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Abstract

A 2-site elastic-plastic self-consistent (EPSC) model is developed and implemented in order
to account for crystallographic texture development and grain morphology evolution under
strong correlations between neighbor grains of different phases, both in space and orien-
tation. Predictions of the model adequately fit the published in situ neutron diffraction
data for nickel-based superalloys at ambient and elevated temperatures, in which γ and γ′

phases exhibit exact cube-cube orientation relationship. Comparison with 2-site model (small
strain algorithm, non-rotation scheme) and 1-site model (finite strain algorithm, co-rotation
scheme) has been made, and the result shows that the present 2-site model (finite strain
algorithm, rotation scheme) leads to better predictions in lattice strain evolution where both
rotation of crystal lattice and correlation between inclusions are accounted for, especially
when the applied strain is larger than 0.02 for transverse direction and 0.05 ∼ 0.18 for axial
direction for the materials studied in this work. Based on a systematic study on the effects
of grain-grain interaction and total grain number on the homogenized results, we found that
transverse lattice strains of γ (200) and/or γ′ (100) are sensitive to the interplay between
γ-γ′ interaction and evolution of grain orientation distribution with deformation, while that
of γ (220) and γ′ (110) are sensitive to the initial crystallographic texture.

Keywords: Two-phase polycrystal, Nickel-based superalloy, In situ neutron diffraction,
2-Site elastic-plastic self-consistent model, Finite strain

1. Introduction

In situ neutron diffraction is used to quantify the evolution of lattice structure within the
bulk of many polycrystalline metals. It has provided the foundation of numerous research on
polycrystals with various crystalline structures [1–8] and phase components [9–15]. These in
situ deformation studies have revealed the heterogeneous stress and strain accommodation
within polycrystalline aggregates. Due to the reason that individual diffraction peaks are
contributed from subsets of grains, rather than individual grains, modeling is frequently re-
quired to quantitatively interpret the changes of lattice strains and deformation mechanisms.
Self-consistent (SC) modeling has been the focus of attention as a means of interpreting the
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experimental data using simulations of the mechanical response of aggregate in terms of that
of individual crystals [1–3, 5–8, 10, 12–14, 16].

Most of the SC models are developed based on the Hill SC approach [17], which was first
implemented by Hutchinson [18]. In the model, it assumes that each grain is an ellipsoidal
inclusion embedded in an infinite Homogeneous Equivalent Medium (HEM), the properties
of which are the average response of all grains in the aggregate. The mechanical response
of each grain can be obtained using Eshebly’s solution [19]. Recent efforts on development
and improvement of SC models have been motivated by the need of capturing elastic-plastic
deformation behaviors of individual phases in two-phase alloys. For two-phase polycrystals,
there is a strong correlation in morphology and /or orientation between neighbor grains due
to the vicinity effect between two phases. One way to account for the effect of this correlation
is to accurately define the localized hardening by introducing a thin reinforcement layer
between the hard phase and the HEM (i.e. coated ellipsoidal inclusion scheme [20]) for the
case where the two phases do not have orientation relationship [21] or incorporating the
effect of anti-phase boundary on the initial resistance to precipitate shearing for the case
where the two phases have orientation relationship [22] based on the 1-site SC algorithm
[23, 24]. But these models are mostly focused on the overall mechanical response under cyclic
loading, including stress-strain curve and texture. They have not been applied to simulate
lattice strains to interpret deformation behaviors of individual phases. Another way is to
consider two interacting grains of different phases deforming in the HEM [25] (i.e. 2-site SC
modeling). Typical examples of two-phase materials that have an orientation relationship
between phases include the lamellar (α + β) titanium (Ti) alloys and nickel-based (Ni-
based) superalloys. The crystal lattices of the two phases of these alloys will co-rotate
since they share slip systems under plastic deformation. Two Ti alloys exhibiting different
microstructures were studied by Lebensohn and Canova [25] using a 2-site large strain visco-
plastic self-consistent (VPSC) model. Influences of grain shape and correlation between
phases on texture formation were found and well discussed. However, VPSC models do not
include elastic deformation and hence cannot be used to study lattice strains. Daymond et
al. [10] have developed a 2-site elastic-plastic self-consistent (EPSC) model to study lattice
strain evolution of Ni-based superalloys with various γ′ microstructures at ambient and
elevated temperatures [10, 12, 13]. In the model, uniform effective eigen-strain is used for
the 2-site problem to make the ellipsoidal pair deform as a unit within the HEM. Moreover,
small total deformations are assumed and no lattice rotation or texture development is
incorporated. The model is in good agreement with experimental lattice strains parallel to
the tensile stress axis (axial lattice strains), but has only qualitative agreement with that
perpendicular to the tensile stress axis (transverse lattice strains) for most of the cases. A lack
of quantitative agreement between predicted transverse lattice strains and those measured
experimentally remains to be elucidated.

The first objective of the present study is to develop and implement a 2-site EPSC model
for finite strain applications by accounting for crystallographic texture development and
grain morphology evolution under strong correlations between the two interacting grains of
different phases. The second objective is to test the predictive capabilities of the model
by comparing the predicted results with published in situ neutron diffraction data of Ni-
based superalloys. We focus on accurately modeling lattice strain evolution along both
axial direction (AD) and transverse direction (TD), which is a sensitive indicator of plastic
deformation mechanisms at microscopic levels. The third objective is to compare the results
predicted by the 2-site model (finite strain algorithm, rotation scheme), 2-site model (small
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strain algorithm, non-rotation scheme), and 1-site model (finite strain algorithm, co-rotation
scheme) to figure out the differences between them. The fourth objective is to investigate
the effects of grain-grain interaction on lattice strain evolution, especially that along TD. In
Section 2, we describe the formulation and implementation of the EPSC model. Section 3
shows the results of application to superalloys, comparison between models, and the pertinent
effects of γ-γ′ interaction on the predicted results. Section 4 gives improved fitting results of
transverse lattice strains for the previous studies in Section 3 along with detailed discussions
on the main factors that contribute to the improvement.

2. Modeling

In the single phase EPSC model [17–19, 24, 26, 27], the effect of neighborhood on the
mechanical response of each grain is accounted for through the interaction between the grain
and the surrounding HEM. As a consequence, the correlation between neighbor grains due
to the vicinity effect is completely disregarded. It is a reasonable assumption and works
well for single phase materials [1–3, 5–7] and two-phase alloys that do not have orientation
relationship between phases [14, 28]. However, the correlation in morphology and orientation
between grains of different phases is strong for lattice-coherent two-phase materials, which
cannot be neglected. The 2-site SC model [10, 25] considers the interaction of two ellipsoidal
inclusions embedded in a HEM. The deformation behavior of each grain is influenced by
both the interactions with a global HEM and its local nearest-neighbor grain. In order
to model this, we have made a 2-site modification on Neil et al.’s [24] finite strain 1-
site EPSC implementation. The approach employed in the model is similar to the one
used by Lebensohn and Canova [25] for the large strain 2-site VPSC model. Considering
boundary constraints between grains within each ellipsoidal pair, extra schemes are applied
to guarantee them to co-rotate [29] and deform compatibly.

In what follows, variables with subscript designations are for grain-level quantities, and
those without subscripts are for the overall quantities.

2.1. Formulation

2.1.1. 2-site EPSC model

The microstructure of Ni-based superalloys consist of large γ grains with a high number
density of small coherent γ′ precipitates in the interiors. In the 2-site EPSC model, however,
this is represented by two ellipsoidal inclusions, weighted by the respective volume fractions.
We consider N such pairs of inclusions which statistically represent the polycrystalline struc-
ture of the material. Each pair is embedded in a homogeneous infinite body. The SC model
is defined by letting the tangent stiffness of embedding body represent the (weighted) aver-
age of that of the modeled inclusions. According to Eshelby’s equality [19], the stress rate
σ̇c and the strain rate ε̇c of the ellipsoidal inclusions in a HEM (or an infinite body) are
equal for:

σ̇c = Lc : ε̇c (1a)

σ̇c = L : (ε̇c − ε̇∗c) (1b)

where c = 1, 2 for the two interacting ellipsoidal inclusions (# 1 and # 2), respectively.
Eq.(1a) pertains to an inclusion in a heterogeneous body without eigen-strains, and Eq.(1b)
is established for the equivalent situation in a homogeneous body (stiffness L) with eigen-
strains ε∗c .
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The eigen-strain rate can be solved for:

ε̇∗c = ε̇c − L−1 : Lc : ε̇c =
(
I− L−1 : Lc

)
: ε̇c = A∗c : ε̇c (2)

Here, A∗c = I− L−1 : Lc is defined for c = 1, 2.
The strain rate deviations ε̇c − ε̇ and eigen-strain rate ε̇∗c are related according to the

following extended Eshelby relations by the four symmetric Eshelby tensors [19, 25, 30]:

ε̇1 − ε̇ = P11 : ε̇∗1 + P12 : ε̇∗2 (3a)

ε̇2 − ε̇ = P21 : ε̇∗1 + P22 : ε̇∗2 (3b)

where P11 and P22 are ordinary Eshelby tensors for inclusion # 1 and # 2, respectively; and
P12 and P21 are the coupling factors between the eigen-strain rate of one inclusion and the
local deviation in strain rate of the other. Related derivations and expressions for the 2-site
Eshelby tensors refer to Berveiller et al. [31] and Lebensohn and Canova [25].

By combining Eqs. (2) and (3) we obtain:

ε̇1 − ε̇ = P11 : A∗1 : ε̇1 + P12 : A∗2 : ε̇2 (4a)

ε̇2 − ε̇ = P21 : A∗1 : ε̇1 + P22 : A∗2 : ε̇2 (4b)

By some manipulations, we can obtain:

ε̇1 = A1 : ε̇ (5a)

ε̇2 = A2 : ε̇ (5b)

where the concentration tensors A1 and A2 can be found from Eq.(4) as:

A1 =
(
B2 : C1

−1 : B1 − C2

)−1
:
(
B2 : C1

−1 + I
)

(6a)

A2 =
(
B1 : C2

−1 : B2 − C1

)−1
:
(
B1 : C2

−1 + I
)

(6b)

with

B1 = I− P11 : A∗1 (7a)

C1 = P12 : A∗2 (7b)

and where B2 and C2 can be obtained interchanging indexes 1 and 2 in Eq.(7).
At the macroscopic scale, the corresponding relation between the stress rate and strain

rate is:
σ̇ = L : ε̇ (8)

The relation between macroscopic and microscopic stress rate takes the form [18]:

σ̇ =
〈
σ̇c

〉
with

〈
•
〉

=
1

N

N∑
p=1

∑
c

wc • |c,p (9)

where we introduced the weighted average over both populations of inclusions denoted as〈
•
〉
. N is the total number of pairs, and wc is the weight of each inclusion determined by

the volume fraction of each phase with c = 1, 2 for phase # 1 and # 2, respectively.
After some algebraic calculations on Eqs.(1a), (5), (8), and (9), we can obtain the overall

SC stiffness:
L =

〈
Lc : Ac

〉
(c = 1, 2) (10)

Derivations and expressions of the strain rates of an individual inclusion in both phases used
in the implementation are provided in Appendix A.
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2.1.2. Texture evolution

In the 2-site small strain approach [10], rotations are ignored. In the finite strain for-
mulations that follow, rotations of the sample, ellipsoid, and crystal lattice are accounted
for [29].

(1) Applied macroscopic rotation rate:

Ω̇ =
1

2

(
l− lT

)
(11)

i.e., the anti-symmetric component of the macroscopic velocity gradient l.
(2) Local rotation rate:

ω̇c = Ω̇ + ˜̇ωc (12)

where c = 1, 2, and the expressions for the deviations from the macroscopic rotation rate ˜̇ω1

and ˜̇ω2 are given in terms of Eshelby tensors in Appendix B.
(3) Crystal lattice rotation rate:

ω̇lat
c = ω̇c − ω̇pl

c (13)

where ω̇pl
c is the plastic rotation rate, which takes the form:

ω̇pl
c =

∑
s

qscγ̇
s
c (14)

where c = 1, 2, qsc = skw (bsc ⊗ nsc) is the skew-symmetric Schmid tensor defined in terms of
the slip direction (bsc) and slip-plane normal (nsc), and γ̇sc is the shear rate on the s-th slip
system.

For the 2-site model, properly dealing with rotations of ellipsoid and crystal lattice is
predominant to accurately describe the correlation in morphology and orientation between
the ellipsoidal inclusions within each pair. Reference and local coordinate systems, and
schematic 2-D representation of the model are shown in Fig. 1. Morphological and crystallo-
graphic orientations of the two inclusions within a pair are the same, but they are different
and random among pairs. Ellipsoid # 2 is randomly placed with respect to ellipsoid # 1,
which is represented by a vector from the center of ellipsoid # 1 to that of ellipsoid # 2
denoted as Di

12 with i standing for pair number and Di
12 = −Di

21 holds. Di
12 is also differ-

ent and random among pairs. Weighted average local rotation rate is used to represent the
average trend of both sites:

ω̇ave = w1 ω̇1 + w2 ω̇2 (15)

where w1 and w2 are the weights of each ellipsoid determined by the volume fractions of each
phase. As a consequence, the crystal lattice rotation rate calculated via Eq.(13) is changed
into the following form:

ω̇lat
c = ω̇ave − ω̇pl

c (16)

Taking deformation mechanism into account, e.g. shear across γ / γ′ boundaries for Alloy
RR1000 with fine γ′ microstructure and looping around γ′ particles for the medium and
coarse γ′ microstructures [12, 13], two ideal rotation schemes are provided in our implemen-
tation, including local co-rotation (i.e. ellipsoid co-rotates while crystal lattice rotates freely
for the two inclusions within each pair) and co-rotation (i.e. both ellipsoid and crystal lat-
tice co-rotate). Eq.(16) is used for the local-co-rotation scheme. For the co-rotation scheme,
crystal lattice co-rotation rate is defined as:

ω̇lat
corot =

1

2

(
ω̇lat

1 + ω̇lat
2

)
(17)
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Fig. 1. Reference and local coordinate systems, and schematic 2-D representation of ellipsoid pairs with
applied tension along y-axis. In application to superalloys that follows, phase # 1 is γ and # 2 is γ′.

2.1.3. An approximate finite strain algorithm

Similar to Neil et al. [24], the Jaumann derivative of the Cauchy stress rate σ̂c is intro-
duced to account for local co-rotation (Eq.(16)) or crystal lattice co-rotation (Eq.(17)). The
constitutive rules for both grain-level (Eq.(1a)) and macroscopic scale (Eq.(8)) are rewritten
in terms of the local co-rotation or crystal lattice co-rotation stress rates:

σ̂c = Lc : dc (18)

σ̂ = L : d (19)

In this approximate approach, the SC Eqs.(1)-(9) are modified with replacing σ̇, σ̇c, ε̇, and ε̇c
by σ̂, σ̂c, d, and dc, respectively. After solving the ellipsoidal inclusion equilibrium equation
and reaching convergence, all Cauchy stress rates are updated to the reference coordinate
system using the definition of the Jaumann derivative as follows:

σ̇c = σ̂c + ω̇lat
c σc − σc ω̇lat

c (20)

σ̇ = σ̂ + Ω̇σ − σ Ω̇ (21)

where ω̇lat
c should be replaced by ω̇lat

corot (Eq.(17)) for co-rotation scheme.

2.2. The update of the material state

After reaching self-consistency, the finite strain approach introduces additional updates:
(1) Deformation and reorientation of ellipsoids: In the 1-site model [23, 24], a single

ellipsoid is used to describe the shape of all inclusions, and macroscopic velocity gradient l is
used to update the shape of the average ellipsoid. In the 2-site model, we allow each ellipsoid
to deform individually with the constraint from its partner in the pair. The deformation
gradient of each ellipsoid within a pair is defined as:

F i+1
c =

(
I + liave ∆t

)
· F i

c (22)
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where liave is the weighted average velocity gradient of the two ellipsoids within a pair at the
i-th deformation step, taking the form

lave = w1 l1 + w2 l2 (23)

where w1 and w2 are the weights of each ellipsoid determined by the volume fractions of
each phase. It should be noted that lave = dave + ω̇ave with dave = w1 d1 + w2 d2, and the
contribution of ω̇ave is taken into account in a separate step (see Item (2) below). The same
as the 1-site approach [23, 24], the updated shape and orientation of the ellipsoid is given
by the square root of eigenvalues and eigenvectors of F · F T.

(2) Rotations: Rodrigues’ rotation formula is used for each pair to update the morpholog-
ical orientation with ω̇ave (Eq.(15)) and the crystallographic orientation with ω̇lat

c (Eq.(16))
for local-co-rotation scheme and ω̇lat

corot (Eq.(17)) for co-rotation scheme.
(3) The relative position of the two ellipsoids within a pair: Di

12 is also rotated with
ω̇ave (Eq.(15)), i.e. it follows the rotation of the local coordinate system. Furthermore,
the distance between the two ellipsoids |Di

12| is computed as the summation of the average
length of the three principal axes of ellipsoid # 1 and that of ellipsoid # 2.

3. Results

3.1. Application to superalloys

Ni-based superalloys are composed of γ matrix and γ′ precipitates, which have coher-
ent or semi-coherent interface and display an exact cube-cube orientation relationship [32],
making them suitable for engineering applications at elevated temperatures. Recently, a new
generation of Ni-based superalloys has been developed containing a higher volume fraction
of about 50% of γ′ precipitates, of which the macroscopic and microscopic mechanical prop-
erties and the deformation mechanisms at ambient and elevated temperatures have been
systematically characterized [10, 12, 13]. Here we extracted the in situ neutron diffraction
experimental data of Alloy 720Li with a microstructure of two randomly intermixed size
distribution of γ′ precipitates at 20 ℃, 400 ℃, 500 ℃ and 650 ℃ from Daymond et al. [10],
and Alloy RR1000 with fine, medium, and coarse γ′ microstructures at 20 ℃ from Grant et
al. [12] and 750 ℃ from Francis et al. [13] to verify our model. All the experiments were
performed under uniaxial tension.

The numerical code employed in this work is a 2-site update of the 1-site EPSC code
(Version 4) developed by Tomé and co-workers written in Fortran 77 [23, 24, 26, 33]. In this
model 5000 grain pairs with random initial morphological and crystallographic orientation
distributions are chosen. Spherical grains are assumed for both phases at the initial state
in the simulation (see microscopy pictures in [10, 12, 13]). As mentioned in Section 2.1.1,
one of the limitations of the 2-site algorithm for modeling deformation behaviors of Ni-based
superalloys is that there are many coherent γ′ grains embedded in one γ grain but only
two ellipsoids representing the grain(s) in each phase in the model. Furthermore, although
the volume fraction of γ′ phase is the same (45%), γ′ grain size is not fixed for the fine,
medium, and coarse γ′ microstructures in Alloy RR1000. Moreover, the interaction strength
between different phases should not be the same, where the exact microstructures of the two
phases should be considered. In order to take into account the difference in microstructure
(or morphology) of γ′ phase and that between phases, an interaction factor fγ-γ′ = Rγ′/Rγ

is introduced to define the interaction strength between γ and γ′ grains, where Rγ′ and
Rγ are the initial radii of ellipsoids (spheriods) representing γ′ and γ grains, respectively.
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The initial morphology of γ grains is set to 1:1:1 (ellipsoid’s radii), and therefore that of
γ′ grains is fγ-γ′ : fγ-γ′ : fγ-γ′ . Ellipsoids representing both phases are set equal-sized, i.e.
fγ-γ′ = 1.0, for the calculations in this section. The effect of changing fγ-γ′ will be examined
later. The cube-cube orientation relationship of γ-γ′ is represented by assigning the same
crystallographic orientation to both grains within each pair. A 45% weighting of γ′ (55%
of γ) is utilized for all the cases fitted in this work. Tension is applied along y-axis of
the reference coordinate system, as shown in Fig. 1. The elastic constants used and slip
systems selected for γ and γ′ single crystals at different temperatures follow those employed
in Daymond et al. [10]. Crystal lattice co-rotation scheme (Eq.(17)) is applied to capture the
texture evolution. The implemented plastic flow law for a given slip system is an extended
Voce hardening law [34, 35], which is described by an evolution of the threshold stress with
accumulated shear strain Γ in each grain based on the following equation:

τ s = τ s0 + (τ s1 + θs1 Γ)

(
1− exp

(
−θ

s
0 Γ

τ s1

))
(24)

where τ s0 , θs0, θ
s
1, and τ s0 + τ s1 are the initial critical resolved shear stress (CRSS), the initial

hardening rate, the asymptotic hardening rate, and the back-extrapolated CRSS, respec-
tively. The hardening coefficients used in Eq.(24) are fitted to give an optimum agreement
with the experimental data, which are listed in Table 1. It should be noted that calibrations
of the hardening coefficients have been done for all the cases studied by employing both
2-site and 1-site models in this work.

Predicted results are shown in Figs. 2 and 3, which generally fit the experimental data
very well. In order to make a thorough comparison between the existing small strain 2-site
EPSC model [10] and finite strain 1-site EPSC model [24], we implemented non-rotation
scheme in our 2-site model where both ellipsoid and crystal lattice do not rotate, and ex-
tended the finite strain 1-site single-phase code [23, 24, 26, 33] to a dual-phase application
to Ni-based superalloys utilizing crystal lattice co-rotation scheme. Lattice strains calcu-
lated without texture evolution (non-rotation scheme) and using 1-site model (co-rotation)
are plotted in Figs. 2 and 3 as a comparison. It is indicated that almost the same results
are obtained with and without co-rotation by employing the 2-site model, where only slight
deviations are observed after some accumulations of the applied strain (ε). The 1-site model
(co-rotation) also gives very similar predictions comparing to the 2-site model (co-rotation)
except the case of Alloy 720Li at 500 ℃ (Fig. 2(e-f)), where large deviation from the ex-
perimental data is observed. It is revealing to regard how the two phases deform and share
the applied strain for Alloy 720Li at various temperatures to figure out the origin of the
differences between models. It is well known that there is a peak strength temperature for
Ni-based superalloys below which they display anomalous behavior where the yield stress
at high temperature is larger than that at room temperature even though the strength of
the γ phase decreases with increasing temperature [36]. Below the peak strength temper-
ature, the predominant slip system in γ′ phase is {111}〈110〉, while above it {100}〈110〉 is
more active [37]. Fig. 4 shows evolution of the average number of active systems per grain
(AVACS). The 2-site model (with and without co-rotation) shows that the AVACS of γ is
larger than that of γ′ at 20 ℃, but it reverses at 400 and 500 ℃ and then reverses back at
600 ℃, which indicates that there is load transfer between 20 and 500 ℃ (γ′ precipitates is
the softer phase) and opposite load transfer at higher temperature (γ matrix is softer), as
shown in Fig. 5. While the relative value of AVACS of γ and γ′ predicted by the 1-site model
for the case at 500 ℃ is opposite to that predicted by the 2-site model when ε > 0.08, which
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is the strain value where the deviations in lattice strains start (Fig. 2(e-f)). As a result,
the phase specific strain of γ phase predicted by the 1-site model is much higher than that
predicted by the 2-site model (Fig. 5(c)). The relative activity of {111}〈110〉 and {100}〈110〉
slip systems in γ′ phase changing with temperature is also well captured by the 2-site model.
At 400 and 500 ℃ (Fig. 4(d) and (f)), {111}〈110〉 becomes more active than {100}〈110〉
when ε > 0.01 or so, but {100}〈110〉 becomes predominant again when ε > 0.06 (for 2-stie,
co-rotation) or ε > 0.075 (for 2-stie, non-rotation) at 500 ℃. At 600 ℃, {100}〈110〉 is
predominant. This indicates that 500 ℃ is the temperature very close to the peak strength
temperature of Alloy 720Li, around which the relative activity of {111}〈110〉 and {100}〈110〉
slip systems in γ′ phase alternates during plastic deformation. As a comparison, the 1-site
model failed to capture such details for the case at 500 ℃, where the grain-grain interaction
is neglected. Deformed textures predicted by utilizing the 2-site (co-rotation) and 1-site
(co-rotation) models for Alloy 720Li are also compared, as shown in Fig. 6, where the pole
figures were calculated and plotted using the MTEX open-source package [38, 39]. The two
models display similar texture for each case that the 〈111〉 direction turning toward AD (i.e.
the tensile stress axis) and 〈110〉 direction turning away from it, but the texture strength
and the grain orientation distribution are not exactly the same. It is because of the accumu-
lated effect of their difference in deformation mechanism, which starts from ε = 0.03 ∼ 0.06
(Fig. 4(a), (c), (e), and (g)).

Figs. 2−6 demonstrate that the 2-site model (finite strain, co-rotation), 2-site model
(small strain, non-rotation), and 1-site model (finite strain, co-rotation) distribute differ-
ent predictions at relatively larger deformation stage. It is also noticed that the predicted
transverse lattice strains are not as good as the axial for the fine, medium, and coarse
γ′ microstructures at both 20 ℃ and 750 ℃ (Fig. 3), where the total deformation is less
than 0.1 and 0.04, respectively. This phenomenon is supposed to originate from the 2-site
formulation (Section 2.1), in which the relative size of ellipsoids within a pair, i.e. fγ-γ′
defined above, plays an important role in grain-grain interaction and hence influences the
predictions. In what follows, we will investigate the differences in the prediction of lattice
strains between models at large deformation state (ε = 0.5) and the effects of the interaction
strength between γ and γ′ grains on the homogenized results by employing the 2-site model.
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Table 1. Hardening parameters describing the evolution of threshold stress with deformation (Eq.(24))
used for best fitting experimental (Exp.) data in [10, 12, 13], where τs0 , θs0, θs1, and τs0 + τs1 are the initial
critical resolved shear stress (CRSS), the initial hardening rate, the asymptotic hardening rate, and the
back-extrapolated CRSS, respectively. Parameters in front of ”/” are for 2-site model and that behind it are
for 1-site model ( i.e. 2-site / 1-site).

Exp. data T Phase Slip system τ0 τ1 θ0 θ1

720Li [10]

20 ℃ γ {111}〈110〉 375 / 376 5 / 5 50 / 60 50 / 35
Intermixed γ′ {111}〈110〉 385 / 384 5 / 5 780 / 798 780 / 754

400 ℃
γ {111}〈110〉 498 / 498 5 / 5 1207 / 1190 296 / 289

Intermixed γ′
{111}〈110〉 437 / 434 5 / 5 294 / 290 145 / 128
{100}〈110〉 450 / 444 5 / 5 116 / 121 99 / 85

500 ℃
γ {111}〈110〉 477 / 473 5 / 5 1040 / 1038 224 / 129

Intermixed γ′
{111}〈110〉 444 / 435 5 / 5 283 / 283 128 / 54
{100}〈110〉 525 / 527 5 / 5 67 / 72 10 / 9

650 ℃
γ {111}〈110〉 227 / 227 20 / 20 593 / 596 118 /110

Intermixed γ′
{111}〈110〉 331 / 331 58 / 60 2624 / 2623 399 / 394
{100}〈110〉 272 / 273 17 / 17 927 / 927 157 / 149

RR1000 [12] 20 ℃

γ {111}〈110〉 410 / 411 11 / 10 1203 / 1192 122 / 110
Fine γ′ {111}〈110〉 426 / 412 41 / 50 1919 / 1850 372 / 350

γ {111}〈110〉 378 / 379 6 / 6 1832 / 2379 73 / 55
Medium γ′ {111}〈110〉 391 / 391 8 / 10 1886 / 1867 1235 / 1228

γ {111}〈110〉 291 / 291 10 / 10 1223 / 1237 238 / 224
Coarse γ′ {111}〈110〉 376 / 376 10 / 11 1693 / 1650 1384 / 1374

RR1000 [13] 750 ℃

γ {111}〈110〉 268 / 268 10 / 10 55 / 56 41 / 37

Fine γ′
{111}〈110〉 319 / 315 10 / 10 2058 / 2062 95 / 88
{100}〈110〉 278 / 279 10 / 10 100 / 98 50 / 45

γ {111}〈110〉 195 / 195 10 / 10 988 / 1004 87 / 76

Medium γ′
{111}〈110〉 247 / 247 20 / 20 2843 / 2879 1718 / 1691
{100}〈110〉 217 / 218 10 / 10 1280 / 1304 285 / 274

γ {111}〈110〉 155 / 153 21 / 21 1029 / 1036 93 / 53

Coarse γ′
{111}〈110〉 148 / 148 177 / 189 36,739 / 36,140 995 / 973
{100}〈110〉 166 / 164 84 / 82 8287 / 8016 664 / 631
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Fig. 2. Comparison of axial lattice strains measured (points, data from Daymond et al. [10]) and simulated
(lines) for Alloy 720Li with intermixed γ′ precipitates at (a-b) 20 ℃, (c-d) 400 ℃, (e-f) 500 ℃, and (g-h) 650
℃. Results of non-rotation scheme (2-site model) and 1-site model (co-rotation) are shown as a comparison.
Strains corresponding to the applied stresses on the left axis are labelled on the right axis for each panel.
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Fig. 3. Comparison of (a-b) stress-strain curves and (c-h) lattice strains measured (points, data from Grant
et al. [12] and Francis et al. [13]) and simulated (lines) for Alloy RR1000 with different γ′ microstructures
at 20 ℃ and 750 ℃. Results of non-rotation scheme (2-site model) and 1-site model (co-rotation) are shown
as a comparison.
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(co-rotation), 2-site model (non-rotation), and 1-site model (co-rotation).
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Fig. 6. Pole figures of final deformation state predicted by employing the 2-site (co-rotation) and 1-site
(co-rotation) models for Alloy 720Li at (b-c) 20 ℃, (d-e) 400 ℃, (f-g) 500 ℃, and (h-i) 650 ℃. The initial
texture is shown in panel (a) as a comparison. Texture index is labelled under each pole figure. AD and TD
stand for axial direction and transverse direction, respectively.

3.2. Comparison between models

We selected six cases from Section 3.1, i.e. Alloy RR1000 with fine, medium, and coarse γ′

microstructures at 20 ℃ and 750 ℃, and stretched them to a larger strain of 0.5 for a general
comparison to study the differences in the prediction of (both axial and transverse) lattice
strains by employing the three models. It should be noticed that there is one more slip type
in γ′ phase at 750 ℃ than that at 20 ℃ (see Table 1 for more details). Deviations in lattice
strains along AD start from ε = 0.10 ∼ 0.18 while that along TD occur from a smaller strain
of ε = 0.04 ∼ 0.05, as shown in Fig. 7. The predicted transverse lattice strains by utilizing
non-rotation scheme (2-site) are quite different from that with co-rotation scheme (both 2-
site and 1-site), especially when ε is larger than 0.30 ∼ 0.37 at both 20 and 750 ℃. A further
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comparison between 1-site model (co-rotation) and 2-site model (co-rotation) indicates that
deviations are anisotropic in crystalline planes and different at the two temperatures. At
20 ℃, the differences in lattice strains of γ (200) and/or γ′ (100) are much larger than that
of γ (220) and γ′ (110) (Fig. 7(a), (c), and (e)), while deviation in lattice strain of γ′ (110)
also becomes larger at 750 ℃ (Fig. 7(b), (d), and (f)). This can be understood from the
perspective of grain-grain interaction and its effect on the deformation mechanisms (of γ′

phase), as discussed in next section (Section 3.3).
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Fig. 7. Comparison between the 2-site model (co-rotation), 2-site model (non-rotation), and 1-site model
(co-rotation) on the prediction of lattice strains for Alloy RR1000 with (a-b) fine, (c-d) medium, and (e-f)
coarse γ′ microstructures stretched up to 0.5 true strain at 20 ℃ and 750 ℃. Points are experimental data
from Grant et al. [12] and Francis et al. [13].

3.3. Effects of interaction factor fγ-γ′

The 1-site model (co-rotation) gives different lattice strains from the 2-site model (co-
rotation) when the accumulated strain reaches a critical value, and the differences depend
on both crystalline plane and temperature, as discussed in Section 3.2, in which the grain-
grain interaction is not incorporated. Therefore, it is revealing to know how the grain-grain
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interaction affects the homogenized result in the 2-site model. In our implementation, an
interaction factor fγ-γ′ is introduced (see Section 3.1) to simulate the interaction strength
between the two grains within a pair from the two phases to account for the difference in
microstructure (or morphology) of γ′ phase and that between phases. It should be noted
that it is a fitting parameter in the model and not relevant to the volume fractions of the
two phases. w1 = 0.55 and w2 = 0.45 are used in Eqs.(15) and (23) for all the superalloys
studied in this work, which are fixed parameters in the calculation. In this section, cases
utilized in Section 3.1 were selected to perform a systematic study on the effects of fγ-γ′
on the calculated lattice strains, including Alloy RR1000 with fine, medium, and coarse γ′

microstructures at 20 ℃ from Grant et al. [12] and 750 ℃ from Francis et al. [13]. We keep all
the input parameters the same as those used in Section 3.1 except fγ-γ′ . Co-rotation scheme
is employed (i.e. 2-site model (co-rotation)). fγ-γ′ is changed from 1.0 (originally used in
Section 3.1) to decreased or increased values to study effects of the interaction strength
between γ and γ′ grains on the predicted results.

Cases of fγ-γ′ = 0.01, 0.1, 10.0, 100.0 are compared to the case of fγ-γ′ = 1.0. Calculated
results are shown in Figs. 8 and 9. Significant differences of lattice strains along both AD
and TD are observed by decreasing or increasing fγ-γ′ at both temperatures. Deviations
in the elastic part of the lattice strains along both AD and TD are found when fγ-γ′ is
smaller than 0.1 or larger than 10.0 or so. fγ-γ′ has the greatest impact on the transverse
lattice strains of γ (200) and γ′ (100) at plastic deformation stage for Alloy RR1000 with
different γ′ microstructures at 20 ℃ (Fig. 8), but only slight effects on that at 750 ℃
(Fig. 9). It is apparent that fγ-γ′ has great influences on the simulated lattice strains,
which also depends on plastic deformation mechanisms for the prediction of the plastic
part of lattice strains. In order to dig into it further, evolution of AVACS and relative
activity of {111}〈110〉 and {100}〈110〉 slip systems in γ′ phase are compared for different
fγ-γ′ values, as shown in Fig. 10. A general conclusion for all the selected cases is that the
AVACS in γ′ phase increases with increasing fγ-γ′ value. The relative activity of {100}〈110〉
in γ′ phase with decreased or increased fγ-γ′ values decreases comparing to the case with
fγ-γ′ = 1.0 for medium and coarse γ′ microstructures at 750 ℃, but different deviations in
relative activity are observed for the fine γ′ microstructure where the relative activity of
{111}〈110〉 and {100}〈110〉 alternates during deformation. It hence can be concluded that
the effect of fγ-γ′ on the deformation mechanisms influences the evolution of grain orientation
distribution (Eq.(14)), which influences the predicted lattice strains as a consequence. For
high temperature case, there is one more type of cube slip system ({100}〈110〉) activated,
which plays a predominant role in the crystal lattice rotation and makes the response to fγ-γ′
changing different from that at room temperature.

Since γ-γ′ interaction is also affected by the plastic deformation mechanism, i.e. shear
across γ / γ′ boundaries for fine γ′ microstructure and looping around γ′ grains for medium
and coarse microstructures, as discussed in Section 2.1.2, we also studied the effect of fγ-γ′
on the predicted lattice strains by utilizing local-co-rotation scheme (Eq.(16)) and compared
the results with that predicted by utilizing the co-rotation scheme (Eq.(17)) presented above.
Predicted axial lattice strains with changing fγ-γ′ values from 0.01 to 100.0 are almost the
same by utilizing the two rotation schemes (not shown here), and only slight differences
are observed for the prediction of transverse lattice strains, as shown in Fig. 11 where a
comparison is displayed among simulated transverse lattice strains with different fγ-γ′ values
for Alloy RR1000 with different γ′ microstructures at final deformation states of ε = 0.10
(20 ℃) and ε = 0.04 (750 ℃).
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Fig. 8. Comparison among simulated lattice strains with different fγ-γ′ values for Alloy RR1000 with
different γ′ microstructures at 20 ℃ by employing 2-site model (co-rotation). Points are experimental data
from Grant et al. [12].
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Fig. 9. Comparison among simulated lattice strains with different fγ-γ′ values for Alloy RR1000 with
different γ′ microstructures at 750 ℃ by employing 2-site model (co-rotation). Points are experimental data
from Francis et al. [13].
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Fig. 10. Comparison among simulated AVACS at 20 ℃ and 750 ℃ and relative activity of {111}〈110〉 and
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microstructures by employing the 2-site model (co-rotation).
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Fig. 11. Comparison among simulated transverse lattice strains with different fγ-γ′ values for Alloy RR1000
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Lines are used to guide the trend.

4. Discussions

4.1. Grain-grain interaction

Interaction between the two ellipsoids within each pair is the core of the 2-site EPSC
model. Among all the physical quantities in the simulation, Ehshelby tensors are the most
essential and critical, which are obtained from the Eshelby solution of the elastic equilibrium
equation [19]. Moreover, the overall SC stiffness L is a function of symmetric Eshelby tensors
(Eq.(10)), and the local rotation-rates (Eq.(12)) used to update grain orientation distribution
are in terms of both symmetric and anti-symmetric Eshelby tensors (Eq.(B.4) in Appendix
B). A comprehensive understanding on correlation between the evolution of Eshelby tensors
and the homogenized results is necessary, yet such knowledge is lacked from published work.

Results in Section 3.3 manifest that different fγ-γ′ values give various results of lattice
strains for Alloy RR1000 with different γ′ microstructures at both 20 ℃ and 750 ℃. In order
to figure out the reason, we compared the coupling Eshelby tensors with different fγ-γ′ values
at final deformation states of ε = 0.10 at 20 ℃ and ε = 0.04 at 750 ℃. Results of calculated
81 components of the coupling Eshelby tensors (P12, P21, Π12, and Π21) are shown in Fig. 12.
The Eshelby tensors are weighted average values over all the ellipsoids in each phase. Results
are similar for Alloy RR1000 with different γ′ microstructures and therefore only the result
of fine γ′ microstructure is shown here to avoid redundancies. Panels (a-d) demonstrate
that symmetric coupling Eshelby tensors of P12 increases and P21 decreases with increasing
fγ-γ′ , which means that γ matrix suffers increased interaction from γ′ precipitates, and vice
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versa. The same conclusion can be drawn for the anti-symmetric coupling Eshelby tensors
of Π12 and Π21, as shown in panels (e-h). By comparing panels (a) to (c), (b) to (d), (e)
to (g), and (f) to (h), respectively, temperature dependence of the evolution of the coupling
Eshelby tensors is found, which reveals that the exact value of each component is related to
the plastic deformation mechanisms.
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Fig. 12. Comparison between calculated 81 components of coupling Eshelby tensors (P12, P21, Π12, and
Π21) with different fγ-γ′ values for Alloy RR1000 with fine γ′ microstructure at 20 ℃ and 750 ℃ studied
in Section 3.3. The Eshelby tensors are weighted average values over all the grains in each phase. Some of
the indices corresponding to their components are labelled. Panels (a-d) and (e-h) have the same coordinate
range, respectively.
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4.2. Re-fitted lattice strains

From previous results in Sections 3.3 and 4.1, we can find that fγ-γ′ has a significant effect
on the homogenized results by changing γ-γ′ interaction strength. In order to improve the
predicted lattice strains for Alloy RR1000 with fine, medium, and coarse γ′ microstructures
at 20 ℃ and 750 ℃ studied in Section 3.1, we adjusted fγ-γ′ values for each case to perform
re-simulation. By an optimization on fγ-γ′ value within the range of 0.1 to 10.0 for each
case, a value around fγ-γ′ = 8.0 is found to distribute a best fit for all the cases at 20 ℃,
but the results at 750 ℃ are not changed or improved much. In Grant et al. [12], it is
also discovered that large number of inclusions (5000 ∼ 50, 000 pairs) is required to well
capture the evolution of transverse lattice strains, and hence we increase the total number
to 40,000 pairs to further improve the calculated transverse lattice strains. Re-calculated
results are shown in Figs. 13 and 14. Since the axial lattice strains are not changed by
using the increased fγ-γ′ and total grain number for all the cases at both temperatures, only
transverse lattice strains are displayed. Previous simulated results of fγ-γ′ = 1.0 with 5000
pairs by utilizing the 2-site model (co-rotation) are also plotted in the figures for each case
as a comparison. Transverse lattice strains at the plastic deformation stage of selected cases
(the best fit) marked by orange dashed rectangular boxes in the legends, labelled by orange
solid rectangular boxes in panels (a-c) in the figures, are magnified and shown to the right
of each panel, named as (a′), (b′), and (c′), respectively, where the simulated results with
2-site model (non-rotation) and 1-site model (co-rotation) are also shown as a comparison.

Fig. 13(a-c) shows that transverse lattice strains of γ (200) at the plastic deformation
stage at 20 ℃ are improved by increasing fγ-γ′ from 1.0 to 8.0, indicating that the γ matrix
suffers larger interaction from the γ′ precipitates than it puts on them. The re-predicted
transverse lattice strain of γ (200) of the fine γ′ microstructure fits the experimental data well
(Fig. 13(a′)), that of the medium γ′ microstructure is also acceptable (Fig. 13(b′)), while that
of the coarse γ′ microstructure still has a large deviation from the experiment (Fig. 13(c′)).
This is presumably due to the transition from particle shearing to Orowan looping when
the precipitates exceed a critical size, which requires a more complicated description of the
hardening behavior [12]. A possible way to account for the localized hardening is to introduce
a thin reinforcement layer between γ′ inclusions and the HEM, as Zecevic et al. did [21],
but it is beyond the scope of present work. Panels (a-c) in Figs. 13 and 14 indicate that
total grain number has slight influences on transverse lattice strains of γ (220) and γ′ (110)
at 20 ℃ but great effects on that at 750 ℃. The simulated lattice strains of the coarse γ′

microstructure at 750 ℃ are improved by increasing total grain number (Fig. 13(c)), but
that of the fine and medium γ′ microstructures are not as good as the previous.

By further, panels (a′-c′) in Figs. 13 and 14 show that transverse lattice strains of γ
(200) and/or γ′ (100) predicted by the 1-site model (co-rotation) have larger deviations
from the experiment comparing to that predicted by the 2-site model (co-rotation), which
is more obvious at 20 ℃. It indicates that incorporating interaction between γ matrix and
γ′ precipitates in the SC model is necessary to well capture the evolution of lattice strains.
We can also find that predicted results with crystal lattice rotation (both 2-site and 1-site
models) are more approaching the experimental data than that without it (2-site model,
non-rotation scheme), especially for the lattice strains of γ (200) and γ′ (100) when ε > 0.02
or so. Therefore, not only is the γ-γ′ interaction important in accurately capturing transverse
lattice strains, but also the rotations of ellipsoid (Eq.(15)) and crystal lattice (Eq.(17)) are
predominant after some accumulations of plastic deformation.
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Fig. 13. Re-simulated lattice strains at 20 ℃ by increasing fγ-γ′ and total grain number for Alloy RR1000
with (a) fine, (b) medium, and (c) coarse γ′ microstructures, respectively. Previous simulated results of
fγ-γ′ = 1.0 with 5000 pairs by employing the 2-site model (co-rotation) are also shown as a comparison.
Transverse lattice strains at the plastic deformation stage of selected cases marked by orange dashed rect-
angular boxes in the legends, labelled by orange solid rectangular boxes in panels (a-c), are magnified and
shown to the right of each panel, named as (a′), (b′), and (c′), respectively, where the simulated results
with 2-site model (non-rotation) and 1-site model (co-rotation) are also shown as a comparison. Points are
experimental data from Grant et al. [12].
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Fig. 14. Re-simulated lattice strains at 750 ℃ by increasing total grain number for Alloy RR1000 with (a)
fine, (b) medium, and (c) coarse γ′ microstructures, respectively. Previous simulated results of fγ-γ′ = 1.0
with 5000 pairs by employing the 2-site model (co-rotation) are also shown as a comparison. Transverse
lattice strains at the plastic deformation stage of selected cases marked by orange dashed rectangular boxes
in the legends, labelled by orange solid rectangular boxes in panels (a-c), are magnified and shown to the
right of each panel, named as (a′), (b′), and (c′), respectively, where the simulated results with 2-site model
(non-rotation) and 1-site model (co-rotation) are also shown as a comparison. Points are experimental data
from Francis et al. [13].

4.3. Main factors affecting transverse lattice strains

Diffraction technique gives the elastic strain averaged over all of the grain orientations
that contribute to a given hkl reflection, where subsets of grains within the defined gauge
volume are different for AD and TD. In particular, the grains detected in AD have a similar
orientation relative to the stress axis, while those in TD have a larger range of crystallo-
graphic orientation distribution compared with that of AD [24, 40]. It is found by Grant et
al. [12] that 5000 and 50,000 pairs are required to well capture the evolution of transverse
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lattice strains of (100) and (110) reflections, respectively, while 1000 pairs are sufficient to
model the axial.

In order to estimate the effect of grain number that contributes to each hkl reflection
on the predicted transverse lattice strains, we compared the grain number evolution for
different reflections parallel and perpendicular to the tensile stress axis before and after re-
fitting by employing the 2-site model (co-rotation), including previously used fγ-γ′ = 1.0
with 5000 pairs, increased fγ-γ′ = 8.0 with 5000 pairs, and fγ-γ′ = 1.0 with increased pairs
of 40,000 at 20 ℃ and 750 ℃. Results are shown in Fig. 15, where the vertical axis in
each panel is the percentage relative to the total grain number of each phase. A contrast
analysis between Fig. 13(a-c) and Fig. 15(a), (c), (e) indicates that the predicted transverse
lattice strains of γ (200) are improved by increasing the interaction factor fγ-γ′ to 8.0 while
the corresponding “detected” grain number is decreased for all γ′ microstructures at 20 ℃.
Grain number percentage that contributes to γ (220) and γ′ (110) reflections along AD is
largely increased by increasing total grain number to 40,000 pairs with that along TD is
decreased at both temperatures, as shown in Fig. 15. The corresponding lattice strains of
γ (220) and γ′ (110) along AD keep the previous values (not shown here) but that along
TD are changed (panels (a-c) in Figs. 13 and 14). The above results demonstrate that grain
orientation distribution plays a much more important role in the prediction of transverse
lattice strains than the “detected” grain number does. This is consistent with Oliver et
al.’s work [40], in which transverse lattice strain development with applied stress in cubic
single crystals of specific orientations was studied by EPSC modeling. They found that
transverse lattice strains show considerable variation depending upon the grain orientation
with respect to the stress axis. Moreover, results shown in Section 4.2 reveal that transverse
lattice strains of γ (200) can be improved by changing γ-γ′ interaction strength (represented
by fγ-γ′) together with applying appropriate rotations to ellipsoid and crystal lattice. It is
indicated that the interplay between interaction strength and evolution of grain orientation
distribution is vital in the prediction of transverse lattice strains of γ (200) and/or γ′ (100).
By contrast, the predicted transverse lattice strains of γ (220) and γ′ (110) are extremely
sensitive to the initial crystallographic texture for the reason that they have more equivalent
crystalline planes in a unit cell than the other reflections and they are more sensitive to any
change of the initial grain orientation distribution.
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Fig. 15. Comparison of predicted grain number evolution for different reflections parallel and perpendicular
to the tensile stress axis among previously used fγ-γ′ = 1.0 with 5000 pairs, increased fγ-γ′ = 8.0 with 5000
pairs, and fγ-γ′ = 1.0 with increased pairs of 40,000 at 20 ℃ and 750 ℃ by employing the 2-site model
(co-rotation). All the panels have the same vertical coordinate range. The symbols ”//” and ”⊥” stand for
reflection parallel and perpendicular to the tensile stress axis, respectively.

5. Conclusions

(1) A 2-site EPSC model is adapted for finite strain orientation-dependent two-phase case,
and the predictive capability of the model is verified by adequately fitting published
in situ neutron diffraction data for Ni-based superalloys at ambient and elevated tem-
peratures.

(2) Predicted results are compared with 2-site model (small strain algorithm, non-rotation
scheme) and 1-site model (finite strain algorithm, co-rotation scheme), which indicates
that both crystal lattice rotation and grain-grain interaction are important for an
accurate prediction of lattice strain evolution when the strain is larger than 0.02 for
TD and 0.05 ∼ 0.18 for AD for the Ni-based superalloys studied in this work.

(3) Transverse lattice strains of γ (200) and/or γ′ (100) are sensitive to the interplay be-
tween γ-γ′ interaction and evolution of grain orientation distribution with deformation,
while that of γ (220) and γ′ (110) are sensitive to the initial crystallographic texture.
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(4) Experimental data of in situ neutron diffraction and texture at larger strains (ε > 0.15)
is needed to verify and improve the model, and a detailed study on the development of
rotation schemes is necessary to make the model more practical. Both are underway.
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Appendix A. The strain rates of an individual grain in both phases

If thermal expansion is considered, the constitutive equations of a particular ellipsoidal
inclusion (Eq.(1a)) and the HEM (Eq.8) take the following form:

σ̇c = Lc : (ε̇c − αc Ṫ ) (A.1a)

σ̇ = L : (ε̇− α Ṫ ) (A.1b)

where c = 1, 2 for the two interacting inclusions in phase # 1 and phase # 2. αc, α, and Ṫ are
the thermal expansion tensor of an individual inclusion, the overall thermal expansion tensor,
and the temperature increment, respectively. The strain rates of an individual inclusion in
phase # 1 and # 2 are given by:

ε̇1 = X1 : Y1 : ε̇− X1 : Z1 : L : α Ṫ + X1 : W1 : L2 : α2 Ṫ + X1 : V−11 : L1 : α1 Ṫ (A.2a)

ε̇2 = X2 : Y2 : ε̇− X2 : Z2 : L : α Ṫ + X2 : W2 : L1 : α1 Ṫ + X2 : V−12 : L2 : α2 Ṫ (A.2b)

where the overall thermal coefficient α = L−1 :
〈
L1 : α1 + L2 : α2

〉
and

X1 =
(
I− V−11 : S1 : V−12 : S2

)−1
(A.3a)

Y1 = V−11 :
[
(L + Q1) + S1 : V−12 : (L + Q2)

]
(A.3b)

Z1 = V−11 :
(
S1 : V−12 + I

)
(A.3c)

W1 = V−11 : S1 : V−12 (A.3d)

where X2, Y2, Z2, and W2 can be obtained interchanging indexes 1 and 2 in Eq.(A.3) with

V1 = L1 − L : (I− T1 : U1) (A.4a)

Q1 = L : (T1 : U1 − T1 − I) (A.4b)

S1 = L : T1 (A.4c)

and that V2, Q2, and S2 can be obtained interchanging indexes 1 and 2 in Eq.(A.4).
The results above have been verified that A1 = X1 : Y1 and A2 = X2 : Y2 at Ṫ=0.
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Appendix B. Deviations of local rotation-rates

The calculation of the deviations of local rotation-rates from the average rotation-rate is
similar to that for a two-site VPSC by Lebensohn and Canova [25].

Rewirte Eq. (3) as:

˜̇ε1 = P11 : ε̇∗1 + P12 : ε̇∗2 (B.1a)

˜̇ε2 = P21 : ε̇∗1 + P22 : ε̇∗2 (B.1b)

Inverting Eq.(B.1), we obtain

ε̇∗1 = T1 : U1 : ˜̇ε1 − T1 : ˜̇ε2 (B.2a)

ε̇∗2 = −T2 : ˜̇ε1 + T2 : U2 : ˜̇ε2 (B.2b)

where:

T1 =
(
P22 : P12

−1 : P11 − P21

)−1
(B.3a)

U1 = P22 : P12
−1 (B.3b)

and where T2 and U2 can be obtained interchanging indexes 1 and 2 in Eq.(B.3).
Deviations of the local strain rate from the average rotation-rates are calculated as:

˜̇ω1 = Y11 : ˜̇ε1 + Y12 : ˜̇ε2 (B.4a)

˜̇ω2 = Y21 : ˜̇ε1 + Y22 : ˜̇ε2 (B.4b)

where Yαβ tensors are defined as:

Y11 = Π11 : T1 : U1 −Π12 : T2 (B.5a)

Y12 = Π12 : T2 : U2 −Π11 : T1 (B.5b)

Here, Παβ are anti-symmetric Eshelby tensors, and Y22 and Y21 can be obtained by inter-
changing indexes 1 and 2 in Eq.(B.5). Related derivations and expressions for the two-site
Eshelby tensors refer to Berveiller et al. [31] and Lebensohn and Canova [25].
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transition state theory, International Journal of Plasticity 93 (2017) 251 – 268.

[9] Y. Tomota, H. Tokuda, Y. Adachi, M. Wakita, N. Minakawa, A. Moriai, Y. Morii,
Tensile behavior of trip-aided multi-phase steels studied by in situ neutron diffraction,
Acta Materialia 52 (20) (2004) 5737 – 5745.

[10] M. R. Daymond, M. Preuss, B. Clausen, Evidence of variation in slip mode in a poly-
crystalline nickel-base superalloy with change in temperature from neutron diffraction
strain measurements, Acta Materialia 55 (9) (2007) 3089 – 3102.

[11] O. Muransky, P. Sittner, J. Zrnik, E. C. Oliver, In situ neutron diffraction investigation
of the collaborative deformation–transformation mechanism in trip-assisted steels at
room and elevated temperatures, Acta Materialia 56 (14) (2008) 3367 – 3379.

[12] B. M. B. Grant, E. M. Francis, J. Q. da Fonseca, M. R. Daymond, M. Preuss, Defor-
mation behaviour of an advanced nickel-based superalloy studied by neutron diffraction
and electron microscopy, Acta Materialia 60 (19) (2012) 6829 – 6841.

[13] E. M. Francis, B. M. B. Grant, J. Q. da Fonseca, P. J. Phillips, M. J. Mills, M. R.
Daymond, M. Preuss, High-temperature deformation mechanisms in a polycrystalline
nickel-base superalloy studied by neutron diffraction and electron microscopy, Acta
Materialia 74 (2014) 18 – 29.
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