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Abstract: The action integral contains more information than the equations of motion.

Since it is an integral, changes of the integration variables occasionally also expose symme-

tries more easily than working directly with the equations of motion. We have previously

shown that there are signs of an extended exceptional symmetry for N = 8 supergravity

in four dimensions. The symmetry is such that the fields used in the Lagrangian are not

representations of the symmetry. Instead one has to add representations to obtain a repre-

sentation of the extended symmetry group. In this paper we discuss an extended symmetry

in four-dimensional gravity which is the “Ehlers Symmetry” in three dimensions. It cannot

be spanned by the helicity states of four-dimensional gravity but it can be realised once

we treat the helicity states just as field variables of the functional integral, which can be

changed like variables in any integral. We also explain how this symmetry is inherent in

formulations of N = 8 supergravity in four dimensions through a truncation in the field

space to pure gravity. The establishment of these “hidden” symmetries should play an

important role in the perturbative behaviour of the quantum theories. Since the method

used n this paper is purely algebraic we will not provide any information on the geometric

role of these symmetries.
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1 Introduction

Supergravity theories show remarkable quantum properties in the sense that their pertur-

bative expansions are finite to higher loop orders than näıvely expected [1]. Even though

we expect all these theories to diverge at some loop order, it is important to understand

why this is so. These phenomena must have some root in superstring theory and we expect

that the study of the limiting supergravity theories will help us understand superstring

theory better. When we study classical gravity in the flat limit, we look for symmetries the

theory exhibits in terms of the helicity +2 and −2 fields. In the quantum case, we should

study the functional integral over the action where those components are field variables

that we integrate over. In the functional integral we can modify them forgetting that they

are helicity fields. Hence we can ask ourselves if the functional integral has additional

symmetries, over and above the spacetime symmetries that we know.

In this paper, we demonstrate signs of such a hidden symmetry in four-dimensional

gravity. We use the light-cone gauge formulation in which the action is an infinite series

of higher order terms and we work only up to the four-point level. Accordingly, we cannot

prove that the symmetry is a symmetry of the full theory, but our experience from previous

work is that if the symmetry works to this order, it is most likely to survive as a symmetry

of the full theory (although we will not be able to prove this to all orders within the

current formalism). There are also strong indications that a symmetry like this should

be anomaly free since the E7 of maximally supersymmetric Supergravity is [2]. This is

why we stress its importance for the quantum theory, since every symmetry constrains

the quantum properties and we need that to explain the “better than expected” quantum

properties of the scattering amplitudes.
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This symmetry first appeared in the work of Cremmer and Julia [3], who found an

unexpected symmetry at the level of the equations of motion in N = 8 supergravity. We

have shown that in our approach [4] this is indeed a symmetry of the full Hamiltonian and

is, in some sense, on an equal footing with the maximal supersymmetry in the theory.1

In more recent work we have argued that the E7(7) symmetry should also be present

in the original d = 11 supergravity theory [5]. We then showed that the corresponding

E8(8) symmetry, thought to be special to maximal supergravity in d = 3, could be lifted

to a symmetry of the d = 4 theory and in principle also to the d = 11 theory [6]. In all

these extraordinary cases we claim that the action should exhibit the symmetry. We have

to carefully choose combinations of the representations used in a particular dimension to

represent the symmetry but the actions do not distinguish between these.

We should remind ourselves that these exceptional symmetries have an origin in the

Superstring Theory in the U-duality. We certainly hope to come back to issues we discuss

in this paper and our previous ones in the context of the Superstring Theory. For the

moment we have nothing to say there but we believe it will be an important study.

A key feature in our analysis is that the Hamiltonians in the maximally supersymmetric

cases can be written as quadratic forms [7–9]. However we have also shown that for the

non-supersymmetric cases, ie. pure Yang-Mills and pure gravity, this remains the case. In

this paper we will investigate possible extra global symmetries in pure d = 4 gravity.

Our light-cone formulation uses only the physical degrees of freedom. This approach

is particularly well suited to the study of symmetries that are not manifest in covariant

formulations [10, 11]. That means that even part of the Poincaré symmetry is non-linearly

realised. All remaining symmetries are global and the exceptional ones are described as

non-linear σ-model symmetries. In the case of E7(7) the quotient E7(7)/SU(8) is non-linearly

realised while the SU(8) is the linear R-symmetry. The drawback with this formalism is

that we loose the contact with the geometry underlying the theory. We have reduced the

problem to a purely algebraic one.

In four-dimensional gravity no such symmetry is known but in three-dimensional grav-

ity there is the “Ehlers symmetry” [12], which is an extra SL(2, R) symmetry not connected

to any space-time symmetry. To find the four-dimensional σ-model action with this sym-

metry, one must find a non-trivial change of variables in d = 4 in the light-cone action.

Here we will present an alternative method to find the σ-model, where we first study the

Ehlers symmetry in d = 3 and realize this symmetry in the four-dimensional action by

means of a suitable “oxidation” procedure.

Hence we will first study d = 3 gravity in the light-cone gauge formulation and show

that there is indeed an SU(1, 1) σ-model symmetry. We will show that this symmetry is

easily recognized only after a field redefinition. This is again a manifestation of the change

of integration variables, permitted in the functional integral.

The formulation we are using is not easy to lift to d = 4. However in a recent paper, we

treated a similar problem for maximal supergravity. We found a d = 3 formulation of the

theory such that the E8(8) symmetry (in three dimensions) could be carefully “oxidized” to

1This is because we can also use this symmetry to pin down the possible interaction terms in the

Hamiltonian.
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four dimensions [6]. We now use that analysis and truncate the superfield until it contains

only the gravity degrees of freedom. Indeed, the E8(8) symmetry then reduces to an SU(1, 1)

symmetry. The formulation of pure gravity in this manner is probably one of the most

impenetrable formulations of ordinary gravity and we do not recommend it for any explicit

calculations but it serves its purpose, to show us the hidden symmetry.

2 SU(1, 1) in pure gravity in three dimensions

In this section, we describe gravity in d = 3 in the light-cone gauge. We do this by

a straightforward dimensional reduction from d = 4 where the light-cone formulation of

gravity is well known [13–15]. After the reduction, we perform a suitable field redefinition

that makes the Ehlers symmetry easy to write down.

2.1 Gravity, in d = 4, in the light-cone gauge

With the metric (−,+,+,+), we define the light-cone coordinates

x± =
1√
2

(x0 ± x3) ; x =
1√
2

(x1 + i x2 ) ; x̄ =
1√
2

(x1 − i x2 ) , (2.1)

with the corresponding derivatives being ∂±, ∂ and ∂̄. The Einstein-Hilbert action on a

Minkowski background reads

SEH =

∫
d4x L =

1

2κ2

∫
d4x
√
−g R . (2.2)

In the light-cone gauge, the Lagrangian density in terms of the helicity states h and h̄ to

order κ2 reads [7]

L =
1

2
h̄2h + 2κ h̄ ∂+2

[
−h ∂̄2

∂+2h +
∂̄

∂+
h
∂̄

∂+
h

]
+ 2κh ∂+2

[
− h̄ ∂2

∂+2 h̄ +
∂

∂+
h̄
∂

∂+
h̄

]
+

1

∂+2

[
∂+h∂+h̄

]
∂∂̄

∂+2

[
∂+h∂+h̄

]
+

1

∂+3

[
∂+h∂+h̄

] (
∂∂̄h ∂+h̄+ ∂+h∂∂̄h̄

)
− 1

∂+2

[
∂+h∂+h̄

] (
2 ∂∂̄h h̄+ 2h∂∂̄h̄+ 9 ∂̄h∂h̄+ ∂h∂̄h̄− ∂∂̄

∂+
h ∂+h̄− ∂+h

∂∂̄

∂+
h̄

)
−2

1

∂+

[
2∂̄h ∂+h̄+ h∂+∂̄h̄− ∂+∂̄hh̄

]
h ∂h̄− 2

1

∂+

[
2∂+h ∂h̄+ ∂+∂h h̄− h∂+∂h̄

]
∂̄h h̄

− 1

∂+

[
2∂̄h ∂+h̄+ h∂+∂̄h̄− ∂+∂̄hh̄

] 1

∂+

[
2∂+h ∂h̄+ ∂+∂h h̄− h∂+∂h̄

]
−h h̄

(
∂∂̄h h̄+ h∂∂̄h̄+ 2 ∂̄h∂h̄+ 3

∂∂̄

∂+
h ∂+h̄+ 3∂+h

∂∂̄

∂+
h̄

)
. (2.3)

The d’Alembertian in the equation above is 2 = 2 ( ∂ ∂̄ − ∂+ ∂− ). The Hamiltonian

to order κ2, corresponding to the Lagrangian above can be be written in the following

compact form [9]

H =

∫
d3x Dh̄ D̄h , (2.4)

with

Dh̄ = ∂h̄ + 2κ
1

∂+2

(
∂̄

∂+
h ∂+3

h̄ − h ∂+2
∂̄h̄

)
+O(κ2) . (2.5)

D̄h is the complex conjugate of the expression above.
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2.2 Gravity, in d = 3, in the light-cone gauge

We dimensionally reduce the pure gravity Lagrangian from d = 4 to d = 3 by setting ∂ = ∂̄

L =
1

2
h̄2h+ 2κ h̄ ∂+2

(
∂

∂+
h
∂

∂+
h− h ∂2

∂+2h

)
+ c.c. + O(κ2) ,

= L0 + Lκ + Lκ2 (2.6)

where the d’Alembertian is now 2 = 2(∂2 − ∂+∂−). This expression is not suitable to

search for the Ehlers symmetry. The non-linear part of it should be implemented to lowest

order by δh = constant + quadratic in field . . ., and the three-point coupling is evidently

not invariant under such a transformation. In order to find the symmetry we therefore start

by eliminating the cubic interaction vertices. We perform the following field redefinitions

h → h′ − κ ∂+2
(

1

∂+
h′

1

∂+
h′
)
− 2κ

1

∂+2

(
∂+3

h′
1

∂+
h̄′
)
, (2.7)

with a conjugate expression for h̄. These field redefinitions eliminate all cubic interaction

vertices but introduce the following new quartic vertices into the Lagrangian.

κ2

{
∂+2

(
1

∂+
h̄

1

∂+
h̄

)
+

1

∂+2

(
∂+3

h̄
1

∂+
h

)}
×(∂2 − ∂+∂−)

{
∂+2

(
1

∂+
h

1

∂+
h

)
+ 2

1

∂+2

(
∂+3

h
1

∂+
h̄

)}
−2κ2

{
∂+2

(
1

∂+
h̄

1

∂+
h̄

)
+

1

∂+2

(
∂+3

h̄
1

∂+
h

)}
∂+2

(
∂

∂+
h
∂

∂+
h− h ∂2

∂+2h

)
−4κ2h̄ ∂+2

[
∂

∂+

{
∂+2

(
1

∂+
h

1

∂+
h

)
+ 2

1

∂+2

(
∂+3

h
1

∂+
h̄

)}
∂

∂+
h

]
+2κ2 h̄∂+2

[{
∂+2

(
1

∂+
h

1

∂+
h

)
+ 2

1

∂+2

(
∂+3

h
1

∂+
h̄

)}
∂2

∂+2 h

]
−2κ2h̄∂+2

[
h
∂2

∂+2

{
∂+2

(
1

∂+
h

1

∂+
h

)
+ 2

1

∂+2

(
∂+3

h
1

∂+
h̄

)}]
. (2.8)

The first two lines in the expression above involve ∂−, which are time derivatives, and

hence need to be eliminated. This is achieved by adding terms of order κ2 to the field

redefinition (2.7) which now reads

h → h′ − κ ∂+2
(

1

∂+
h′

1

∂+
h′
)
− 2κ

1

∂+2

(
∂+3

h′
1

∂+
h̄′
)

(2.9)

+κ2 1

∂+2

{
1

∂+
h̄′ ∂+5

(
1

∂+
h′

1

∂+
h′
)}

+ 4κ2 1

∂+2

{
∂+

(
∂+3

h′
1

∂+
h̄′
)

1

∂+
h̄′
}

+2κ2 1

∂+2

{
∂+3

h′
1

∂+3

(
∂+3

h̄′
1

∂+
h′
)}

+ 2κ2 ∂+2
{

1

∂+3

(
∂+3

h′
1

∂+
h̄′
)

1

∂+
h′
}
.

We thus arrive at a d = 3 Lagrangian in the following form

L′ = L0 + L′κ2 , (2.10)

– 4 –
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where the new quartic interaction Lagrangian is

L′κ2 = Lκ2 − κ2 ∂+4
(

1

∂+
h̄

1

∂+
h̄

)[
∂

∂+
h
∂

∂+
h − h

∂2

∂+2h

]
+ 4κ2∂+3

h̄
1

∂+
h

[
∂

∂+
h
∂

∂+
h − h

∂2

∂+2h

]
− 2κ2 1

∂+4

(
∂+3

h
1

∂+
h̄

)
∂+4

h̄
∂2

∂+2h

+4κ2 1

∂+4

(
∂+3

h
1

∂+
h̄

)
∂+3

∂h̄
∂

∂+
h − 2κ2 1

∂+4

(
∂+3

h
1

∂+
h̄

)
h ∂+2

∂2h̄

− 8κ2 ∂+2
h̄

∂

∂+2

(
∂+3

h
1

∂+
h̄

)
∂

∂+
h + 2κ2 ∂+2

h̄
1

∂+2

(
∂+3

h
1

∂+
h̄

)
∂2

∂+2h

+ 4κ2 ∂+2
h̄ h

∂2

∂+4

(
∂+3

h
1

∂+
h̄

)
, (2.11)

with the first term denoting the old quartic interaction Lagrangian.

2.3 The SU(1, 1) symmetry in d = 3

The Hamiltonian (to order κ2) corresponding to (2.10) is

H = h̄ ∂2 h − L′κ2 . (2.12)

We can now ask if this expression could be invariant under a σ-model like symmetry of the

schematic form

δh = constant + hh+ hhhh+ . . . , (2.13)

where we have not distinguished between h and h̄. This is quite straightforward to check

and indeed we find it is invariant under the following transformations (to order κ)

δh =
1

κ
a−κa 1

∂+
(∂+hh̄)−2κa

1

∂+2

(
∂+3

h
1

∂+
h̄

)
−2κ ā

1

∂+2

(
∂+3

h
1

∂+
h̄

)
+

1

2
κā h h , (2.14)

and

δh̄ =
1

κ
ā−κa 1

∂+
(∂+h̄h)−2κa

1

∂+2

(
∂+3

h̄
1

∂+
h

)
−2κa

1

∂+2

(
∂+3

h̄
1

∂+
h

)
+

1

2
κah̄h̄ . (2.15)

The commutator of two such transformations on h (or h̄) is

[ δ1, δ2 ]h = 2(ā1 a2 − ā2 a1)h ; [ δ1 , δ2 ] h̄ = − 2(ā1 a2 − ā2 a1)h̄ . (2.16)

We can rewrite (2.14) and (2.15) as two sets of transformations with parameters a and ā

as follows.

L+ h =
1

κ
a − κ a 1

∂+
(∂+hh̄)− 2κ a

1

∂+2

(
∂+3

h
1

∂+
h̄

)
,

L+ h̄ = − 2 κ a
1

∂+2

(
∂+3

h̄
1

∂+
h

)
+

1

2
κ a h̄ h̄ . (2.17)

and

L− h = − 2κ ā
1

∂+2

(
∂+3

h
1

∂+
h̄

)
+

1

2
κ ā h h , (2.18)

L− h̄ =
1

κ
ā − κ a

1

∂+
(∂+h̄h)− 2κ a

1

∂+2

(
∂+3

h̄
1

∂+
h

)
.

– 5 –
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We define the following U(1) transformation

L0 h = ā a h ; L0h̄ = −ā a h̄ . (2.19)

These transformations now satisfy an SU(1, 1) algebra

[L+ , L−] = L0 ; [L0 , L±] = ±L±. (2.20)

This is the light-cone realization of the Ehlers symmetry of General Relativity. The form

of the Hamiltonian used here is however not suitable to “oxidize” to four-dimensions. This

is most directly done using the Hamiltonian written as a quadratic form as in (2.4) and

instead of trying to rewrite the Hamiltonian in such a form (which takes a lot of guesswork

and partial integrations to find the final form) we will use another path.

The schematic below explains how the Ehlers symmetry in three-dimensional gravity

can be derived from the exceptional symmetry in maximal supergravity and subsequently

lifted to four dimensions.

A suitable truncation of the oxidation procedure adopted in the supergravity case will help

us realize the SU(1, 1) symmetry in d = 4. In order to do this, we briefly present the

essential points from our earlier analysis of the N = 8 model [7, 9].

– 6 –
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3 Maximal supergravity in d = 4

The N = 8 supergravity theory in the light-cone gauge formulation is written in a N = 8

superspace, spanned by Grassmann variables θm and θ̄m, m = 1 . . . 8 (8 and 8̄ of SU(8)),

where all 256 physical degrees of freedom are captured in a single N = 8 superfield [16]

φ ( y ) =
1

∂+2 h (y) + i θm
1

∂+2 ψ̄m (y) +
i

2
θm θn

1

∂+
Āmn (y) ,

− 1

3!
θm θn θp

1

∂+
χ̄mnp (y) − 1

4!
θm θn θp θq C̄mnpq (y) ,

+
i

5!
θm θn θp θq θr εmnpqrstu χ

stu (y) ,

+
i

6!
θm θn θp θq θr θs εmnpqrstu ∂

+Atu (y) ,

+
1

7!
θm θn θp θq θr θs θt εmnpqrstu ∂

+ ψu (y) ,

+
4

8!
θm θn θp θq θr θs θt θu εmnpqrstu ∂

+2
h̄ (y) ,

(3.1)

with h and h̄ representing the graviton, ψ̄m the 8 spin-3
2 gravitinos, Āmn the 28 gauge

fields, χ̄mnp the 56 gauginos and C̄mnpq the 70 real scalars. All fields are local in

y =

(
x, x̄, x+, y− ≡ x− − i√

2
θm θ̄m

)
. (3.2)

Chiral derivatives in this space read

dm = − ∂

∂ θ̄m
− i√

2
θm ∂+ ; d̄n =

∂

∂ θn
+

i√
2
θ̄n ∂

+ , (3.3)

and the kinematical (spectrum generating) supersymmetry generators are

qm+ = − ∂

∂ θ̄m
+

i√
2
θm ∂+; q̄+n =

∂

∂ θn
− i√

2
θ̄n ∂

+ . (3.4)

To order κ, the action for N = 8 supergravity reads [16]

− 1

64

∫
d4x

∫
d8θ d8θ̄L ,

L = −φ̄ 2

∂+4
φ +

4

3
κ

(
1

∂+4 φ̄ ∂̄∂̄φ ∂
+2
φ − 1

∂+4 φ̄ ∂
+∂̄φ ∂+∂̄φ + c.c.

)
. (3.5)

Grassmann integration is normalized such that
∫
d8θ (θ)8 = 1. The Hamiltonian for the

N = 8 theory to order κ2 can be expressed as a Quadratic Form [7]

H =
1

4
√

2
(Wm , Wm ) , (3.6)

where the inner product is defined as

(φ , ξ ) ≡ − 2i

∫
d4x d8θ d8 θ̄ φ̄

1

∂+3 ξ . (3.7)

– 7 –
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We note that this is unrelated to the fact that the Hamiltonian is the anticommutator of

two supersymmetries. At order κ,

Wm = − ∂

∂+
q̄+m φ − κ

1

∂+

(
∂̄ d̄m φ∂

+2
φ − ∂+ d̄m φ∂

+ ∂̄ φ
)

+ O(κ2) , (3.8)

Wm
= − ∂̄

∂+
qm+ φ̄ − κ

1

∂+

(
∂ dm φ̄ ∂+2

φ̄ − ∂+ dm φ̄ ∂+ ∂ φ̄
)

+ O(κ2) . (3.9)

Wm at order κ2 is presented in [4].

The E7(7)/SU(8) transformation of the N = 8 supergravity theory can be written in a

compact way by introducing a coherent state-like representation

δφ = − 2

κ
θijkl Ξijkl +

κ

4!
Ξijkl

(
∂

∂η

)
ijkl

1

∂+2

(
eη

ˆ̄d∂+3φ e−η
ˆ̄d∂+3φ

) ∣∣∣∣∣
η=0

+ O(κ3) , (3.10)

where

θ a1a2...an =
1

n!
θa1θa2···θan ,

η ˆ̄d = ηm
d̄m
∂+

and

(
∂

∂η

)
ijkl

≡ ∂

∂ηi
∂

∂ηj
∂

∂ηk
∂

∂ηl
.

We note that these E7(7)/SU(8) transformations do close properly to an SU(8) transfor-

mation on the superfield.

4 Truncation: from supergravity to pure gravity in d = 4

We now note that we could set all fields, except h and h̄, in the superfield to zero. The

resulting expression from (3.6) is then a Hamiltonian describing pure gravity in four di-

mensions, in the light-cone gauge. This is another way of understanding the result in (2.4).

In other words, the following “superfield”

φ ( y ) =
1

∂+2 h (y) +
4

8!
θm θn θp θq θr θs θt θu εmnpqrstu ∂

+2
h̄ (y) , (4.1)

furnishes us with an unnecessarily complicated description of pure gravity through the

Quadratic Form defined by (3.6), (3.8) and (3.9).

We point out that this complicated way of writing gravity was already hinted at by

earlier results. In particular, we found that the light-cone Hamiltonians of both pure gravity

and maximal supergravity exhibit a quadratic form structure [7, 9]. Earlier, we showed

that both pure Yang-Mills theory and the maximally supersymmetric N = 4 Yang-Mills

also exhibit this quadratic form structure [8]. On the other hand, theories with less-than-

maximal supersymmetry do not possess this property.

This form of the Hamiltonian is not suitable to look for a σ-model symmetry of the

four-dimensional theory. When we truncate the superfield to the gravity case we see that

the symmetry (3.10) disappears. In order to find a remnant of an exceptional symmetry in

d = 4 we have again to first dimensionally reduce the N = 8 theory to three dimensions,

make a field redefinition and then lift the theory back to d = 4 and finally perform the

truncation again or make the truncation already in three dimension and then lift it. The

two procedures commute.
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4.1 Maximal supergravity in three dimensions

In section 3, we arrived at a description of d = 3 gravity by dimensional reduction of the

component Lagrangian for gravity, in the light-cone gauge. We now have a second path to

the same result. When we dimensionally reduce the d = 4 maximal Supergravity theory

theory to d = 3, we are left with the dependence on one transverse derivative, ∂. We

obtain, for the action for the d = 3 theory (up to an overall constant)

S =

∫
d3x d8θ d8θ̄ L , (4.2)

where

L = −φ̄ 2

∂+4 φ +
4

3
κ

(
1

∂+4 φ̄ ∂
2φ ∂+2

φ − 1

∂+4 φ̄ ∂
+∂φ ∂+∂φ + c.c.

)
, (4.3)

This theory does not show an E8(8) symmetry since the SO(16) R-symmetry which

is the maximal subgroup of E8(8) and linearly realized does not admit vertices of odd

order (κ, κ3 etc.). It is spanned on the spinor representation 128 for both the bosons

and the fermions and there is no 1 in the multiplication of an odd number of such spinor

representations. Again we have to make field redefinitions to get rid of the three-point

couplings. This was done in [6]. We were again led to a Hamiltonian in a quadratic form

H(3) =
1

4
√

2
(W(3)

m , W(3)
m ) , (4.4)

with the superscript reminding us that we are working in d = 3. We could now again trun-

cate the superfield to only contain h and h̄ and will then recover the gravity theory in the

field representation with no three-point coupling. In [17] the E8,8/SO(16) transformations

were derived. They read

δE8(8)/SO(16) φ =
1

κ
F + κ εm1m2...m8

2∑
c=−2

(
d̂m1m2···m2(c+2)

∂+c F
)

×
{(

δ

δ η

)
m2c+5···m8

∂+(c−2)
(
eη·

ˆ̄d ∂+(3−c)φ e−η·
ˆ̄d∂+(3−c)φ

) ∣∣∣∣
η=0

+ O(κ2)

}
,

(4.5)

where the sum is over the U(1) charges c = 2, 1, 0− 1,−2 of the bosonic fields, and

F =
1

∂+2 β (y−) + i θmn
1

∂+
βmn (y−)− θmnpq βmnpq (y−)

+ iθ̃ mn ∂
+ βmn (y−) + 4 θ̃ ∂+2

β̄ (y−) ,

d̂m1m2···m2(c+2)
≡ d̂m1 d̂m2 · · · d̂2(c+2)

and

θ̃ a1a2...an = εa1a2...anb1b2...b(8−n)
θb1b2···b(8−n) .
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F represents the 128 transformation parameters. We now set all the parameters in F ,

other than β and β̄, to zero following (4.1).

F =
1

∂+2 β (y−) + 4 θ̃ ∂+2
β̄ (y−) ,

We can then check that the exceptional E8(8)/SO(16) transformations (4.5) break down to

the L− and L+ transformations in section 2, where the parameters, a and ā are identified

with β and β̄ repectively. Similarly, the SO(16) breaks down to a U(1) given by L0. In

section 2, we have made this realization entirely explicit.

Having established that the d = 3 pure gravity theory possesses this symmetry, the

natural next step is to ask whether we can oxidize back to four dimensions, exactly as we

did with supergravity [6]. Indeed, this can be done as explained below.

4.2 A lift back to four dimensions

The result in (4.4) is a particularly powerful way of realizing the Ehlers-symmetry from

section 2. This particular form of the Hamiltonian can now be oxidized back to four

dimensions, while preserving this Ehlers symmetry.

This is achieved very easily by replacing all the ∂ ( = ∂1) by the generalized derivative

∇ ≡ ∂1 + i ∂2 (4.6)

in the expression for W(3)
m to order-κ2 [17]

εmW(3)
m = εm

∂

∂+
q̄m φ

+
κ2

2

2∑
c=−2

1

∂+(c+4)

{
δ

δa

δ

δb

(
δ

δη

)
m1m2...m2(c+2)

(
E∂+(c+5)

φ E−1

)∣∣∣∣∣
a=b=η=0

×ε
m1m2...m8

(4− 2c)!

(
δ

δη

)
m2c+5...m8

∂+2c
(
E∂+(4−c)

φE−1 ∂+(4−c)
φ

)∣∣∣∣∣
η=0

}
,

(4.7)

where

E ≡ ea∂̂+ bεˆ̄q+ η ˆ̄d and E−1 ≡ e−a∂̂− bεˆ̄q− η
ˆ̄d ,

with

a ∂̂ = a
∂

∂+
, b ε ˆ̄q = b εm

q̄m
∂+

, η ˆ̄d = ηm
d̄m
∂+

.

The conjugate derivative, in four dimensions, enters through W(3)
. The key point is

that the E8(8) transformations on W(3) andW(3)
are zero separately. This is why we could

argue that also the four-dimensional action has an E8(8) invariance. The same argument

goes through in the truncated case. This is then the statement that we find a SU(1, 1)

internal symmetry in the d = 4 light-cone description of the pure gravity action.
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5 Conclusions

We have in this paper worked with the action for gravity. It has been natural to ask if it

also contains symmetries that are not obvious from or manifest at the level of the equations

of motion [10, 11]. We have shown here that such symmetries do appear in both maximally

supersymmetric quantum field theories and pure gravity. The Ehlers symmetry is a well-

known symmetry in three dimensional spacetime. By writing the d = 3 Hamiltonian

in a special manner we have found a way to lift that Hamiltonian to four dimensions

while still exhibiting the same symmetry (which is unrelated to spacetime symmetry). In

the process, we have written the Hamiltonian in several different ways seemingly getting

more and more complicated but in the end finding a form that allows us to uncover this

symmetry. We might in the process have found the most round-about and complex way to

write the pure gravity Hamiltonian but we are not intending to use this particular form for

practical calculations. The symmetries should be present even when we do not explicitly

see them and hence affect calculations performed using other more convenient formalisms

(this reminds us of the story of Niels Bohr and the horseshoe.)

The formalism used is as said before completely algebraic devoid of any geometric

insight. All symmetries are global since the action is fully gauge fixed. It is mainly useful

to identify symmetries but also to discuss quantum perturbative behaviour. Hence it is

important for a discussion about the convergence of the perturbation theory which we know

works better for both pure gravity and the maximally supersymmetric one than expected.

This is something to be studied now.

Having established the symmetry in four dimensions of spacetime it will also be im-

portant to go back to a geometric approach and find it there. This is usually a very

difficult step, which is another drawback of the light-cone gauge formalism, but of course

not impossible. Such a description would then reveal the true geometric background of the

extended symmetry.

Our analysis raises the question of whether we actually know all the symmetries present

in the field theories we work with. We know that Yang-Mills theory and gravity, both with

and without supersymmetry, and particularly their maximally supersymmetric versions dis-

play remarkable quantum properties. We believe that we have taken a small step towards

showing that there are symmetries beyond those we normally associate with these theories.

We are very used, for good reasons, to working with covariant formalisms but what is the

way forward when any new or hidden symmetries are only visible in non-covariant formu-

lations or in spacetimes augmented with many extra coordinates? Our light-cone gauge

formalism is democratic in the sense that all the symmetries are non-linearly implemented.

This allows us, together with field redefinitions which are natural to perform in the func-

tional integral over the action, to look for field representations which are particularly suited

to these extra symmetries. We believe that there is room for further surprises.

Acknowledgments

We thank Chris Hull for valuable discussions. The work of SA is partially supported

by a DST-SERB grant (EMR/2014/000687). SM acknowledges support from a CSIR

– 11 –



J
H
E
P
1
1
(
2
0
1
8
)
0
7
8

NET fellowship. LB wishes to acknowledge Aspen Physics Center where part of his work

was done.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] Z. Bern et al., Amplitudes and ultraviolet behavior of N = 8 supergravity, Fortsch. Phys. 59

(2011) 561 [arXiv:1103.1848] [INSPIRE].

[2] G. Bossard, C. Hillmann and H. Nicolai, E7(7) symmetry in perturbatively quantised N = 8

supergravity, JHEP 12 (2010) 052 [arXiv:1007.5472] [INSPIRE].

[3] E. Cremmer and B. Julia, The SO(8) supergravity, Nucl. Phys. B 159 (1979) 141 [INSPIRE].

[4] L. Brink, S.-S. Kim and P. Ramond, E7(7) on the light cone, JHEP 06 (2008) 034

[arXiv:0801.2993] [INSPIRE].

[5] S. Ananth, L. Brink and S. Majumdar, Exceptional versus superPoincaré algebra as the
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