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A B S T R A C T

Hydration-dehydration cycles are critical to the mechanical performance of ceramic proton conductors. The
development of in situ methods is desirable in order to study their structural response under conditions that
mimic the operating ones. Neutron powder diffraction studies combined with simultaneous thermogravimetric
analysis were performed on the hydrated forms of two members of the oxygen deficient perovskite
BaTi1−xScxO3−δ series, with x=0.5 and x=0.7. Rietveld analyses agreed with in situ gravimetric data, al-
lowing correlation of occupancy factors of the oxygen site to hydration levels and other structural data.
Dehydration is an activated process that impacts on structural parameters and the level of Sc substitution was
found to control the structural response during in situ dehydration, with higher Sc content leading to significantly
greater volume contraction. This was rationalised by the chemical expansion due to hydration of oxygen va-
cancies within the x=0.5 sample being anomalously small. Furthermore, the behaviour of the x=0.5 system
revealed an unexpected cell expansion during the early stages of dehydration, suggesting the hydration level
may influence the thermal expansion coefficient (TEC).

1. Introduction

The success of proton conducting-solid oxide fuel cells (PC-SOFC, or
PCFC) technology relies on understanding the transport properties and
probing the stability of the materials utilised to fabricate the cell. To
this end, the toolkit available to the materials scientist is ever in-
creasing, with a number of characterisation methods contributing to
elucidating structure-property relationships [1]. Often, independent or
ex situ studies fail to comprehensively explain processes, due to diffi-
culties to exactly reproduce conditions. Hence, the development of in
situ, in operando and combined method approaches is very desirable [2],
and demonstrated, for example, by studies on hydrogen storage mate-
rials [3], Li-ion batteries [4], oxide systems for carbon sequestration
[5], catalytic systems [6], and protonic conductors [7, 8].

High temperature proton conducting electrolytes are the benchmark
among acceptor doped perovskite-type materials, with the BaCeO3 and
BaZrO3 related phases considered as the most promising [1]; among
those, Y-doped BaZrO3 [9] proton conductors display the highest bulk

proton conductivity [10, 11]. Commercialisation of this class of ceramic
materials remains an ongoing endeavour, mainly because of the high
grain boundary resistance due to a bimodal size distribution of grains
[12, 13] that affects their sinterability and stability under operating
conditions. Optimisation of the parameters governing densification and
stability of such phases is being addressed by novel fabrication methods
[14–16] and grain surface processing prior to utilisation [17].

In order to conduct protons, these oxides undergo a hydration step,
illustrated in the Kröger-Vink notation by the equilibrium:

+ + ⇄×g v OH O ( ) 2 OHO O o2
•• • (1)

where water from the gas phase is incorporated into the vacancies
generated by acceptor doping the host phase, i.e. the original mixed
oxide itself, thus creating protonic defects within the lattice in the form
of hydroxyl anions at an oxygen lattice site. Hydration is usually as-
sociated with an expansion of the crystal lattice [18, 19], a phenom-
enon that is critical to the mechanical stability and, therefore, to the
lifetime of any device, potentially leading to micro-fissures in the
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electrolyte and/or delamination at the electrolyte/electrode interface.
Further, filling the vacancies in systems with high levels of oxygen
vacancies can produce structural phase transitions, as in the case of the
orthorhombic to tetragonal transition that accompanies the transfor-
mation of the brownmillerite phase Ba2In2O5 to Ba2In2O5(H2O) [20].
Likewise, in Y-doped BaCe1−xYxO3−δ, a more relevant system for PCFC
applications, neutron diffraction experiments performed on the
x=0.20 solid solution show transitions at 773 K (orthorhombic,
Imma), 873 K (rhombohedral, R3c), and 1073 K (cubic, Pm3m) [21] and
the stability of the phases can be correlated with the degree of hydra-
tion. Phase transitions are suppressed by the presence of oxygen va-
cancies and the protonic defects increase the tendency for octahedral
tilting, as shown by Andersson et al. [8]. This shifts the stability of
lower symmetry phases to higher temperatures and promotes a mono-
clinic I2/m structure at temperature below 673 K. These examples show
that the hydration-dehydration behaviour in proton conductors can be
complex. Development of methods to investigate systems under con-
ditions that mimic those found in a device is necessary and may also
shorten the development cycle of new materials.

Relatively few studies have focussed on the proton conductivity of
BaTiO3-based solid solutions, and most concern pristine or 5–10%
doped materials [11, 22–26]. The main investigations on heavily doped
titanate phases are ionic conduction studies of doped brownmillerite
Ba2In2O5 [27, 28]. Here, progressively replacing Ti for In induces dis-
ordering of the vacancy array, stabilising cubic perovskite structures at
room temperature for substitutions larger than 15%. BaIn0.8Ti0.2O3−δ
displays the highest proton conductivity (1.1× 10−3 S cm−1, under
wet N2 at 723 K), but also a phase transition from cubic Pm3m to tet-
ragonal P4/mmm upon hydration [29]. Higher doping levels (≥50%)
fully stabilise cubic structures, but show poorer protonic conduction
[30]. This may be linked to the irregular oxygen sublattice built up by a
combination of regular InO6 and distorted TiO6 octahedra [31]. A more
regular framework for proton mobility is obtained by replacing In3+

with the smaller Sc3+ (0.80 Å vs. 0.74 Å, respectively, when 6-co-
ordinated) that has a strong preference for octahedral environments.
The 50% Sc-substituted BaTiO3 [32] is a better proton conductor than
its In-doped counterpart [30], under similar conditions. Its proton
transference number, tH+, is close to unitary, below 773 K in a wet inert
atmosphere. The 70% Sc-substituted material is able to maintain the
same tH+ at higher temperatures [33]. Interestingly, in the Ba-
Ti1−xScxO3−δ system, the Sc doping is structure directing. X-ray dif-
fraction data [33] revealed a phase transformation from a 6H hex-
agonal perovskite structure for compositions 0.1≤ x≤ 0.2, to a cubic
perovskite for 0.5≤ x≤ 0.8, with an intermediate multiphasic region
when 0.3≤ x≤ 0.5. In the same study, impedance spectroscopy ana-
lyses show how the structural transition impacts on proton mobility,
with the highest proton conductivity measured for the cubic x=0.7
(ca. 2× 10−3 S cm−1), whereas in the hexagonal x=0.2 sample per-
formance is reduced by two orders of magnitude, under the same
conditions [33]. The behaviour was investigated [34] by means of
neutron powder diffraction (NPD) and thermogravimetric analysis
(TG), coupled with predictions based on first principle calculations.
Ordering of metal dopant, oxygen vacancies and protonic defects was
found in the hexagonal x=0.2 type, where protons diffuse via higher
energy positions. On the contrary, the cubic x=0.7 type is char-
acterised by disorder.

It is clear that Sc levels have a profound effect on the physical
properties of these titanate phases and that the cubic members are more
interesting from the point of view of the technical applications. Further,
a striking point about the 50% Sc-substituted material is that it displays
very little chemical expansion of its lattice with the filling of vacancies
[32], as per hydration reaction (1). Given the large amount of vacancies
that the material can host and that can be filled with protonic defects,
this reveals a property that can be crucial for its application as a proton
conducting membrane in commercial devices.

This work, hence, explores hydration levels and structural response

with a simultaneous thermogravimetric (TG) and in situ neutron powder
diffraction (NPD) study on two cubic members of the BaTi1−xScxO3−δ
series, with x=0.5 and x=0.7 (BTS50 and BTS70, respectively). With
neutrons, crystallographic sites bearing lighter atoms, such as oxygen,
can be investigated even in the presence of heavier elements. Therefore,
following the evolution of the oxygen site occupancy during dehydra-
tion becomes possible, in order to directly link structural parameters
and hydration levels to observed mass losses. The structural evolution
due to dehydration is discussed in terms of the combination of thermal
and chemical expansion in the two systems, and the relative size of
vacancies and protonic defects. The aspect of method development is
equally important as we hope that demonstrating the feasibility of the
experiment will allow further studies on proton conductors and other
related materials.

2. Experimental

BTS50 and BTS70 were prepared by solid-state reaction, using
carbonate and oxides: BaCO3 (Alfa Aesar, 99.8%), TiO2 (Sigma-Aldrich,
99.8%), Sc2O3 (Alfa Aesar, 99.9%). TiO2 and Sc2O3 were annealed at
1273 K overnight, then stored in a drying oven at 423 K, along with
BaCO3, prior to mixing. Stoichiometric mixtures were prepared by
manually grinding the reactants in an agate mortar, with ethanol as
suspending agent to enhance homogenisation. The finely mixed pow-
ders were fired at 1273 K in α-alumina crucibles, then intensively
ground and pelletised. The same operations were repeated for every
following heating step until phase purity was satisfactory. BTS50 was
annealed up to 1773 K, and BTS70 up to 1798 K, with intermediate
grinding and pelletising. During the synthesis, sacrificial loose powder
was used to cover the faces of the pellets in order to limit volatilisation
of BaO, and Ti ions diffusion into the alumina crucible. The samples,
placed into α-Al2O3 boats, then underwent a hydration step, carried out
in a tube furnace through which nitrogen (Air Liquide Alphagaz 1,
containing 6 ppm of H2O) was passed, after bubbling through a round
bottom flask filled with distilled water maintained at a constant tem-
perature of 333 K, providing a p(H2O) of ca. 0.2 atm. The samples were
exposed to a stepwise temperature programme, from 1073 K to 423 K
using the method described in a previous study [34].

Laboratory X-ray powder diffraction data were collected using a
Bruker AXS D8 Advance diffractometer equipped with a copper target,
a Ge (111) primary monochromator (providing Cu Kα1 radiation with
λ=1.54056 Å), and a solid state LynxEye detector. Data were analysed
by means of the Rietveld method [35], using the academic version of
the software TOPAS v5 [36] (Bruker AXS). The background was mod-
elled with a Chebyshev polynomial function and peak shapes by a
convolution of two back-to-back exponentials with a pseudo-Voigt
function. For the RT datasets, structural parameters, occupancy factors
for the Sc/Ti site, and isotropic displacement parameters were refined.
Sequential refinements were performed on cubic lattice parameters, all
atomic displacement parameters (ADPs), oxygen site occupancy factors
(SOFs), with constrains on Sc/Ti SOFs.

Ex situ thermogravimetric analyses (TGA) were performed on the
hydrated samples, in order to determine the degree of saturation of the
oxygen vacancies, according to (1). Measurements were carried out on
samples of about 60mg loaded in small α-alumina pans (6mm dia-
meter), using a Netzsch STA 409 PC Luxx. Temperature programmes
were set from room temperature up to 1073 K, at heating rate of 15 K/
min, under a flow of 20ml/min of nitrogen (Air Liquide Alphagaz 1,
containing 6 ppm of H2O).

In situ high-resolution diffraction data were collected on the time-of-
flight instrument Polaris at the ISIS neutron and muon source. The
samples were loaded into open, cylindrical 8 mm external diameter
vanadium cans, then hooked by a fine tungsten wire to the balance of
the IGAn (Intelligent Gravimetric Analyser for neutron experiments,
Hiden Isochema) and enclosed in a quartz tube sealed by a Cu gasket.
The sample environment was heated up to 573 K by two resistive coils,
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one above and one below the sample container, and temperature was
monitored by a thermocouple; a similar setup is shown in Wood et al.
[6]. The experiments were carried out under vacuum, while pressure
was controlled by an inlet and outlet valve through which the system
was outgassed at 100mbar/min. Experiments were started when pres-
sure measured ca. 2 mbar, with heating rates set to 0.6 K/min for BTS50
and to 0.5 K/min for BTS70. The choice concerning final temperature
and heating rates was determined by the need to accommodate ca. 20 h
long experiments to the available beam-time. Diffraction data were
collected continuously in 10min blocks, yielding temperature resolu-
tion ranging from 6 K at the beginning of the experiments to 2 K to-
wards the end. Rietveld analysis was performed on the data collected on
the backscattering bank (0.2–2.65 Å), and 90° bank (up to 4.1 Å).

3. Results

3.1. Pre-characterisation of samples

The X-ray powder diffraction (XPD) data of the hydrated BTS50 and
BTS70 were refined according to a cubic perovskite model using space
group no. 221, Pm3m, with structural parameters in agreement with
those previously reported by Rahman et al. [32, 33] and Torino et al.
[34]. BTS50 was found to be phase pure, while, in BTS70, a low-level
parasitic phase, BaSc2O4, coexisted. This additional phase was refined
on the basis of the model proposed by Agafonov et al. [37], giving a
refined weight fraction of 3.07(3)%: this was taken into account for all
following calculations involving mass changes and stoichiometry.
During the syntheses, covering the pellets with sacrificial loose powder
proved to be an effective way for preventing Ba and Ti loss, as the
diffraction patterns of the loose powders were consistently different
from the as-prepared phases.

Sc3+ replaces Ti4+, acting as an acceptor dopant, creating oxygen
vacancies in order to maintain charge balance within the material (in
the Kröger-Vink notation):

+ + ⇄ + + ′ + ⎛
⎝

⎞
⎠

+

x x Sc O Ba x x Sc x O

x v

BaO (1– )TiO
2

(1– )Ti 3–
2

2

Ba Ti Ti O

O

2 2 3
x x x

••
(2)

According to (2), and assuming that all scandium is present as Sc3+

and titanium as Ti4+, the ideal hydrated compositions, for BTS50 and
BTS70 respectively, are BaSc0.5Ti0.5O2.75(H2O)0.25 and
BaSc0.7Ti0.3O2.65(H2O)0.35, leading to theoretical mass losses of 1.94%
and 2.72%, when all oxygen vacancies are filled with water. The ex situ
TGA measured mass losses of 1.66% for BTS50 and 2.45% for BTS70,
over the range RT-1073 K. The results indicated levels of saturation not
corresponding to fully hydrated materials. Rather, under the assump-
tion of ideal compositions, 85.6% for BTS50 and 90.0% for BTS70.
Water contents extracted from ex-situ TGA data were used to adjust and
constrain O and H occupancies in the following refinements. Oxygen
site ADPs were refined using an isotropic model in order to reduce the
number of free variables. The proton site was modelled according to
Torino et al. [34] Fig. 1 and Table 1 summarise the refined NPD room
temperature data. The models used for the refinements of RT data
yielded the compositions of the hydrated samples:
BaSc0.494(4)Ti0.506(4)O2.753(H2O)0.214 for BTS50, and
BaSc0.663(5)Ti0.337(5)O2.669(H2O)0.315 for BTS70. This information was
used to define the starting models for the sequential refinements. For
the latter, the proton site was not included since the poor statistics of
fast data-set collection from an evolving system, combined with the
background originating from the quartz cell, produced poorer refine-
ments. Several d-ranges, with peaks originating from the sample en-
vironment, were excluded, as observed by Wood et al. [6].

3.2. Simultaneous in situ NPD and TGA

The data collected during the in situ thermodiffracto-gravimetric
experiment, show a lower dehydration onset temperature for BTS50
(Fig. 2). The derivative of the mass change with respect to temperature
was calculated from the raw TG data, and smoothed by averaging the
datapoints to obtain resolutions ranging from 10 K around RT, to 2 K
around 573 K. Extracted dehydration rates (DR) and cell parameters
from refined NPD data reveal peculiarities that are characteristic of the
respective Sc-doping level (Fig. 3, a and b). For BTS50, the thermal
evolution of the lattice parameter can be divided into four regions. In
the first region, from RT to 413 K, the lattice parameter increases lin-
early with temperature and a thermal expansion coefficient (TEC) of
4.3× 10−5 K−1 is calculated. At 413 K, the 0.05% of the initial mass is
lost and the temperature onset of dehydration is evident, at a DR of
0.05(1) mg/K, or 2.77(1)× 10−6 molH2O/K. Until 493 K, the evolution
of the lattice parameter diverges from the previous trend and a region
with a steeper slope is observed, with a TEC of 5.9× 10−5 K−1. Be-
tween 493 and 533 K a plateau is observed, where the IGAn measures
99.18% to 98.56% of the initial mass. At a DR of 0.71(1) mg/K
(3.94(1)× 10−5 molH2O/K), the cubic lattice parameter stabilises at
around 4.1325(4) Å. The thermal expansion is delayed until the DR
drops to 0.30(1) mg/K (1.66(1)× 10−5 molH2O/K). Below this limit the
fourth region is observed, where the expansion of the unit cell con-
tinues until 573 K, with a TEC of 3.8×10−5 K−1. At 573 K the sample
is 94.4% dehydrated, 1.57% of the initial mass is lost and the lattice
parameter measures 4.1339(4) Å, with a dehydration rate of
0.05(1) mg/K.

The thermal evolution of BTS70's lattice parameter can also be di-
vided into four regions. The expansion of the unit cell between RT and
493 K is linear, with a TEC of 4.5× 10−5 K−1. Between 493 and 513 K
the expansion drastically decelerates under the effect of the increase in
DR from 0.53(1) mg/K (2.94(1)× 10−5 molH2O/K) up to 0.78(1) mg/K
(4.33(1)× 10−5 molH2O/K). This plateau-like region extends from
99.49% to 99.15% of the sample initial mass, with the lattice parameter
stable around 4.1663(4) Å. Above 513 K the unit cell shrinks and we
observe the maximum DR of 0.96(1) mg/K (5.33(1)× 10−5 molH2O/K),
at 525.5 K, corresponding to 98.90% of the initial mass. Between 513
and 553 K an expansion coefficient of −4.1× 10−5 K−1 is calculated.

Fig. 1. Refined RT NPD data for hydrated BTS70. The plot shows data collected
on the backscattering bank as red dots, the fitted profile as the black solid line,
the difference between observed and calculated pattern in blue. Diffraction
peaks due to the sample environment are denoted as crosses (✢, IGAn encase-
ment) and asterisks (*, Vanadium can). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this
article.)
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At 553 K, corresponding to 98.40% of the initial mass, the DR is
0.53(1) mg/K and the lattice parameter 4.1648(4) Å. Beyond 553 K the
lattice parameter curve starts flattening and the unit cell starts stabi-
lising again, with a lattice constant of 4.1644(4) Å at 573 K. Here, the
sample lost 1.8% of its initial mass and it is still about 25% hydrated.

Fig. 4a and b, show the evolution of the oxygen site occupancies
with respect to temperature. For both systems, refined oxygen SOFs
curves show trends superimposable to TG signals. This allowed us to
correlate the dehydration processes to the respective structural re-
sponses of BTS50 and BTS70.

4. Discussion

From inspection of the diffractograms, the simple cubic perovskite
structural model is retained for both BTS50 and BTS70, at room tem-
perature and above. Constrained refinements of NPD RT data confirmed
the hydration level for BTS50 (86.6%), and demonstrated that BTS70
was close to its saturation limit, being 95.2% hydrated. Assuming Sc to
be trivalent and Ti as tetravalent, NPD data indicate, in fact, a com-
position for BTS50, BaSc0.494(4)Ti0.506(4)O2.753(H2O)0.214, that agrees
with the expected stoichiometry.

The refined composition for BTS70, BaSc0.663(5)Ti0.337(5)O2.669

(H2O)0.315, is below the intended stoichiometry of BaSc0.7Ti0.3O2.65(H2O)0.35
but is consistent with the presence of the secondary phase BaSc2O4. The
different degree of success of the hydration reaction (1) can be explained by
the compositional dependence of the hydration thermodynamics for the two
systems. For Sc-doped BaTiO3 systems, ΔHydrH° becomes less negative with

smaller dopant content (−83(2) kJ/mol for BTS70 vs. −57(2) kJ/mol for
BTS50) [38], decreasing both temperature onset of hydration and tem-
perature of saturation. For BTS50, hence, a longer time is required to reach
equilibrium (1) since lower temperatures slow the diffusion of protonic
defects.

The data extracted from the IGAn demonstrate the conclusions
Bjørheim et al. [38] drawn from the thermodynamics study of the Sc-

Table 1
Summary of the results obtained from the Rietveld analysis of NPD data for BaSc0.494(4)Ti0.506(4)O2.753(H2O)0.214 (BTS50), and BaSc0.663(5)Ti0.337(5)O2.669(H2O)0.315 (BTS70),
in the cubic crystal system at room temperature (space group: Pm3m).

BTS50 BTS70

a (Å) 4.1231(1) 4.1579(2)
Ba 1b (½, ½, ½)
Biso (Å2) 0.0161(6) 0.0244(8)
Sc/Ti 1a (0, 0, 0)
Occ. factor 0.494(4)/0.506(4) 0.663(5)/0.337(5)
Biso (Å2) 0.0127(7) 0.0232(7)
O 3d (½, 0, 0)
Occ. factor 0.988 0.995
Biso (Å2) 0.0117(2) 0.0138(4)
H 24k (x, y, 0) 0.241, 0.399 0.241, 0.399
Occ. factor 0.018 0.026
Biso (Å2) 0.02 0.02
Rwp (%) 3.95 3.40
RBragg (%) 2.70 2.93

Fig. 2. IGAn thermograms of BTS50 and BTS70, and relative derivatives in the
paler colour shades.

Fig. 3. Evolution of the lattice parameters for BTS50 (a), and BTS70 (b), plotted
against the derivatives of the mass losses. Datapoints are plotted with 3σ sig-
nificance.

N. Torino et al. Solid State Ionics 324 (2018) 233–240

236



doped BaTiO3 systems: the enthalpy of proton mobility, ΔHm,H+, in-
creases with the dopant concentration, 40(5) kJ/mol for BTS50 and
60(5) kJ/mol for BTS70. This indicates that higher temperatures are
required for BTS70 to mobilise protons, which is reflected by its higher
temperature onset of dehydration, measured at around 423 K (see
Fig. 2). Heating rates have an impact on onset temperatures of dehy-
dration, with faster rates shifting the onset towards higher tempera-
tures. Despite the slightly faster heating rate set for BTS50, the expected
behaviour was observed on the IGAn, and confirmed by ex situ TG data,
where conditions were the same.

In an attempt to gain further insights into the balance between
chemical and thermal expansion effects in the two systems, the model
reported in Andersson et al. [19] was used to simulate the cell para-
meter dependence. The results are shown in Fig. 5. The model uses
established thermodynamics formalisms to predict the equilibrium
concentration of protonic defects and applies this to calculate the per-
ovskite cell parameter based on the summation of the average cation (Ti
and Sc) and anion sites ( ×OO, OHo

• and vO
••) [18]. The ionic radii of Ti4+

and Sc3+ with 6-fold coordination were used [39], and following An-
dersson et al. [19], the size of oxygen ion and –OH group were taken as
1.38 Å and 1.35 Å respectively. The effective “size” of the vO

•• is not
known and different values were used in the simulations, including
1.18 Å that was used in the original work [19]. The size and shape of
the oxygen vacancy has, in fact, been a topic of several studies.
Focussing on perovskite-structured oxides, Jedvik et al. [40], em-
ploying density functional theory (DFT) calculations on acceptor-doped

BaZrO3, proposed an ellipsoidal shape for the oxygen vacancy, with
semi-principal axes measuring rvac,x=1.18 Å, and
rvac,y= rvac,z=0.58 Å. Marrocchelli et al. [41], using both DFT calcu-
lations and molecular dynamics simulations, found that rvac ranges from
1.24 Å to 1.57 Å. Noticeably the lattice contracts when an oxygen va-
cancy is created therefore it is reasonable to imagine a vacancy smaller
than an oxide ion. The size of a vacancy seems also to be sensitive to the
kind of dopant and its concentration though a clear trend is yet to be
found. New experimental data on perovskite systems will eventually
help rationalising our current understanding, with the present approach
proving to be useful in gathering new information.

The enthalpies of hydration and entropy for these two systems were
taken from the values reported in Bjørheim et al. [38] based on DSC
measurements, and the partial pressure was adjusted in order to reflect
the dehydration temperature displayed by the samples. The simulated
cell parameter was then obtained by using the initial TEC and the ad-
ditional contributions from the chemical expansion. In the model, this
component reflects the greater average size of the OHo

• defects in
comparison to the vO

•• that overrides the expected decrease resulting
from conversion of a lattice oxygen to an OHo

• defect. As dehydration
occurs at the temperature predicted based on the thermodynamics
properties this contribution decreases gradually to zero.

The figure underlines that the chemical expansion (in this case

Fig. 4. Evolution of the oxygen site occupancies for BTS50 (a), and BTS70 (b),
plotted against the respective thermograms. Datapoints are plotted with 3σ
significance.

Fig. 5. Evolution of the lattice parameters with temperature, during dehydra-
tion, for BTS50 (a), and BTS70 (b). The dotted line in figure a. shows the
modelled evolution of the hydrated material solely by thermal expansion. The
modelled curves of chemical expansion are shown by the solid lines, with the
respective oxygen vacancy size as in the legend.
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chemical contraction due to dehydration) of BTS50 is both quite re-
markable in nature and very small in magnitude. In particular, the in-
creased rate of cell expansion in the T region 450 to 500 K is clear de-
spite the mass loss shown in the simultaneous IGAn data indicating
significant dehydration. This leads to the large divergence between the
experimental data and the simulated trend lines that follow the mass
loss data more closely. In contrast, for BTS70 the behaviour is more
conventional. The overall magnitude of unit cell contraction is simu-
lated with a reasonable accuracy using for vO

•• the value 1.24 Å. Here,
the lack of experimental data to higher temperatures results in a lim-
itation in the comparison with the simulated trend.

The overall magnitude of chemical expansion in BTS50 is very
small, as judged based on a comparison of the normalised chemical
strain determined by comparing cell parameters at RT presented in
Table 2.

The chemical strain, εc= (a – a0) / a0, where a represents the lattice
parameter of the hydrated material, and a0 its lattice parameter at a
reference chemical composition (in this case when the material is
dried), is employed as a measure of the effect of the chemical expansion,
a concept introduced and formalised by Adler [42] as a new property of
electrochemical ceramics. Used as a means to better understanding the
relationship between local electronic and defect structure in perovskite-
like cobaltite phases as electrode materials for SOFCs [43, 44], the
formalism was applied to compare unit cell expansions due to hydration
in perovskite-like SOFC electrolyte materials by Andersson et al. [19].
Here, the normalised chemical strain, εc/Δx, relates the chemical strain to
the difference in chemical composition (namely the moles of protons/
deuterons per formula unit) of the material when hydrated, x, and when
dried, x0.

Table 2 shows that titanate systems display a smaller expansion on
hydration, with respect to the well-known cerate and zirconate systems,
with BTS50 displaying the smallest expansion. This indicates that the
size difference between the vO

•• and the protonic defects is small for this
system, and certainly smaller than that for the BTS70 sample. Both
systems are very heavily substituted, and support a high level of oxygen
deficiency when dry within the framework of a highly disordered per-
ovskite structure. It is therefore reasonable to suspect that short range
oxygen vacancy to vacancy correlations exist and this leads to some
extent of vacancy clustering, possibly also associated with localised B-
site ordering. This, in turn, will influence the cell parameter in the dry
state, and consequently also impact the magnitude of the chemical
expansion linked to hydration of the vacancies.

A working hypothesis is then that vacancy-vacancy interactions are
important in these systems, and that for BTS50 this results in an
“average” oxygen vacancy size that is closer to the size of protonic
defects than for BTS70. Bearing in mind that hydration both replaces a
vacancy with a protonic defect, and converts an oxide ion to a smaller
–OH group, the net chemical expansion will consequently be much
smaller in BTS50. Further studies are required to investigate the degree
of short range correlations within these systems in both dry and

hydrated forms. The use of neutron diffraction data and the total
scattering approach, as applied recently to ordering effects in fluorites/
pyrochlores [45, 46] is planned in the near future and may provide
further information regarding the chemical strain effects. Regardless of
the exact mechanism at play it is clear that the applicability of the
simple point defect model used to simulate the cell parameter is more
questionable for these heavily substituted samples in comparison to the
lower substitution levels of BaZr1−xYxO3−x/2 (0.05≤ x≤ 0.20) and
BaCe0.8Y0.2O3−δ perovskites it was first applied to [19].

A stronger vacancy-vacancy interaction might also explain why the
enthalpy of vacancy mobility, ∆Hm v, O

••, diminishes at higher Sc con-
centrations (95(5) kJ/mol for BTS50 and 66(5) kJ/mol for BTS70) [38].
The interaction between vacancies could make it necessary to supply
more energy to mobilise a vacancy due to clustering, implying a sta-
bilisation of oxygen vacancies at higher temperatures for the lower
substitution levels. On the other hand, the relative stability of vacancies
and protonic defects may vary with the hydration level. 45Sc NMR
studies [47] and DFT calculations [48] performed on 10mol% Sc-doped
BaZrO3, show how fully hydrated samples tend to disfavour proton
migration because of the attractive nature of the Coulombic interaction
between the positively charged protonic defect and the negatively
charged acceptor dopant site. As the concentration of protonic defects
diminishes, the association of dopant and oxygen vacancies, which start
to form around the acceptor dopant site, produces a positive net charge
that repels the protonic defects and may disrupt the anisotropic dis-
tribution of protons creating local ordering effects. As noted by the
authors of these studies, oxygen vacancies are very stable when in a

′ ′Sc v Sc— —Zr O Zr
•• associated complex configuration and it may be argued

that this stability produces the differences in the measured ∆Hm v, O
••.

However, given the different environment in which vacancies are
found, comparing data between zirconate and titanate systems can be
difficult, especially differences in dopant concentration, and the com-
bination of a total scattering method with the previous observations on
Sc-doped and substituted systems will provide further insight.

A possible explanation for the unexpected increase in cell expansion
during dehydration is that the thermal expansion coefficient of BTS50
increases as it dehydrates, and that this counteracts the cell contraction
resulting from the loss of protonic defects. As noted above, as the size
difference between these two species appears to be particularly small
for this system, the material can effectively reach a point where
[OHo

•]≈ [vO
••] before the chemical contraction can balance this in-

creased rate of thermal expansion leading to a small plateau region
where the cell parameter is constant as temperature increases. Further
studies are required to understand the effect of hydration level on TEC.

5. Conclusion

Hydration-dehydration cycles are critical to proton conductors and
neutrons are ideal to probe oxygen sites in the presence of heavier
elements. The simultaneous in situ NPD and TG analysis of our systems

Table 2
A summary of normalised chemical strain (εC/Δx) due to hydration of proton conducting ceramic oxides. See text for definition of the terms presented.

Material εC Δx εC/Δx References Method

BaSc0.5Ti0.5O3−δ 6.29× 10−4 0.3695 1.7× 10−3 [32] XRD
BaSc0.661Ti0.339O2.65 3.58× 10−3 0.72 4.97× 10−3 [34] NPD
BaIn0.5Ti0.5O3−δ 2.02× 10−3 0.285 7.09× 10−3 [30] XRD
BaZr0.5Yb0.5O3−δ 3.32× 10−3 0.14 2.37× 10−2 [49] XRD
BaZr0.5In0.5O3−δ 9.53× 10−3 0.415 2.3× 10−2 [50] XRD
BaZr0.9Sc0.1O3−δ 7.88× 10−4 0.058 1.36× 10−2 [51] XRDa

BaSn0.6Sc0.4O3−δ 5.24× 10−3 0.4b 1.31× 10−2 [52] NPDa

BaCe0.8Y0.2O2.9 5.2× 10−3 0.26 2× 10−2 [19] XRD
BaZr0.9Y0.1O2.95 1.5× 10−3 0.10 1.5× 10−2 [19] XRD
BaZr0.8Y0.2O2.9 3.4× 10−3 0.104 3.3× 10−2 [19] XRD

a Samples hydrated with D2O.
b Water content assumed to correspond to half the acceptor dopant level.
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allowed us to correlate dehydration properties to structural responses,
in a way ex situ and independent studies cannot. It is, in fact, often
difficult to connect ex situ data from different techniques with great
confidence since conditions experienced by the samples are usually not
exactly the same. This study was successful in directly linking oxygen
occupancy, and therefore water content, to gravimetric data. This link
was instrumental in correlating lattice changes to dehydration rates,
information that is vital for understanding the complex chemical ex-
pansion strain effects and, in the future, for lattice matching multi-
component devices. Finally, ex situ thermodynamics data from previous
studies were rationalised with the direct observation of their effect on
evolving systems during the thermally induced dehydration.

In BTS50, the size difference between the protonic defects and the
oxygen vacancy is suggested to be anomalously small and the rate of
thermal expansion appears to be influenced by the level of hydration.
These two effects mean that thermal expansion compensates the con-
traction caused by dehydration and associated vacancy formation, ul-
timately leading to a plateau region for the unit cell parameter. In
BTS70, the observed cell dependence is more conventional in nature,
with the cell contraction observed during de-hydration indicating the
chemical expansion contribution is larger for the more heavily scan-
dium substituted system. Further studies aiming to clarify the local
structural dependence of these highly oxygen deficient systems in both
hydrated and dry states are planned.
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