Critical Temperature of Heisenberg Models on Regular Trees, via Random Loops
Artikel i vetenskaplig tidskrift, 2018

We estimate the critical temperature of a family of quantum spin systems on regular trees of large degree. The systems include the spin-1/2 XXZ model and the spin-1 nematic model. Our formula is conjectured to be valid for large-dimensional cubic lattices. Our method of proof uses a probabilistic representation in terms of random loops.

Critical temperature

Random loop model

Quantum Heisenberg

Författare

Jakob Björnberg

Chalmers, Matematiska vetenskaper, Analys och sannolikhetsteori

Göteborgs universitet

Daniel Ueltschi

The University of Warwick

Journal of Statistical Physics

0022-4715 (ISSN) 1572-9613 (eISSN)

Vol. 173 5 1369-1385

Ämneskategorier

Annan fysik

Reglerteknik

Den kondenserade materiens fysik

DOI

10.1007/s10955-018-2154-2

Mer information

Senast uppdaterat

2018-12-17