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Synthesis, oligonucleotide 
incorporation and fluorescence 
properties in DNA of a bicyclic 
thymine analogue
Christopher P. Lawson1, Anders F. Füchtbauer  2, Moa S. Wranne2, Tristan Giraud2, 
Thomas Floyd2, Blaise Dumat2, Nicolai K. Andersen2, Afaf H. El-Sagheer3,4, Tom Brown  3, 
Henrik Gradén5, L. Marcus Wilhelmsson2 & Morten Grøtli  1

Fluorescent base analogues (FBAs) have emerged as a powerful class of molecular reporters of location 
and environment for nucleic acids. In our overall mission to develop bright and useful FBAs for all natural 
nucleobases, herein we describe the synthesis and thorough characterization of bicyclic thymidine (bT), 
both as a monomer and when incorporated into DNA. We have developed a robust synthetic route for 
the preparation of the bT DNA monomer and the corresponding protected phosphoramidite for solid-
phase DNA synthesis. The bT deoxyribonucleoside has a brightness value of 790 M−1cm−1 in water, 
which is comparable or higher than most fluorescent thymine analogues reported. When incorporated 
into DNA, bT pairs selectively with adenine without perturbing the B-form structure, keeping the 
melting thermodynamics of the B-form duplex DNA virtually unchanged. As for most fluorescent base 
analogues, the emission of bT is reduced inside DNA (4.5- and 13-fold in single- and double-stranded 
DNA, respectively). Overall, these properties make bT an interesting thymine analogue for studying 
DNA and an excellent starting point for the development of brighter bT derivatives.

Intrinsic and extrinsic fluorophores including fluorescent base analogues (FBAs) are proven to be vital tools with 
wide-ranging applications in biology and biotechnology as molecular probes, reporters and labels for nucleic 
acids1–4. For example, they facilitate precise, real-time tracking of labelled components in a living system5. Over 
the last two decades, a multitude of fluorescent nucleobase moieties have been synthesized6–8. Initially, this 
involved the attachment of fluorescent labels to native nucleosides via a non-emissive linker, which allowed them 
to report on e.g. changes in the microenvironment around nucleic acids9. However, since these fluorophores gen-
erally protrude significantly from the nucleic acid structure, they may interfere with the mobility and geometry 
of their hosts, perturbing the delicate biochemical balance critical for optimal biological function. An alternative 
approach involves the design and synthesis of modified nucleosides with intrinsic fluorescence. These FBAs can 
mimic the shape and hydrogen-bonding ability of the natural nucleobases and can be incorporated directly into 
DNA- or RNA-strands, chemically or enzymatically, often causing minimal perturbation of the nucleic acid struc-
ture6–8. Their location within the nucleic acid structure ensures that they report on the properties of the nucleic 
acid architecture under investigation rather than on their own intrinsic dynamics (with a few exceptions such 
as 2-AP)10. However, the size, shape and base-pairing restrictions imposed on them as analogues of the natural 
nucleobases make it difficult to improve the brightness and significantly modulate their excitation and emission 
to longer wavelengths.
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While there are now several examples of adenine and cytosine analogues that show high brightness within 
nucleic acids, bright examples of thymine FBAs are less common. In reports by Eldrup et al., a series of 
1,8-naphthyridin-2(1 H)-ones were presented as novel bicyclic (bT, Fig. 1a, left) and tricyclic (tT) analogues of 
thymine, some of which were found to be more efficient than thymine in the recognition of adenine in peptide 
nucleic acids (PNAs) duplex and triplex structures11,12. A preliminary photophysical analysis of these thymine 
PNA monomers revealed similarities (data not shown) to the bright and stable donors tC and tC°, which we pre-
viously reported, for instance, as part of the first FBA FRET-pair (Fig. 1b)13–15.

Pursuant to our interest in the development and characterization of FBAs for each natural nucleobase, we here 
report the synthesis and incorporation into DNA of the deoxyribose-derivative of bT (Fig. 1a, right), and charac-
terize its base-mimicking and fluorescence properties inside DNA. We have recently shown that the photophysi-
cal properties of the excellent, but not so bright, adenine analogue, quadracyclic adenine (qA)16, was significantly 
improved by minor alterations to the scaffold, producing the bright and useful analogues qAN1 and pA17–19. We 
therefore envision that the bT scaffold will serve as an excellent starting point for the development of similarly 
bright thymine analogues with interesting photophysical properties.

Results and Discussion
Synthesis of the bT deoxyribonucleoside. Unlike the PNA monomer of bT reported by Eldrup et al.11, 
a deoxyribose bT analogue (1, Fig. 2a) has no linker to the naphthyridinone core. We therefore envisioned that 
the target molecule (2) required for oligonucleotide synthesis could be obtained from a Heck coupling reac-
tion between the protected glycal (3) and a suitably activated halo-naphthyridinone, such as 4 or 5 (Fig. 2). The 
halo-naphthyridinone could be prepared from commercially available 1,8-naphthyridin-2(1 H)-one (6).

Several reports for the synthesis of glycals exist in the literature (Fig. 2b)20–22. An initial attempt was made 
to synthesise 3, utilising the protocol reported by Walker et al22. However, the di-protected glycal 7 was only 
obtained in moderate yield. Low yields had been reported for small-scale attempts on the subsequent selec-
tive deprotection of the 1° alcohol22, but in our experiments, the product was only isolated in very poor yields 
(<10%), even upon scale-up of the reaction, with the fully deprotected glycal being the major component of the 
reaction mixture. The glycal 3 was eventually synthesised utilising a modified version of the protocol reported by 
Temburnikar et al. (Fig. 2b) starting from thymidine21. In our experiments, the selective deprotection of the 1° 
alcohol 8 utilising BF3 etherate:TBAF (1:1) described in the original report gave low yields with high variability. 
However, running the reaction at 0 °C in TFA:water (10:1) for 4 hours was reliable and reproducible, yielding the 

Figure 1. (a) The structure of the PNA- and DNA-derivative of bicyclic thymine (bT), base-paired with 
adenine. (b) The structure of tC/tC°, base-paired with guanine. R denotes the sugar-phosphate backbone.

Figure 2. (a) Retrosynthetic analysis. (b) Synthetic routes to the glycal 320,21.
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desired compound 9 in excellent yield (92%). Treatment of 9 with ammonium sulphate in HDMS generated glycal 
3 in a very good yield (85%).

Initial attempts to synthesise the 3-halo-1,8-naphtyridin-2(1 H)-one required as the coupling partner for 
the proposed Heck reaction by direct iodination of 1,8-naphthyridin-2(1 H)-one (6, Fig. 2) to afford 3-iodo-
1,8-naphthyridin-2(1 H)-one (5) were unsuccessful. This was also the case for attempts to construct the B 
ring with the halogen in place via condensation reactions or by ring-closing metathesis protocols. 3-Bromo-
1,8-naphthyridin-2(1 H)-one (4) was eventually obtained from a modification of a previously reported method 
used in the direct conversion of the commercially available 3-carboxylic acid derivative (10) to the corresponding 
bromide (Table 1)23. In our hands, the reported conditions resulted in a complex mixture containing approxi-
mately 20% of 4, as indicated by UPLC-MS/UV analysis, along with a similar amount of di-brominated product 
(4a). Interestingly, changing the solvent to THF resulted in a very clean reaction to 4a, thus providing a useful 
entry into 6-substituted bT-derivatives (Table 1). Following a process of enhancements to improve the isolated 
yields of the desired product (Table 1), 4 was efficiently and reproducibly isolated in quantitative yield and excel-
lent purity following precipitation from the reaction mixture.

Employing 4 directly in the Heck reaction afforded 1 in a low yield (30%), after a challenging and laborious 
purification. Trans-halogenation by the protocol reported by Klapars et al., however, afforded 5 in a moderate 
yield (54%)24. Utilising 5, 1 was obtained in good yield (82% following purification by HPLC) via a two-step pro-
cess involving a Heck reaction followed by reduction (Fig. 3). Compound 1 was DMTr-protected and converted 
to the phosphoramidite monomer of bT (2) using standard procedures. We envision that this synthetic route 
should be capable of accommodating simple variations in the substitution pattern of bT, thus allowing the rapid 
generation of bT-derivatives from 10 or derivatives thereof.

Photophysical properties of the bT deoxyribonucleoside. The photophysical properties of the bT 
deoxyribonucleoside (1) were examined prior to incorporation into oligonucleotides. The absorption spectra of 
bT in water and ethanol are characterized by a structured long-wavelength peak at 321 and 323 nm respectively, 
with a molar absorptivity of around 15000 M−1 cm−1 in both cases (Fig. 4). The emission spectra of the bT nucle-
oside show a less structured single emission peak with a maximum at 368 nm in water and 370 nm in ethanol, 
respectively. The quantum yield of bT is 5.1% in water and 5.9% in ethanol, resulting in brightness (ε·ΦF) values 
of 790 and 840 M−1 cm−1, respectively. This is comparable to or higher than the values reported for most thymi-
dine/uridine analogues in water, such as 5-(furan-2-yl)-2′-deoxyuridine (ε·ΦF = 330)25, DMAT (ε·ΦF = 87)26, xT 
(ε·ΦF = 1020 in MeOH)27 or the pyrenyl-deoxyuridines (1PydU and 2PydU; ε·ΦF ≈ 500 in MeOH)28, but lower 
than a few bright thymine analogues, such as, thU (ε·ΦF = 1300)29, FCU (ε·ΦF = 4800)30 and BgQ (ε·ΦF = 12300)31.

Incorporation of bT into DNA oligonucleotides. To study the effect on DNA structure and stability 
when thymine is replaced by bT, 16 bT-modified sequences were synthesized, wherein bT was flanked by all 
combinations of neighbouring bases (Table 2). The corresponding unmodified and complementary sequences 
were also synthesized, as well as sequences for a mismatch study. For details of the solid-phase oligonucleotide 
synthesis, see the Supporting Information.

Conformation and stability of bT-modified duplexes. Circular dichroism (CD) analysis of the 16 
modified and unmodified strands annealed with their complementary sequences shows that all bT-modified 
duplexes exhibit the archetypal characteristics of B-form DNA, i.e. positive bands at 260 and 280 nm and a neg-
ative band around 245 nm (Figures S1 and S2), suggesting that bT-modified duplexes adopt a normal B-form 
geometry32. There are minor differences between CD-spectra of modified and unmodified duplexes, but these 
most likely originate from differences in the absorption spectra between bT and thymine. Interestingly, the 
long-wavelength absorption band of bT was only observed in the CD spectra of duplexes where cytosine flanks 
bT on the 5′-side (Figure S3). For some base analogues, such as tC and 2-AP, the long-wavelength absorption 

Conditions T (°C)
Conversion to 4
(UPLC-MS/UV) Comments

Py/DMF/Br2 (10 equiv.) 105 ~20% Complex mixture including 4 and 4a

Py/THF/Br2 (10 equiv.) 100 0% Exothermic; 4a only

Py/THF/Br2 (2 equiv.) 100 ~30% 4 and 10 only

DABCO/THF/Br2 (2 equiv.) 100 0%

DMAP/H2O/K2CO3/Br2 (2 equiv.) 100 0% Decarboxylation

DMAP/THF/DABCO/Br2 (2 equiv.) 100 — Complex mixture of products

DMAP/THF/Br2 (2 equiv.) 100 — Complex mixture of products

Py/THF/DMAP (20 mol%)/BBr3 (20 mol%)/Br2 (2 equiv.) 80 97% Clean conversion to 4

Table 1. Summary of the enhancement process.
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band is observed in CD33,34, whereas for others, such as qA or tC°, no such band is observed16,35. Base analogues 
where the appearance of the long-wavelength absorption band is dependent on the surrounding bases are rare. 
Further studies of bT may therefore help shed light on the molecular basis of this induced CD in nucleobase 
stacks – a phenomenon that is still not fully understood.

The thermal stabilities of the bT-modified and the corresponding unmodified DNA duplexes are summa-
rized in Table 2. Overall, incorporation of bT has a negligible effect on the stability of the duplex, and on average 
decreases the stability by only 0.4 °C, a desirable feature that is relatively uncommon among FBAs, although a few 
thymine analogues have been shown to leave the melting temperature essentially unchanged when incorporated 
into a duplex sequence25,36.

Thermal stability was also measured for mismatched sequences where bT is positioned opposite either 
cytosine, guanine or thymine instead of the matching adenine. This was done for three different nearest bT 
neighbours, GA (only purines), CT (only pyrimidines) and TA (mix) and the results are shown in Fig. 5a. All mis-
matches lower the melting temperature considerably, indicating that bT is selective towards adenine. A mismatch 
with cytosine lowers the melting temperature by 12.5 °C on average, while guanine and thymine mismatches 
both give an average decrease of 5.6 °C. This is consistent with previous observations that the dual pyrimidine 
mismatch (C-T) is particularly unfavourable37–39.

Photophysical properties of bT inside DNA. Representative absorption and emission spectra of bT 
in single- and double-stranded DNA (ssDNA and dsDNA, respectively) are shown in Fig. 5b, with the corre-
sponding spectra measured for the bT deoxyribonucleoside in water. The quantum yields of bT inside DNA are 
reported in Table 3, together with the wavelength of the lowest energy absorption and emission maximum. In 
DNA, the absorption maximum of bT is slightly red-shifted compared to the monomer (on average 325 nm and 

Figure 3. Synthesis of the phosphoramidite nucleoside of bT (2).

Figure 4. Molar absorptivity (dashed) and normalized fluorescence (solid) spectra of the bT deoxyribonucleoside 
(1) in water and ethanol.
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329 nm for ssDNA and dsDNA respectively, compared to 321 nm for the deoxyribonucleoside). The wavelength 
of the lowest energy emission maximum is mildly sensitive to neighbouring bases, with average values of 369 
and 375 nm for ssDNA and dsDNA, respectively. The molar absorptivity of the lowest energy transition varies 
slightly with neighbouring bases with average values of 11500 and 6200 M−1 cm−1 in ssDNA and dsDNA, respec-
tively. Hypochromicity is seldom reported for fluorescent base analogues. However, when comparing a mono-
meric chromophore to the same chromophore inside duplex DNA, hypochromicities of 10–50% are frequently 
observed, and, consequently, the 58% decrease in molar absorptivity for bT is high, but not remarkable40. The 
hypochromicity can be attributed to strong stacking interaction effects between bT and the surrounding nucle-
obases when forming single- and double-stranded DNA.

The quantum yield of bT varies substantially depending on the neighbouring bases. Overall, bT exhibits an 
average quantum yield of 1.1% in ssDNA and 0.4% in dsDNA, corresponding to 4.5-fold and 13-fold quench-
ing, respectively. The highest quantum yield in dsDNA (1.5%) is obtained for TT, with thymines as 3′- and 
5′-neighbours. From Table 3 it can be concluded that thymine, in general, is the least quenching neighbour while 
guanine is the most quenching one. Quenching by guanine has been observed for many other FBAs (e.g. 2-AP41, 
AT42, and BPP9), and is commonly attributed to the electron donating properties of guanine43. In contrast, thy-
mine has the lowest propensity of the four natural DNA-bases to donate electrons43. This suggests that electron 
transfer from guanine plays an important role in the quenching of bT inside DNA.

Sequence 
namea DNA sequenceb

Tm
bT 

(°C)
Tm

T 
(°C)

ΔTm 
(°C)

AA 5′-d(CGCAA(bT)ATCG)-3′ 41.5 41.8 −0.3

AC 5′-d(CGCAA(bT)CTCG)-3′ 46.2 47.0 −0.8

AG 5′-d(CGCAA(bT)GTCG)-3′ 47.7 48.8 −1.1

AT 5′-d(CGCAA(bT)TTCG)-3′ 42.9 42.4 0.5

CA 5′-d(CGCAC(bT)ATCG)-3′ 45.8 46.4 −0.6

CC 5′-d(CGCAC(bT)CTCG)-3′ 49.5 50.7 −1.2

CG 5′-d(CGCAC(bT)GTCG)-3′ 51.0 52.5 −1.5

CT 5′-d(CGCAC(bT)TTCG)-3′ 47.3 47.9 −0.6

GA 5′-d(CGCAG(bT)ATCG)-3′ 44.3 44.8 −0.5

GC 5′-d(CGCAG(bT)CTCG)-3′ 50.9 51.4 −0.5

GG 5′-d(CGCAG(bT)GTCG)-3′ 51.0 51.0 0.0

GT 5′-d(CGCAG(bT)TTCG)-3′ 47.8 48.0 −0.2

TA 5′-d(CGCAT(bT)ATCG)-3′ 42.8 42.7 0.1

TC 5′-d(CGCAT(bT)CTCG)-3′ 46.6 46.4 0.2

TG 5′-d(CGCAT(bT)GTCG)-3′ 48.1 48.2 −0.1

TT 5′-d(CGCAT(bT)TTCG)-3′ 45.4 45.5 −0.1

Table 2. Melting temperatures of bT-modified duplexes (Tm
bT), unmodified duplexes (Tm

T), and the difference 
(ΔTm) between them. aSequences are named by the bases neighbouring bT on the 5′- and 3′-sides, respectively. 
bUnmodified samples contain a thymine instead of bT. Duplexes were formed by hybridization with the 
complementary strand as described in the experimental section. The melting temperatures were calculated as 
the maximum of the first derivative of the UV-melting curves, with a standard error of ≤0.6 °C. For individual 
error values, see Table S1.

Figure 5. (a) Decrease in melting temperature upon base pairing bT with cytosine, guanine or thymine instead 
of adenine for three different sets of nearest bT neighbours (CT, GA and TA). The melting temperatures were 
calculated as the maximum of the first derivative of the UV-melting curves with a standard error of ≤0.6 °C. 
(b) Molar absorptivity (dashed) and normalized fluorescence (solid) spectra of the bT monomer (1) in water 
(black), bT-containing ssDNA (TT, red) and bT-containing dsDNA (TT, blue). Measurements were performed 
in phosphate buffer, pH 7.4, 150 mM Na+.
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Overall, the brightness of bT is quenched when transitioning from ssDNA to dsDNA (see Table S2). We 
therefore investigated the potential of bT as an internal DNA probe of DNA melting, by determining fluores-
cence melting curves on four samples (AA, AC, CT and TT). Samples were chosen to include one case where 
the difference in brightness arises only from the difference in molar absorptivity (AA) as well as three cases with 
various degrees of quenching upon duplex formation (AC, CT and TT). In all four cases there is a clear difference 
between the brightness at low and high temperature, see Figure S4. The melting temperature is on average 2.5 °C 
higher when determined by fluorescence compared to UV methods, for individual values see Table S3. The dif-
ference between the two methods could be due to that the UV-measurements shows the full melting whereas the 
fluorescence data indicate local melting around the bT probe.

The photophysical features of bT follow similar trends as most of the thymine FBAs that have been charac-
terized inside nucleic acids. Only a few thymine analogues have been characterized in nucleic acids, and most of 
those have been studied in one or just a few sequence contexts. In these studies, moderate to significant fluores-
cent quenching has been reported for 5-(furan-2-yl)-2′-deoxyuridine25, xT27, 1PydU and 2PydU28 inside DNA. 
One notable exception to this trend is DMAT, where the quantum yield increases upon incorporation into duplex 
DNA26. Overall continued development of novel fluorescent thymine analogues and more thorough characteri-
zation of previously reported ones in various nucleic acid contexts will be important for their future application 
in chemistry, biology and nanotechnology.

Conclusion
In summary, we have described a reliable synthetic route to the deoxyribose version of bicyclic thymine (bT), one 
that we foresee will prove to be a useful and general pathway for a range of bT-derivatives. Furthermore, we have 
demonstrated that bT acts as an excellent analogue of thymine and exhibits the same base-pairing characteristics 
as native thymine. bT is moderately fluorescent (ε·ΦF = 790 M−1 cm−1) in water, and, like most other thymine 
analogues, experiences significant quenching upon incorporation into DNA. A thorough investigation of nearest 
neighbour dependency of the quantum yield of a fluorescent thymine analogue is evaluated here for the first time. 
It reveals that bT is brightest when flanked by thymines, and most quenched when flanked by guanines, suggest-
ing that electron transfer is the principal quenching mechanism. Overall, bT appears to be an excellent thymine 
analogue, and we envision that the bT scaffold, like qA was for our bright adenine analogues qAN1 and pA, will 
serve as a strong starting point for the development of bright thymine analogues that retain the essential ability to 
form stable duplexes and to base-pair specifically with adenine.

Methods
Materials and instruments. All reactions were performed in flame-dried or oven-dried glassware under a 
nitrogen atmosphere unless otherwise noted. Reagents were purchased from various chemical vendors and either 
used as received or purified according to standard techniques. All solvents used for reactions were HPLC-grade 
and purchased dry. Microwave reactions were performed with a Biotage Initiator using single mode microwave 
irradiation with temperature and pressure control and with fixed hold time on. Reactions were monitored by TLC 
on silica gel plates analyzed under UV (254 nm), and by UPLC-MS (ESI/UV), using a Waters Acquity system 
equipped with either an Acquity UPLC HSS C18 column (1.8 µm, length 50 mm, ID 2.1 mm) running a gradient 

Samplea

ssDNA dsDNA

λAbs 
(nm)

λEm 
(nm)

ΦF
b

(%)
λAbs 
(nm)

λEm
(nm)

ΦF
b 

(%)

AA 326 369 0.4 328 377 0.4

AC 325 369 0.9 329 376 0.3

AG 326 367 0.2 329 379 0.1

AT 326 369 0.7 328 380 0.6

CA 325 369 1.0 328 372 0.3

CC 324 370 2.2 330 374 0.3

CG 326 368 0.3 330 378 0.1

CT 324 371 2.2 329 374 0.3

GA 327 368 0.2 327 372 0.1

GC 323 369 2.4 330 372 0.1

GG 326 368 0.2 326 372 0.1

GT 325 369 0.5 330 372 0.2

TA 325 369 1.0 329 377 0.9

TC 325 370 1.9 329 377 0.5

TG 324 368 0.3 328 373 0.1

TT 324 370 2.6 330 380 1.5

Table 3. Photophysical properties of bT in the 16 modified oligonucleotides in single- (ssDNA) and double-
stranded (dsDNA) environment. aFor sequences, see Table 2. Measurements were performed at room 
temperature in phosphate buffer, pH 7.4, 150 mM Na+, 12.5 mM phosphate. bQuantum yields were measured 
with quinine sulphate as reference (ΦF = 54.6% in 0.5 M H2SO4). The reported values have a standard 
error ≤ 0.1% and are the averages of two or more measurements.
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of water-MeCN (95:5) to water-MeCN (5:95), with the water eluent containing 1% formic acid (pH 3) or an 
Acquity UPLC BEH C18 column (1.7μm, length 50 mm, ID 2.1 mm) running a gradient of water-MeCN (95:5) to 
water-MeCN (5:95), with the water eluent containing 1% ammonium hydroxide (pH 10). Semi-automated flash 
column chromatography was performed on a Biotage HPFC SP4 Flash Purification System using pre-packed 
silica columns. HPLC purification was performed with ammonia as modifier on a preparative HPLC system with 
an Xbridge C18 column (10 µm, 250 × 50 mm). 1H and 13C NMR spectra were recorded at 300 K on a Bruker 
500 MHz system equipped with a CryoProbe. All chemical shifts are recorded in ppm and were calibrated relative 
to the deuterated solvent: CD2Cl2 (5.32 ppm for 1H and 54.00 ppm for 13C) or DMSO-d6 (2.50 ppm for 1H and 
39.52 ppm for 13C). 2D-NMR spectra (COSY) were used for detection of peaks overlapping with the deuter-
ated solvent. 31P NMR spectra were recorded on a Bruker AVIII400 nanobay instrument (162 MHz), and refer-
enced to external 85% orthophosphoric acid (0.00 ppm). LRMS analysis was performed on a Xevo G2-XS QT of 
Quadrupole Time-of-Flight mass spectrometer with a Waters Acquity CSH C18 column (1.7 µm, length 100 mm, 
ID 2.1 mm) running a gradient of 1–95% MeCN in water containing 0.1% formic acid.

Incorporation of bT into DNA-oligonucleotides and their purification. The oligonucleotide synthe-
sis was carried out on an Applied Biosystems 394 automated DNA/RNA synthesiser using a standard 1.0 μmole 
phosphoramidite cycle of acid-catalyzed detritylation, coupling, capping and iodine oxidation. All β-cyanoethyl 
phosphoramidite monomers were dissolved in anhydrous acetonitrile to a concentration of 0.1 M immediately 
prior to use. The coupling time for normal A, G, C, and T monomers was 60 s and this was extended to 840 s 
for the bT monomer. Stepwise coupling efficiencies and overall yields were determined by automated trityl cat-
ion conductivity monitoring and in all cases were >98.0%. Cleavage of oligonucleotides from the solid support 
and deprotection were achieved by exposure to concentrated aqueous ammonia for 60 min at room temper-
ature followed by heating in a sealed tube for 5 h at 55 °C. Purification of oligonucleotides was carried out by 
reversed-phase HPLC on a Gilson system using a Brownlee Aquapore column (C8, 8 mm × 250 mm, 300 Å pore) 
with a gradient of MeCN in aqueous triethylammonium bicarbonate (TEAB) increasing from 0% to 50% buffer B 
over 30 min with a flow rate of 4 mL/min (buffer A: 0.1 M TEAB, pH 7.0, buffer B: 0.1 M TEAB, pH 7.0 with 50% 
acetonitrile). Elution of oligonucleotides was monitored by ultraviolet absorption at 295 or 300 nm. After HPLC 
purification, oligonucleotides were freeze-dried then dissolved in water without the need for desalting. All oligo-
nucleotides were characterized by electrospray mass spectrometry using a Bruker micrOTOF II focus ESI-TOF 
MS instrument in ESI-mode. Data were processed using MaxEnt.

Molar absorptivity of the bT monomer. The molar absorptivity of the bT nucleoside in water and EtOH 
was determined with bT samples of known concentration in water (1, 2 and 4 μM) and EtOH (2 and 6 µM). 
All samples were prepared from a 3 mM stock of bT in EtOH (the final bT samples in water contained 0.16%, 
0.32% and 0.64% EtOH, respectively). Absorption was measured between 200 and 500 nm using a Cary 5000 
(Varian Technologies) with the spectral bandwidth set to 1 nm and at a scan rate of 200 nm min−1. Using the 
Beer-Lambert law, the molar absorptivity of bT at the maximum of the lowest energy transition and at 260 nm 
was determined for both solvents.

Preparation of oligonucleotide samples. Sodium phosphate buffer (12.5 mM phosphate, 150 mM Na+, 
pH 7.4) was used for all measurements unless otherwise stated. Before hybridization, absorption spectra between 
230 and 500 nm were recorded on a Cary 5000 (Varian Technologies) for each single strand. The absorption 
at 260 nm was used for calculating the concentration, where the oligonucleotide molar absorptivity at 260 nm 
was taken as the linear combination of the molar absorptivity of the individual bases at this wavelength, multi-
plied by 0.9 to account for the effect of base stacking. The values used for the molar absorptivity of each base at 
260 nm are: ε(T) = 9300 M−1 cm−1, ε(C) = 7400 M−1 cm−1, ε(G) = 11800 M−1 cm−1, ε(A) = 15300 M−1 cm−1 and 
ε(bT) = 4500 M−1 cm−1. Hybridization was achieved by mixing each bT-modified strand with 15% excess of its 
complementary strand (to assure full hybridization of the modified strands) at room temperature, followed by 
heating to 95 °C and after 10 minutes at 95 °C cooling to 5 °C over a period of 12 hours. By measuring absorption 
on the single stranded DNA and hybridized duplexes (assuming the concentration is given by the absorption at 
260 nm using the molar absorptivities of the DNA bases as stated above) the molar absorptivity of bT in ss- and 
dsDNA at the maximum of the lowest energy transition were determined using the Beer-Lambert law.

DNA UV-melting and circular dichroism (CD). DNA melting curves were recorded on a Cary 4000 
(Varian Technologies) with a programmable multi-cell temperature block, by heating from 10 °C to 80 °C with a 
rate of 0.5 °C/min and subsequent cooling to 10 °C at the same rate. The absorption at 260 nm was recorded every 
0.5 °C for two cycles. The duplex concentration was 3 μM in all measurements. The melting temperatures were cal-
culated as the maximum of the first derivative of all four UV-melting/annealing curves after FFT-filtered smooth-
ing. Circular dichroism (CD) spectra were recorded on a Chirascan CD spectrometer (Applied Photophysics) 
scanning between 200–450 nm, using a bandwidth of 1 nm for both excitation and emission, an integration time 
of 0.5 s and four repetitions. The duplex concentration was 6 μM in all measurements, and all spectra were cor-
rected for background contribution.

Fluorescence measurements. Steady-state emission spectra were recorded on a SPEX Fluorolog 3 (JY 
Horiba) using an excitation wavelength of 325 nm. The emission was recorded between 330 and 640 nm at a scan 
rate of 600 nm min−1, with the excitation and emission monochromator slit widths set to 1.5 and 6 nm, respectively. 
Quantum yields were determined using quinine sulphate (ΦF = 54.6%) in 0.5 M H2SO4 as reference, using the same 
settings as above, but recording the emission between 330–700 nm. The quantum yield, ΦF, is calculated as:
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where η is the refractive index of the solvent, I is the integrated fluorescence intensity and A is the absorbance at 
the excitation wavelength. All measurements were performed at least twice, using the monomer sample concen-
trations listed above, and a sample concentration of 6 µM both for ssDNA and dsDNA.

Fluorescence melting. Fluorescence melting curves were recorded on a Cary Eclipse (Varian Technologies) 
with a programmable multi-cell temperature block, by heating from 20 °C to 85 °C with a rate of 0.5 °C/min and 
subsequent cooling to 20 °C at the same rate using an excitation wavelength of 325 nm. The emission at 380 nm 
was recorded every 0.5 °C for two cycles with the excitation and emission monochromator slit widths both set to 
5 nm. The duplex concentration was 6 μM in all measurements. The melting temperatures were calculated as the 
maximum of the first derivative of all four UV-melting/annealing curves after FFT-filtered smoothing.
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