA case studies that have considered relevant
methodological aspects and qualify to the definition provided
in the Definition of Prospective Life Cycle Assessment section.
The case studies are mainly from the fields of nanomaterials,
biomaterials, and energy technologies (table 1).

Results and Discussion

Technology Alternatives

In conventional LCA studies, when the technology is mod-
eled at a current stage (tm�t0), technology alternatives that
currently exist are typically chosen for the study. Such exist-
ing technologies can be directly observed and their relevance
is easy to motivate. In prospective LCA studies of emerging
technologies modeled in a more distant future (tm�tf), it is
more uncertain which technologies are relevant to study. One
potential problem is that the imagination of the analyst is
bound by knowledge about the current situation, leading to the

Table 1 Prospective LCA case studies reviewed

Case study Emerging technology studied

Arvidsson et al. (2014) Graphene production

Arvidsson et al. (2015) Nanocellulose production

Bergesen and Suh (2016) Cadmium telluride
photovoltaics

Caduff et al. (2012) Large wind power turbines

Delgado-Aguilar et al.
(2015)

Nanocellulose-enforced
paper

Edwards et al. (2014)a Automotive fuels

Gavankar et al. (2014) Carbon nanotubes

Gibon et al. (2015) Concentrating solar power

Healy et al. (2008) Carbon nanotube production

Janssen et al. (2014) High-gravity ethanol
production from wheat straw

Janssen et al. (2016) High-gravity ethanol
production from wood chips

Kushnir and Sandén
(2008)

Fullerene and carbon
nanotube production

Li et al. (2013) Nanocellulose production

Liptow et al. (2015) Ethylene production from
wood

Manda et al. (2014) Membrane filtration system
for drinking water

Manda et al. (2015) Nanosilver T-shirt

Nordelöf et al. (2014)a Electric vehicles

Pini et al. (2017) Self-cleaning float glass

Pizza et al. (2014) Graphene nanocomposites

Roes and Patel (2011) Caprolactam production

Shen et al. (2012) Plastic materials

Walser et al. (2011) Nanosilver T-shirt

Yao et al. (2015) Ethylene production

Zimmermann et al.
(2015)

Electric vehicles

aReview of case studies.
LCA = life cycle assessment.

selection of only alternatives that seem plausible at the time t0.
The analyst may then miss out on alternatives that are more
relevant at a future time tf. For example, Ljunggren Söderman
and colleagues (2014) describe how early assessments of elec-
tric vehicles in the 1990s assumed lead acid batteries in the
modeling. Today, they write, few would consider the lead acid
battery electric vehicle to be a good proxy for the electric ve-
hicles currently used and under development (which rather use
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lithium ion batteries). This example illustrates the importance
of going beyond current state-of-the-art technologies at t0 in
prospective LCA and also include alternatives believed to have
high potential for the future. Although it is difficult to know
with high certainty which technology alternatives those are, we
suggest two nonexhaustive approaches that can be employed for
this purpose: (1) focusing on a specific function and investigate
a broad range of technology alternatives that can provide the
function and (2) conducting cradle-to-gate studies of emerging
production technologies with many potential future uses, which
can be used as building blocks in future cradle-to-grave studies.

An example of the first approach is the inclusion of different
transportation technologies that can be compared in terms of
vehicle or person kilometres, such as fossil fuels, biofuels, hy-
drogen fuel, fuel cells, and electric motors (Nordelöf et al. 2014;
Edwards et al. 2014). Another example is the study by Shen and
colleagues (2012), where a wide selection of plastic materials
was investigated: polyethylene therephthalate (PET); partially
bio-based PET; recycled PET; partially bio-based and recycled
PET; polylactic acid; and man-made cellulose fibers from wood
pulp. Roes and Patel (2011) compared different production
technologies for producing the base chemical caprolactam: via
fossil benzene, via the more novel fermentation of starch or
sugar cane, and an even more novel route via the chemical, 3-
pentenamide. Such broad selections of technologies are likely
to provide useful guidance since it is probable that at least some
of the technologies will turn out to have a notable role in the
future.

The second approach of conducting cradle-to-gate studies
as potential building blocks has been employed in prospective
LCA studies of the four carbon-based nanomaterials, graphene,
carbon nanotubes, fullerenes, and nanocellulose. They can all
be used for enhancing the strength of polymer materials, but
some of them can also provide other properties. Nanocellu-
lose can also provide transparency, while graphene and carbon
nanotubes can provide both transparency and electric conduc-
tivity. Since it is currently unknown which of these materials
will be used for which properties in which applications, a num-
ber of prospective LCA studies have assessed the cradle-to-gate
impacts of these materials (Arvidsson et al. 2014, 2015; Kush-
nir and Sandén 2008; Li et al. 2013; Healy et al. 2008). This
approach enables these studies’ future use as building blocks
in cradle-to-grave studies that include specific uses. An ex-
ample of this is how the nanocellulose production study by
Arvidsson and colleagues (2015) was used for input data to the
study of nanocellulose-enforced paper by Delgado-Aguilar and
colleagues (2015). Similarly, the LCA study about graphene-
containing composite materials by Pizza and colleagues (2014)
reported results both per kilogram (kg) graphene and per kg
composite, thereby both presenting results for a specific use and
providing cradle-to-gate results for graphene that could be used
in studies of other uses. In the cradle-to-gate approach, it is im-
portant to report results in a way that ensures their usefulness
in future studies, such as unaggregated at an inventory level.
Future studies can then use the data in other combinations and
employ other impact categories.

Foreground System Modeling

Once technology alternatives have been selected, the ques-
tion is how these can be modeled in a relevant manner. In con-
ventional LCA, the foreground system and production scale are
modeled as they are at time t0. In prospective LCA, the system
is modeled at a future time tf, when the production scale of
the emerging technology studied has increased compared to t0.
Such modeling of the future requires the application of scenar-
ios, which has also been suggested for LCA aiming at long-term
descision making, for example, by Frischknecht (1998) and in
the International Reference Life Cycle Data System (ILCD) hand-
book (JRC-EC 2010). An important aspect in prospective LCA
is which future scenario the foreground system should represent
and, in particular, the modeling of the future production scale
(Gavankar et al. 2014). More often than not, technology per-
formance parameters, which are often related to material and
energy inputs, are functions of time and scale of production.
One of the most striking examples is the reduction of the en-
ergy requirement (with a parallel reduction in materials use) of
computing by 12 orders of magnitude (1012) between the 1940s
and 2000s (Koomey et al. 2011). Additional examples include
the increased efficiency of steam engines from about 1% the
1770s to 40% in the 1970s (Ayres 1989) and the doubling of
the engine efficiency of automobiles between 1920 and 1995
(Grübler 1998).

We have identified two main strategies to model the future
foreground production system and scale in prospective LCA
case studies: (1) predictive scenarios that illustrate environ-
mental impacts given some likely development, including status
quo, and (2) scenario ranges that are employed to illustrate the
potential environmental impact, including extreme scenarios.
These strategies are illustrated in figure 2. Similar scenario ty-
pologies have been described previously for conventional LCA,
for example, by Pesonen and colleagues (2000) and Weidema
and colleagues (2004). Although it is difficult to tell in general
which of these strategies is most relevant, the relevance of pre-
dictive scenarios requires that one development is more likely
than other possible developments. If no such particularly likely
development exists, it is advisable to apply scenario ranges.

Different types of predictive scenarios to generate foreground
data can be found in prospective LCA case studies. An exam-
ple is the use of technology learning curves to predict future
material inputs as utilized in a study of cadmium telluride pho-
tovoltaics by Bergesen and Suh (2016). They provide the fol-
lowing equation for estimating the amount of input i (mass or
energy) required to produce a product j at time t f (ai, j,t f )
(equation 1):

ai, j,t f = ai, j,0

(
χ j,t f

χ j,0

)βi , j

(1)

where ai,j,0 is the initial amount of input (mass or energy), χ j,0

is the initial cumulative production, χ j,t f is the cumulative pro-
duction at a future time tf, and β i,j is a learning parameter. It
is also possible to predict future inputs from engineering-based
scaling laws. Caduff and colleagues (2012) predicted the future
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Figure 2 Schematic illustration of different scenario types in prospective LCA. Predictive scenarios are shown in italic font, and scenario
ranges are shown in bold font. The symbol t0 stands for the current time at which the study is conducted, and tf stands for the future time
at which the system is modeled. LCA = life cycle assessment.

mass inputs to wind power based on predicted increases in tur-
bine size. For example, they used a relationship saying that the
mass input of electronics and cables (me&c) to a wind power
plant is proportional to its height h (me&c�h). Status quo data
can also be employed in prospective LCA case studies for sub-
systems that are not believed to change notably within the time
frame of the study. For example, Walser and colleagues (2011)
used current data to model the production of a polyester T-shirt,
which was subsequently treated with antibacterial nanosilver.
The polyester T-shirt production was thus assumed to be con-
ducted in the same way in the future as presently.

An alternative or complement to a predictive scenario is
to apply a range of scenarios. Walser and colleagues (2011)
tested ranges of values for a number of parameters related to
the use phase of the nanosilver-coated T-shirt, including wash-
ing frequency, washing temperature, and the lifetime of the
T-shirt. Both Walser and colleagues (2011) and Manda and
colleagues (2015) investigated different production processes
for the nanosilver used in antibacterial T-shirts, represent-
ing different stages of technological maturity and production
scale. In their prospective modeling of ethylene production in
the United States, Yao and colleagues (2015) employed ex-
pected and rapid scenarios to account for different adoption
rates of emerging ethylene production technologies. Scenario
ranges may include extreme scenarios that provide minimum
and maximum environmental impacts. In the study of idealized
large-scale production of carbon nanoparticles by Kushnir and
Sandén (2008), energy use for electric heating was modeled us-
ing on the following equation for some processes (equation 2):

E = mc p�T
η

(2)

where E is the energy required, m is the mass heated, cp is
the heat capacity of the material heated, �T is the tempera-
ture change due to the heating, and η is the energy efficiency
of the heating. Assuming high efficiencies (90% to 100%),
such modeling generates extreme low-impact scenarios that

are still feasible, since they stay within thermodynamic con-
straints. Similarly, stoichiometric relationships can be used to
model minimum impact scenarios (Arvidsson et al. 2014),
since they give the minimum feedstock requirements for a
chemical process, provided no side reactions or other losses
occur.

Several different sources have been used to provide data for
both predictive scenarios and scenario ranges employed in the
case studies of emerging technologies. As can be expected, data
from scientific articles are frequently employed, for example,
articles related to wind power and its upscaling in the study by
Caduff and colleagues (2012). Patents have been used as data
sources in a prospective LCA case study of graphene production
(Arvidsson et al. 2014). Generally, patents can be expected to
reflect production processes that are feasible and of high eco-
nomic relevance (Jaffe and Trajtenberg 2002). Expert inter-
views is another source that has been used to obtain foreground
system data in a number of case studies. In addition, experts
can also guide to relevant written data sources, such as process
descriptions in scientific articles and patents (Arvidsson et al.
2015). Unpublished lab results were used for foreground input
data in the case of an LCA of spruce wood chips ethanol pro-
duction by high-gravity processes (Janssen et al. 2016). Quanti-
tative process simulations have been used to model large-scale
production in two case studies of carbon nanoparticles and bio-
based ethylene (Kushnir and Sandén 2008; Liptow et al. 2015).
Such simulations can be used as a sole source of data or to verify
data found in written sources. Considering the inherent data
scarcity in prospective LCA (Hetherington et al. 2014), the
analyst may have to be creative and turn to several of these
types of sources in the same study.

Background System Modeling

Background systems can be defined as the parts of the prod-
uct system that cannot be directly affected by a certain decision
maker, such as the developer of a new technology (JRC-EC
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2010). In conventional LCA, current background systems ex-
isting at t0 are employed. In prospective LCA, we are interested
in the background system at a future point in time tf. The chal-
lenge in prospective LCA studies is thus to choose background
systems relevant to the time at which the system is modeled. It
is clear that background systems do not remain constant over
time. For example, the share of renewable electricity produc-
tion increased from 4% in 1997 to 24% in 2013 in Germany
(Auer 2014). Furthermore, it is important to avoid a tempo-
ral mismatch between the foreground and background systems.
Such mismatches have been noted in a review article on LCA
studies of electric vehicles, where current background systems
were often employed when assessing the electric vehicles’ envi-
ronmental impacts (Nordelöf et al. 2014). Although there was
an ambition to assess the future impacts of electric vehicles in
some of the case studies, background systems such as electricity
production were assumed to be static. The same type of tem-
poral mismatch problem has been noted in LCA case studies
of energy technologies (Sandén 2008). In order to obtain rel-
evant background system data, the same scenario approaches
used to model the foreground system can be used: (1) predictive
scenarios and (2) scenario ranges (figure 2). Again, predictive
scenarios are valid given that some development is more likely
than others—if not, scenario ranges are more relevant.

An example of a study that employed a predictive scenario
for the background system modeling is a study on wheat straw
ethanol production by Janssen and colleagues (2014). The cur-
rent Danish energy mix was assumed as baseline, but a predic-
tion of the changes in the Danish energy mix over time was
also tested. This change mainly consisted of a reduced share of
fossil energy in the energy mix (from 80% to 50%). Similarly,
Zimmermann and colleagues (2015) applied predictions of the
future German electricity mix in their time-resolved assessment
of electric vehicles. Different authorities’ forecasts can be used
as a basis for predictive scenarios. Gibon and colleagues (2015)
used a scenario from the International Energy Agency to model
the future baseline energy production in their prospective LCA
of concentrating solar power. Current background systems have
been employed in a number of prospective LCA case studies,
including that of wood-based ethylene (Liptow et al. 2015) and
many of the studies on electric vehicles reviewed by Nordelöf
and colleagues (2014). In cases when background systems are
not expected to change very much, such status quo scenarios
are justified. In cases when there is reason to expect that back-
ground systems will change, applying future scenarios is more
relevant in order to avoid a temporal mismatch.

Scenario ranges for background systems have been applied
in a number of studies. For example, Manda and colleagues
(2014) employed a set of electricity mixes representing different
greenhouse gas intensities when assessing a membrane filtration
system for drinking water: Norwegian (low-carbon); Nordic
(low-carbon); Central European (medium-carbon); Ameri-
can (medium-carbon); and Chinese (high-carbon) electricity
mixes. Similar ranges have been employed in LCA studies of
electric vehicles (Nordelöf et al. 2014). Various extreme sce-
narios have also been employed to test the robustness of the

results. In the study of nanocellulose by Arvidsson and col-
leagues (2015), the current Swedish electricity production
(about 50% hydro and 50% nuclear power) was assumed as
baseline, but a 100% coal power scenario was also assessed as a
high-impact scenario. Pini and colleagues (2017) employed the
current Italian electricity mix as their baseline scenario and a
completely renewable electricity mix as a low-impact scenario
in their study of self-cleaning float glass.

There is one unique option for background system mod-
eling in prospective LCA, which is not possible to apply for
foreground system modeling—to omit the background systems
completely. In order to avoid results based on more or less
arbitrary choices of background system, the study on carbon
nanoparticles by Kushnir and Sandén (2008) did not include
impacts from energy background systems. Instead, secondary
energy use in terms of energy carriers (heat and electricity in-
put) was assessed. The results of that study can then be used in
other settings, where specific energy background systems can be
assumed depending on the goal of the study.

Recommendations and Future Work

We find that LCA can be very useful for assessing emerg-
ing technologies and for guiding early technology development,
but it has to be adapted to this purpose, giving rise to a partic-
ular type of LCA methodology: prospective LCA. Recommen-
dations for prospective LCA are summarized and contrasted
to the current practices of conventional LCA in table 2. In
conventional LCA, it is often relevant to consider current and
near-term technologies. However, these technologies may have
a marginal role in the future and may therefore be of question-
able relevance to consider in a prospective LCA study. Different
approaches can be taken to try to ensure a relevant selection
of technologies in a prospective LCA study. Two nonexhaus-
tive approaches are suggested in this article: (1) assessing a
wide range of emerging technology alternatives that all provide
the same function and (2) conducting cradle-to-gate studies of
promising emerging production processes, which can later be
used as building blocks in cradle-to-grave studies.

Since an emerging technology needs to be modeled at some
future point in time in order to illustrate the technology’s en-
vironmental performance when it is produced and used on a
relevant scale, a prospective LCA will always rely on scenarios.
Predictive scenarios may be employed if there is a sound basis
for predictions, and, in some cases, status quo may serve as a
relevant proxy for the future. If the aim is to outline potential
impacts and test the robustness of results, and if the future de-
velopment is difficult to predict with any certainty, ranges and
extreme scenarios are recommended. There are several different
data sources available for constructing scenarios in prospective
LCA. Here, we recommend authors to be creative and search
for data from many different sources. Scientific articles, patents,
expert interviews, unpublished lab results, and process simula-
tion are sources that have proven to be valuable in previous
prospective LCA case studies.
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Table 2 Summary of the recommendations in this study

Aspect Conventional LCA Prospective LCA

Definition System modeled at a current or near-by time System modeled at a future time

Technology alternatives Currently existing technologies are studied. Emerging technologies with relevance for the
future are studied.

Foreground system data
including production scale

Current foreground system and production
scale are modeled. Common data sources
include:

� life cycle inventory databases
� previously conducted LCA studies

A future scenario of the foreground system
and production scale is modeled.
Valuable data sources include:

� scientific articles
� patents
� expert interviews
� unpublished lab results
� process simulations

Background system data Current background system is modeled. A future scenario of the background system is
modeled.

Important to avoid temporal mismatch
between the foreground and background
systems.

Potential for not modeling background system
at all.

Note: LCA = life cycle assessment.

In order to ensure the relevance of the results, it is important
to avoid temporal mismatch between the foreground and back-
ground systems. Current background systems may be relevant
to employ if believed to remain constant over a longer period
of time. But the further ahead the saturation phase is expected
to be, the more important it becomes to consider developments
in background systems. We also recommend that results should
be presented without the influence of background systems, or
with background system impacts reported separately, in order
to allow reuse of the study in alternate contexts.

A particularly important area for future work is the devel-
opment of predictive scenarios, especially for the foreground
system. Finding generic scale-up and scenario prediction ap-
proaches for cases when scenario ranges are not considered ad-
equate is challenging, but would be very useful for prospective
LCA studies. As mentioned above, Bergesen and Suh (2016)
used learning curves in a generic approach to predict future in-
puts of mass and energy (equation 1). However, learning curves
generally have shortcomings due to high uncertainty (Rubin
et al. 2015). A minor uncertainty in the learning parameter
would propagate into high uncertainty in calculated environ-
mental impacts. Whether learning curves can provide reliable
predictions for prospective LCA is thus an item for future re-
search, along with the investigation into other generic scenario
prediction approaches.

Another aspect for future research is the impact assessment
step in prospective LCA studies, which we have given no at-
tention to in this paper. Emerging technologies may give rise
to new types of environmental problems, such as emissions
of nanomaterials (Hischier 2014). Other environmental prob-
lems may have declined in the future. This means that some
impact categories that may be relevant for assessing emerging

technologies do not exist yet, whereas some that do exist may
not be so relevant. In addition, several papers have shown that
correlation between impact categories is generally high and that
a limited set of impact categories is often sufficient to describe
the environmental impact of a product (Huijbregts et al. 2006,
2010; Pascual-González et al. 2015; Janssen et al. 2016; Stein-
mann et al. 2016, 2017). If such a limited set was found sufficient
for emerging technologies, it would be convenient in order to
reduce data requirement. Overall, we find that the selection of
impact categories in prospective LCA is an area that warrants
further investigation.
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Grübler, A. 1998. Technology and global change. Cambridge, UK: Cam-
bridge University Press.

Healy, M. L., L. J. Dahlben, and J. A. Isaacs. 2008. Environmental
assessment of single-walled carbon nanotube processes. Journal of
Industrial Ecology 12(3): 376–393.

Herrmann, I. T., M. Z. Hauschild, M. D. Sohn, and T. E. McK-
one. 2014. Confronting uncertainty in life cycle assessment used
for decision support. Journal of Industrial Ecology 18(3): 366–
379.

Hetherington, A., A. Borrion, O. Griffiths, and M. McManus. 2014.
Use of LCA as a development tool within early research: Chal-
lenges and issues across different sectors. The International Journal
of Life Cycle Assessment 19(1): 130–143.

Hillman, K. M. and B. A. Sandén. 2008. Time and scale in life cy-
cle assessment: The case of fuel choice in the transport sector.
International Journal of Alternative Propulsion 2(1): 1–12.

Hischier, R. 2014. Framework for LCI modelling of releases of man-
ufactured nanomaterials along their life cycle. The International
Journal of Life Cycle Assessment 19(4): 838–849.

Huijbregts, M. A. J., S. Hellweg, R. Frischknecht, H. W. M. Hendriks,
K. Hungerbühler, and A. J. Hendriks. 2010. Cumulative energy
demand as predictor for the environmental burden of commod-
ity production. Environmental Science & Technology 44(6): 2189–
2196.

Huijbregts, M. A. J., L. J. A. Rombouts, S. Hellweg, R. Frischknecht, A.
J. Hendriks, D. van de Meent, A. M. J. Ragas, L. Reijnders, and J.
Struijs. 2006. Is cumulative fossil energy demand a useful indicator
for the environmental performance of products? Environmental
Science & Technology 40(3): 641–648.

Jacobsson, S. and A. Bergek. 2004. Transforming the energy sector: The
evolution of technological systems in renewable energy technol-
ogy. Industrial and Corporate Change 13(5): 815–849.

Jaffe, A. B. and M. Trajtenberg. 2002. Patents, citations, and innovations:
A window on the knowledge economy. Cambridge, MA, USA: MIT
Press.

Janssen, M., C. Xiros, and A.-M. Tillman. 2016. Life cycle impacts of
ethanol production from spruce wood chips under high-gravity
conditions. Biotechnology for Biofuels 9(53): 1–19.

Janssen, M., A.-M. Tillman, D. Cannella, and H. Jørgensen. 2014.
Influence of high gravity process conditions on the environmen-
tal impact of ethanol production from wheat straw. Bioresource
Technology 173: 148–158.

JRC-EC (Joint Research Center of the European Commission). 2010.
International reference life cycle data system (ILCD) handbook—
General guide for life cycle assessment—Detailed guidance. Luxem-
burg: Publications Office of the European Union.

Koomey, J., S. Berard, M. Sanchez, and H. Wong. 2011. Implications
of historical trends in the electrical efficiency of computing. IEEE
Annals of the History of Computing 33(3): 46–54.

Kushnir, D. and B. A. Sandén. 2008. Energy requirements of carbon
nanoparticle production. Journal of Industrial Ecology 12(3): 360–
375.

Li, Q., S. McGinnis, C. Sydnor, A. Wong, and S. Renneckar. 2013.
Nanocellulose life cycle assessment. ACS Sustainable Chemistry &
Engineering 1(8): 919–928.

Liptow, C., A.-M. Tillman, and M. Janssen. 2015. Life cycle assessment
of biomass-based ethylene production in Sweden—Is gasification
or fermentation the environmentally preferable route? The Inter-
national Journal of Life Cycle Assessment 20(5): 632–644.
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