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Kinetic Monte Carlo (kMC) is an essential tool in heterogeneous catalysis enabling the understanding
of dominant reaction mechanisms and kinetic bottlenecks. Here we present MonteCoffee, which is a
general-purpose object-oriented and programmable kMC application written in python. We outline
the implementation and provide examples on how to perform simulations of reactions on surfaces and
nanoparticles and how to simulate sorption isotherms in zeolites. By permitting flexible and fast code
development, MonteCoffee is a valuable alternative to previous kMC implementations. Published by
AIP Publishing. https://doi.org/10.1063/1.5046635

I. INTRODUCTION

Understanding catalytic reaction kinetics is an essential
component to develop the field of heterogeneous catalysis.
Reaction kinetics can be evaluated through kinetic measure-
ments yielding a macroscopic view of the reaction, or through
computer-aided simulations that serve to understand micro-
scopic reaction mechanisms. In particular, methods based on
electronic structure calculations have become increasingly
important over the past decades.1–3 A general approach is to
link electronic structure calculations with mean-field kinetics,
which allows for understanding the average kinetic behavior
of uniform catalysts, where the kinetics can be formulated in
terms of coverages. However, for systems with different types
of sites, such as nanoparticles, there is a need to follow the
reaction in greater detail. A direct way of achieving this is
by solving Newton’s equations of motion, as is achieved by
Molecular Dynamic (MD) simulations. However, MD sim-
ulations are of limited use in reaction kinetics as the time
steps are on the order of vibrational frequencies, which renders
chemical reactions rare events. For example, in CO oxidation
to CO2, an adsorbed CO molecule makes about 1011 vibra-
tions per CO2 formation step. To overcome this time scale
separation issue, kinetic Monte Carlo4,5 (kMC) is often used
to simulate reaction kinetics. In kMC, a number of reactive
events are defined, and their occurrences are simulated by ran-
dom number generation. Thus, kMC simulations coarse-grain
phase-space to exclude vibrations and solely focus on chemical
transitions.

In the field of heterogeneous catalysis, several kMC
implementations use the lattice kMC method,6–11 which rep-
resents the system by a lattice of sites. One challenge in lattice
kMC is to model dynamic site-changes, such as redox reac-
tions, which has been tackled using multi-lattice approaches.2,6

Moreover, while a lattice-based approach provides a sim-
ple representation of the sites, the method is cumbersome
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to apply to complex geometries such as nanoparticles. As
an alternative to lattice kMC, graph-theoretical codes have
been developed,11,12 where a global neighbor list is used
to represent the site connectivity. This permits simulations
of complex geometries. In the present implementation, the
focus is on code flexibility, which is desirable as each system
where kMC is applied often is unique. We present a simple
and fully flexible framework that allows for rapid kMC code
development.

MonteCoffee is an open-source object-oriented pro-
grammable (OOP) application,13 which has the advantage of
quick code development and extensibility. The code is writ-
ten in python as this is a popular high-level programming
language, which is malleable and easy to comprehend. Addi-
tionally, python has the advantage that it can be combined
with other programmable applications such as the Atomistic
Simulation Environment14 (ASE). With an object-oriented
approach, a number of challenging tasks are straightforward,
such as advanced evaluation of adsorbate-adsorbate interac-
tions, dynamic system variations, and descriptor-based energy
landscapes. The code uses neighbor-lists to represent the site
connectivity, which is more flexible than the lattice kMC
method. Using neighbor-lists is similar to the graph-theoretical
approaches; however, in MonteCoffee, the user directly con-
trols the site-connectivity. The code implements the first-
reaction method (FRM) algorithm15 and other algorithms can
straightforwardly be implemented.

In this paper, the basic structure and functionality of
the MonteCoffee framework is outlined. The main focus
is the code implementation and possibilities for extension.
The capability of the code is demonstrated in two different
examples, namely, CO oxidation over a nanoparticle with a
descriptor-based energy landscape and adsorption isotherms
in a zeolite.

II. KINETIC MONTE CARLO

kMC simulations typically discretize phase-space into
a set of energy basins, which are separated by chemical
transitions. This avoids simulating vibrations and focuses on
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the chemical reactions.15 Thus, in kMC simulations, a sys-
tem is defined as a set of sites where a number of reactive
events can proceed. Event execution is simulated in time,
based on random number generation. This achieves the basic
purpose of kMC simulations, to solve the chemical master
equation

dPα

dt
=

∑
β

WαβPβ −WβαPα, (1)

where Pα is the probability for the system being in state α
and Wαβ is the transition rate from state β to α. Here, a
state is defined by a specific occupation of the sites. From the
generated states and transitions, data such as turnover frequen-
cies (TOFs) and coverages can be extracted and the detailed
reaction trajectory can be followed.

The MonteCoffee software implements the First Reaction
Method15 (FRM). FRM is similar to the Variable Step Size
Method (VSSM), also called the n-fold way.15 FRM executes
events chronologically based on randomly generated times of
occurrence,

tαβ = t −
lnu

Wαβ
, (2)

where tαβ is the time the event occurs, t is the current time,
and u is a random uniform number in [0, 1 [.

The FRM algorithm consists of three main parts, which
are illustrated in Fig. 1:

1. Initialize simulation (T,p), generate reaction times,
set time = 0: This part sets the reaction conditions and
initializes the system, sites, coverages, and lists used
for bookkeeping. The lists for bookkeeping can include

FIG. 1. The first reaction method algorithm.

coverages, time steps, the sites where events occurs,
etc. Moreover, the initial times of event occurrences are
generated, and the simulation time is set to 0.

2. Perform next event in queue: Performs the chronolog-
ically next event according to Eq. (2).

3. Advance time. Update local event-list: The simulation
time is updated to the occurrence time of the performed
event. Performing the event modifies the lattice locally
and nearby events are affected. To enhance performance,
the event-list is only updated locally. If nearest-neighbor
adsorbate-adsorbate interactions are used, the sites are
updated two nearest neighbor distances away from the
site where the event was performed.

The loop continues until the simulation has reached its end-
time tend. During a simulation, the lists that track statistics
grow considerably. Thus, memory is freed at regular intervals
by writing these lists to disc as python pickle-files.

kMC simulations are often challenging due to major
differences in reaction rates, where slow events are only
observed after accelerating the simulation. A rigorous accel-
eration scheme slowing down individual quasi-equilibrated
elementary steps was presented by Chatterjee and Voter16

and a proof justifying this method was given in Ref. 17. The
task of accelerating simulations is relatively simply achieved
in MonteCoffee as it uses custom functions to get rate-
constants and perform the events. Two acceleration schemes
are available in the code: Slowing down fast events by raising
energy barriers manually and the generalized temporal accel-
eration scheme of Dybeck et al.18 The generalized temporal
acceleration scheme involves artificially slowing down quasi-
equilibrated reaction channels to increase the time step of the
simulations.

III. OBJECT-ORIENTED PROGRAMMING

The current implementation uses object-oriented pro-
gramming (OOP), which is programming centered around
objects and classes. A class is a data-structure that contains
variables and functions and objects are specific instances of
a class. For example, one can define a Particle class and
instantiate a specific particle object by calling octahedron
= Particle(symbol=‘Pt’,a0=4.00). In this case,
an octahedral Pt nanoparticle object is instantiated with
a lattice constant of 4 Å. After instantiating an object,
its variables can be altered during code execution, e.g.,
as octahedron.symbol = ‘Au’, which changes the
element from Pt to Au. Classes can also contain func-
tions that are called to change the object. For example,
a function set a0(a new) can be defined for the spe-
cific particle to change the lattice constant to 3.98 as
octahedron.set a0(3.98).

In MonteCoffee, class inheritance is used, which means
that a base-class passes on some variables and functions to
derived classes. In the present implementation, inheritance
is used in a manner where base classes are templates for
the derived classes. This gives a good overview of the tasks
involved in defining a simulation. For example, all events
defined by the user are derived from a template-class named
EventBase, which ensures that all user-defined events has
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a function that calculates the rate-constants. Thus, if the user-
defined derived event class does not contain such a function,
the code will give an error message.

It is out of scope to discuss OOP in further detail as it is an
extensive subject, with different implementations depending
on the programming language. The interested reader is referred
to the python documentation19 for further information about
the use of OOP in python. In Secs. IV–VI, classes are named
beginning with an uppercase letter (e.g., Site), whereas objects
start with a lowercase letter (e.g., site).

IV. CLASSES AND FUNCTIONS

Figure 2 shows a general outline of the code modules. The
Monte Carlo engine is in the NeighborKMC module, which
communicates with a set of different modules, and handles
settings as well as simulation logging. The NeighborKMC
module relies on a list of events and a system that is composed
of a set of sites.

The MonteCoffee software provides classes and func-
tions to define and structure kMC simulations. To adapt the
code to a specific problem, classes are defined by the user
using inheritance. Figure 3 shows the main classes, essen-
tial variables, and functions in the code. This list of vari-
ables is restricted to those that are relevant to the present
discussion.

A. NeighborKMC class

The NeighborKMC class performs the simulations and is
responsible for the main functionality of the code. It contains
a number of variables: parameters is a python-dictionary
containing keys and values for temperatures, pressures, and
other parameters, which are passed on to the events. All key-
value pairs in parameters are written in the beginning of
the simulation log and it can conveniently be used to name or
comment a simulation. options is a list of settings loaded
from a separate file, which contains the frequency of data
saving, filenames, etc. time and tend are floats describ-
ing the current simulation time and the simulation end-time,
respectively. A central object for the NeighborKMC class is
the system, which is the System instance that the sim-
ulation is modeling. events is the list of reactive events,
and frm times is the list of generated times of occurrence
for the events. events is populated with Event objects in
the order they are defined. basin vars represent a set of
variables used to steer the generalized temporal acceleration
scheme.18

FIG. 2. The main modules and their relationships.

FIG. 3. The main classes, their variables, and functions.

The functions of the NeighborKMC class are mainly used
to perform the simulation. Upon instantiating a NeighborKMC
object, load events(params) is called to populate the
list events with the specified parameters such as tempera-
ture and pressures. params is a subset of parameters as
discussed below. When instantiating a NeighborKMC object,
cover system(species,coverage) is also called to
provide a certain coverage of surface species. run kmc()
sets time equal to zero and runs the kMC algorithm until
time has reached tend. The function frm init() ini-
tializes the kMC algorithm by generating the initial times
of occurrences for the events. frm step() takes a Monte
Carlo step by performing the next possible event in the
queue. After each step, frm update() is called, which
searches for events that have been enabled or disabled as
a consequence of the performed step. superbasin() is
responsible for handling the generalized temporal acceleration
scheme by slowing down the quasi-equilibrated events during a
simulation.

B. Event class

A kMC simulation proceeds using random numbers to
perform different reactions and here these events are defined
using classes. An Event class has three variables. A list
of user-defined parameters (params) used to calculate the
rate-constants. Examples of relevant parameters are pressures,
temperatures, and molecular masses. params differs from
the parameters variable of the NeighborKMC class as
it only contains the relevant parameters for the Event class.
The second variable is rev, which is an integer describing
the index of the reverse reaction. The third variable is alpha,
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which is the multiplication factor used to slow down quasi-
equilibrated events in the generalized temporal acceleration
scheme.

The class contains three functions: One is a function
possible(system, i site, i other) that during a
simulation determines if the event can occur at site num-
ber i site and co-participating sites indices i other. The
next function get rate(system, i site, i other)
is a user-defined function that, during simulation, returns
the rate-constant for the given event on the specified sites.
Finally, do event(system, i site, i other) per-
forms the event by modifying the relevant site objects in the
system.

The user defines the types of reactive events by
defining the event-types from the template base-class
(EventBase) using inheritance. An example is to define
COAdsEvent(EventBase) as a class that handles CO
adsorption events. The parenthesis (EventBase) means
that COAdsEvent is a class derived from EventBase.
In this example, the possible(system, i site,
i other) function returns True if the site is empty, and
the get rate(system, i site, i other) returns a
rate-constant from collision theory. do event(system,
i site, i other) changes the site occupation of i site
to be occupied by a CO molecule.

Reaction energies used to calculate the rate-constants are
stored in python dictionaries, which are connected to each user-
defined event class. It is left up to the user to define how the
rate-constants and energies are calculated and also to ensure
thermodynamic consistency. The energies can be functions of
occupations and alternative custom properties such as coor-
dination numbers or site-types. The entropy changes during
reactions and partition functions are also conveniently stored
as member variables of the event-classes.

C. System and site classes

The System class contains three variables: A list of
Site objects (sites), an optional ase.Atoms object
(atoms), and a neighbor list to keep track of site-connectivity
(neighbors). The sites list is used during the simula-
tion to manipulate site-properties, such as coverage. atoms
is used to associate ASE atoms with the kMC simulation,
which can be used for visualization of the kMC run. The
function identify neighbors() identifies neighboring-
sites that are connected and assigns them to the Site objects.
This function is user-defined and it is typically based on dis-
tances between atoms in the atoms object. neighbors
is the global neighbor-list consisting of the individual
neighbor-lists of the sites. Thus, neighbors defines the
global connectivity pattern. get ncovs(i site) returns
the coverage of the nearest neighbors to the site with index
i site.

The Site class defines a site by the following stan-
dard variables: stype is a user-defined integer describing
the type of site, which is used to distinguish the types of
sites, such as edges and corners. If desired, additional vari-
ables can be added to describe the reaction energy landscape.
For example, each site can be given a coordination number as a
reaction energy descriptor and a strain to perturb the reaction

energies. covered is an integer variable that describes the
occupation of the site. The meaning of this integer is decided
by the user, where, for example,covered = 0 can represent
empty sites and covered = 1 a CO-covered site. Multi-
dentate species can be implemented by changing the cov-
ered integer to a list covered = [other site index,
species integer]. ind is a list of integers used to asso-
ciate the site with an ase.Atoms object for visualization
purposes.neighbors is a list of integers that contains the site
index of neighbors-sites connected to the site. The indices in
neighbors are not related to ind, but are instead associated
with the global site list of the system object.

D. Simulation setup

To set up a simulation, the user needs to perform
two initial steps. Step 1: Define the list of sites that
defines the System. When defining the system, the func-
tion identify neighbors() must be implemented. For
example, this is achieved using the nearest neighbor distance
between surface atoms in an ase.Atoms object. Step 2:
Define one derived event-class for each possible elementary
step in the reaction scheme. The specific event-objects are
instantiated automatically at run time, and only the classes
must be defined by the user prior to the simulation. In this
step, reaction energies, entropic barriers, and rate-constants
are defined.

V. EXAMPLES

The program has been used in different applications,20–22

and the following two examples are included to describe the
workflow to set up a kMC simulation with MonteCoffee.
Reaction energies in these examples are obtained by Den-
sity Functional Theory23,24 (DFT) calculations, with details
presented in the Appendix.

A. CO-oxidation on nanoparticles

CO-oxidation over Pt nanoparticles is modeled by the
following reaction scheme:

CO(g) + ∗ ↔ CO∗,

CO∗ + ∗ ↔ ∗ + CO∗ (Diffusion),

O2(g) + 2∗ ↔ 2O∗, (3)

O∗ + ∗ ↔ ∗ + O∗ (Diffusion),

CO∗ + O∗ → CO2(g) + 2∗,

where ∗ denotes an empty site. In this example, the sites are
conveniently defined using an ase.Atom object. First an
octahedral cluster is instantiated as an ase.Atom object by
calling the following:

from ase.cluster import Octahedron
atoms = Octahedron(’Pt’,

length=18,
cutoff=6,
latticeconstant=4.00).

This instantiates an octahedral Pt nanoparticle with a lattice
constant of 4 Å. The atoms object can be understood as a list
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containing ase.Atom objects with information about chem-
ical symbols, positions, charges, etc. Further details can be
found in the ASE documentation.25

The generalized coordination number26,27 (CN) of the
sites is used to distinguish the types of sites. The CN of a
site is an extension of the conventional coordination number
that is defined by the first nearest neighbor coordination. One
site is defined for each surface atom on the particle, which
is identified by having a conventional coordination number
<12. The site in this example is a coarse-grained entity that
entails ontop, bridge, and hollow positions. Figure 4 shows
the CN of ontop sites on the considered truncated octahe-
dron by atomic coloring. Sites are instantiated with 50% ran-
domly distributed CO coverage and zero oxygen coverage,
which is set by the user in the cover system() func-
tion. The system object is simply defined by the collection
of sites and the function identify neigbors(). Here,
identify neighbors() creates a neighbor list for each
site based on distances in the associated ase.Atoms object.
Sites are neighbors if the associated atoms are separated by

the fcc nearest-neighbor distance

(
a
√

2

)
.

Reaction energies are based on DFT calculations using
CN as a descriptor (see the Appendix) as in Ref. 20. Adsorp-
tion energies, excluding adsorbate-adsorbate interactions, are
stored as functions of CN as

Eads
CO,Pt

(
CN

)
= 1.403 − 0.252(CN − 7.5), (4)

Eads
O,Pt

(
CN

)
= 0.975 − 0.218(CN − 7.5). (5)

The energy barrier for CO2 formation is calculated during the
simulation through a Brønsted-Evans-Polanyi (BEP) relation
in the CO and O adsorption energies

Ea = 2.95 eV − 0.824 eV ×
(
Eads

O,Pt + Eads
CO,Pt

)
. (6)

Adsorbate-adsorbate interactions are based on the nearest
neighbor occupations, which are retrieved as: system.get
neighbor covs(i site). The adsorbate-adsorbate inter-
actions are stored in a 3 × 3 python-list

R =
*..
,

0 0 0

0 ECO–CO EO–CO

0 ECO–O EO–O

+//
-
=
*..
,

0 0 0

0 0.19 0.30

0 0.30 0.32

+//
-

eV. (7)

FIG. 4. Ontop sites on the truncated octahedron colored according to CN.

Thus, the repulsive energy addition δE to species 1 (CO) on a
site is

δE =
∑

n

R1,cn . (8)

Here cn is the occupation on the nearest neighbor n, which is
0 for empty sites, 1 for CO, and 2 for O. The repulsions are
added to (4) and (5) during the simulation, which also affects
the barrier through (6). Diffusion barriers between isoenergetic
sites are set to 0.08 eV for CO and 0.58 eV for O. These barri-
ers are added to the difference in adsorption energies between
the sites for thermodynamic consistency. To speed up simula-
tion convergence, all diffusion barriers of CO are raised to a
constant value of 0.45 eV. This value ensures convergence of
the TOF.20 Similar approaches have been applied and justified
previously.15–18,20,28,29

For each reactive event, one needs to define the
function possible(system,i site,i other) that
returns True if the event presently is possible, the func-
tion get rate(system,i site,i other) that returns
the rate constant, and the function do event(system,
i site,i other) that modifies the occupation accord-
ing to the reaction. To enhance readability, we will not
repeat the input arguments to these functions in the following
discussion.

In the present example, one event is defined for each pos-
sible reaction in the scheme (3). For the CO adsorption event, a
class named COAdsorption is derived from the base class
EventBase. The class needs a number of parameters for
calculating the rate-constants: temperature (T ), a constant CO
pressure (pCO), CO mass (mCO), the site area (Asite), and the
CO sticking coefficient (s0). These parameters are stored on the
COAdsorption object. The possible() function returns
True if the site is empty. The get rate() function returns
the following collision theory rate-constant:

kads
i =

Asites0,ipCO
√

2πmCOkBT
, (9)

where i labels the site. The sticking coefficient of CO was set
to 0.9 for the facet sites and to 1 for edges and corners.

The function do event() covers the site with species
number 1 (CO). This is done by invoking the following:

system.sites[site_index].covered = 1.

The oxygen adsorption event class is defined in complete anal-
ogy to CO adsorption. The possible() function returns
True if the two neighboring sites passed to the function
are unoccupied. The do event() function changes the
occupation of these sites to 2 (O covered).

To implement the desorption events, similar classes are
defined. However, the desorption rate-constants are calculated
from the equilibrium constants and adsorption rate-constants.
The possible() function returns true if the site is covered
with 1 (CO) for CO desorption and two neighboring sites with 2
(O) for oxygen desorption. For CO desorption, get rate()
returns the following desorption rate-constant:

kdes
i =

kads
i

Ki
, Ki = exp

(
−∆Gi

kBT

)
, (10)
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where ∆Gi is the Gibbs free energy of adsorption, which
depends on the adsorbate-adsorbate interactions. The enthalpic
part of ∆Gi is given by (4) and (5). The entropic part of ∆Gi is
implemented as the entropy difference between the gas-phase
molecule in the ideal-gas approximation and the adsorbate in
the harmonic approximation.

The CO2 formation event is modeled as irreversible. The
possible() function returns true if CO is on the site and O
is on the neighbor site passed to the function. get rate()
returns a rate-constant derived from transition state theory,30

kTST
i,j =

kBT
h

exp*.
,

−∆G‡i,j
kBT

+/
-
, (11)

where ∆G‡i,j is the Gibbs-free energy barrier for the CO∗ + O∗

→ CO2(g) + 2∗ reaction with CO on site i and O on site j. The
enthalpy is defined in (6), and the entropic part of the barrier is
treated in the harmonic approximation. do event() simply
assigns 0 to both the site and neighbor site in question.

Events are also defined for diffusion of adsorbed CO and
O. possible() returns True if an adsorbate covers the site
in question and the neighbor site is free. The get rate()
function returns a transition state theory rate equivalent
to (11).

Figures 5(a) and 5(b) show the CO and O coverage on the
different sites as a function of time at 700 K. For CO, the edges
and corners have the highest coverages close to 100%, whereas
the coverages on the (100) and (111) facets are about 33% and
15%, respectively. For oxygen, (100) has the highest coverage
of ca 20%, the (111) facets have about 10%, whereas edges and
corners have coverages below 5%. The relative magnitudes of
coverages are explained by the fact that corners have the high-
est reactivity, edges have the next highest reactivity, (100) and
finally (111) sites have the lowest reactivity. The fact that edges
and corners have small O coverages is owing to CO blocking.
However, small fluctuations allow transient oxygen coverages
on edges and corners. For both CO and O, there is an initial
equilibration period, which in the present case corresponds to
roughly half the simulation time. The CO coverage has a larger
fluctuation amplitude and frequency as compared to oxygen.
Figure 5(c) shows the simulated Turnover frequency (TOF) as
a function of temperature. The TOF is calculated by logging
the number of times the CO2 formation event is performed
after the initial equilibration. Error-bars stem from an aver-
age taken over 16 simulations. The TOF follows a light-off
behavior where the value increases rapidly at about 800 K. The
rapid increase is due to CO desorption, which enables dissocia-
tive oxygen adsorption and thus CO2 formation. The present
example illustrates how simulations over complex geometries
can be performed by using an ase.Atoms object to define
the sites and scaling relations to define the reaction energy
landscape.

B. Methane adsorption in zeolites

To demonstrate the generality of the present implemen-
tation, in this example, methane adsorption is modeled in a
zeolite. The adsorption, desorption, and diffusion are modeled
using the following scheme:

FIG. 5. (a) CO coverage and (b) O coverage of different site-types plotted as
a function of time at 700 K. (c) Average turnover frequency of CO oxidation
as a function of temperature. CO pressure: 2 mbar, O2 pressure: 1 mbar.

CH4(g) + ∗ ↔ CH∗4,

CH∗4 + ∗ ↔ ∗ + CH∗4.
(12)

To simulate adsorption isotherms in a porous system such as a
zeolite, the sites are conveniently put on a 3-dimensional grid
of unit-cells. Such a grid is illustrated in Fig. 6, where there
are four distinct types of cells (stype): 0—bulk, 1—facet,
2—edge, and 3—corner. The facets have one entry avail-
able for adsorption, the edges have two, and the corners have
three entries. The Site object is assigned a position vector
(i, j, k), which is used to identify the site-type. For example,
for bulk sites, all indices are larger than zero and smaller than
the number of sites-1. Non-bulk sites are exposed to the gas
and are tagged with a custom variable gas site = True.
The identify neighbors() function identifies neigh-
bor cells as those with distance 1, which is calculated in the
lattice-space by the metric

d =
√

(i2 − i1)2 + (j2 − j1)2 + (k2 − k1)2, (13)

where d is the distance between two cells at positions (i2, j2,
k2) and (i1, j1, k1).

The reactive events are defined in the next step. For CH4

adsorption, possible() returns True in empty non-bulk
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FIG. 6. Upper: Atomistic model of MFI zeolite channels. Lower: A cubic
lattice model system with interconnected cells. Points indicate position in the
lattice space.

cells (gas site = True). get rate() returns the col-
lision theory rate-constant with constant CH4 pressure as in
(9), multiplied by the number of entries. do event() simply
changes system.sites[i site].covered to 1. For
CH4 desorption,possible() returnsTrue if the site is CH4

covered and non-bulk. The get rate() function returns
the desorption rate-constant defined in (10) multiplied by the
number of entries, and do event() changes covered to 0.

The energy landscape is modeled by DFT calculations
(see the Appendix). The CH4 adsorption energy in silicalite of
zeolite framework type MFI silicalite is found to be −0.38 eV,
excluding zero point energy corrections. Barriers for CH4 dif-
fusion between cells are arbitrarily set to 0.35 eV. The entropy
of CH4 in the gas-phase is modeled in the ideal gas approxi-
mation and inside the framework it is approximated to be 2/3
of the gas-phase entropy.31 The simulations are compared with
the Langmuir model for the concentration,

θLM =
K

1 + K
, K = exp

(
−∆G
kBT

)
, (14)

where ∆G is the Gibbs free energy change upon entering the
zeolite from the gas-phase.

Figure 7 shows the simulated concentrations and the
Langmuir result (14) as a function of temperature. At low tem-
peratures, the predicted concentration is high and falls off as
the temperature is increased. The concentrations predicted by
the Langmuir model and the single unit-cell Monte Carlo are
identical. However, the 20 × 20 × 20 system gives slightly
higher concentrations. This we attribute to pore-blocking
effects where methane has to find a free route out from the
bulk, which has been discussed previously in the context of
zeolite deactivation.32 In reality, the pore-blocking effect is

FIG. 7. Simulated methane concentration versus temperature at 1 mbar
methane pressure: Langmuir model (black), Monte Carlo for 20 × 20 × 20
unit-cells (red), and Monte Carlo for 1 × 1 × 1 unit-cell (blue).

likely not pronounced for methane adsorption in MFI as two
adsorbates could be present in the same cell. However, the
present method is directly applicable to study pore-blocking
phenomena in other systems. A conceptual difference between
the kMC and the Langmuir model is configurational entropy.
The kMC simulations include configurational entropy explic-
itly, whereas the Langmuir model is a mean-field theory that
implements configurational entropy by assuming a random
adsorbate distribution.

The present example illustrates that the object-oriented
approach of MonteCoffee straightforwardly can simulate
kinetics in a complex 3-dimensional pore network, such as
a zeolite.

VI. CONCLUSION

The MonteCoffee simulation framework enables rapid
development of customized kinetic Monte Carlo (kMC) sim-
ulations, which is highly suitable for simulations that require
complex geometries. The code is a programmable application
written in python, which provides a basic framework for per-
forming kMC simulations. Here we presented the structure and
outline of the code. CO oxidation over Pt nanoparticles with
a descriptor-based energy landscape and CH4 adsorption and
diffusion inside zeolite pores were discussed as representative
examples. MonteCoffee enables kMC simulations with full
control over execution and rapid code development and thus
it has the potential to considerably aid in the understanding of
catalytic reaction kinetics.
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APPENDIX: DENSITY FUNCTIONAL THEORY

Reaction energies were calculated by density functional
theory with the Vienna ab initio simulation (VASP) pack-
age.33–35 A plane-wave basis with a kinetic cutoff of 450 eV
was used. Core-valence electronic interactions were treated in
the Projector-Augmented Wave (PAW) scheme with valence
electrons: Pt(10), Si(4), O(6), C(4), and H(1). Ionic relaxations
were performed in ASE with the BFGS-Linesearch algorithm
using a force convergence criterion of 0.05 eV/Å. Gas-phase
molecules were relaxed in cells of at least (22 Å × 22 Å
× 22 Å). Vibrational energies were calculated in the harmonic
approximation with finite differences of displacement 0.01 Å.
Spin-polarization was applied only to O2 in the gas-phase,
which was treated in the triplet spin-state. Energy barriers were
evaluated using the Nudged Elastic Band36 (NEB) function
from the Variational Transition State Theory (VTST) tools37

with seven images. Initial interpolations between the initial
and final state were done using the image dependent pair
potential.38

The reaction energies for CO oxidation over nanoparti-
cles were calculated in Ref. 20 using the Revised Perdew-
Burke-Ernzerhof (RPBE)39 exchange-correlation functional.
The Pt lattice-constant was calculated in the fcc unit cell to be
4.00 Å using a (12 × 12 × 12) k-point grid. Model surfaces
were treated as four-layer slabs in at least (2 × 2) cells using
(6 × 6 × 1) k-points. A 12 Å vacuum was introduced
perpendicular to the slab separating periodic images.

In the zeolite-example, the Bayesian Error Estimation
Functional with van der Waals correlation (BEEF-vdW)40 was
used to model exchange and correlation. The adsorption energy
of CH4 was found by local relaxation initiated from multiple
positions of the molecule.
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