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Ann. Inst. Fourier, Grenoble
68, 2 (2018) 875-900

DIRECT IMAGES OF SEMI-MEROMORPHIC
CURRENTS

by Mats ANDERSSON & Elizabeth WULCAN (*)

Abstract. — We introduce a calculus for the class ASM(X) of direct images
of semi-meromorphic currents on a reduded analytic space X, that extends the
classical calculus due to Coleff, Herrera and Passare. Our main result is that each
element in this class acts as a kind of multiplication on the sheaf PMX of pseu-
domeromorphic currents on X. We also prove that ASM(X) as well as PMX and
certain subsheaves are closed under the action of holomorphic differential operators
and interior multiplication by holomorphic vector fields.
Résumé. — Nous introduisons un calcul pour la classe ASM(X) d’images di-

rectes de courants semi-méromorphes sur un espace analytique reduit X, qui étend
le calcul classique de Coleff, Herrera et Passare. Notre résultat principal montre
que chaque élément de cette classe agit de manière analogue à une multiplication
sur le faisceau PMX de courants pseudoméromorphes sur X. Nous prouvons éga-
lement que ASM(X) ainsi que PMX et certains sous-faisceaux sont fermés sous
l’action des opérateurs différentiels holomorphes et la multiplication intérieure par
des champs vectoriels holomorphes.

1. Introduction

Let f be a generically nonvanishing holomorphic function on a reduced
analytic space X of pure dimension n. It was proved by Herrera and Lieber-
man, [14], that one can define the principal value current

(1.1)
[

1
f

]
· ξ := lim

ε→0

∫
|f |2>ε

ξ

f
,

for test forms ξ. It follows that ∂̄[1/f ] is a current with support on the zero
set Z(f) of f ; such a current is called a residue current. Coleff and Herrera,

Keywords: residue current, semi-meromorphic current, analytic space, pseudomeromor-
phic current.
2010 Mathematics Subject Classification: 32A26, 32A27, 32B15, 32C30.
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876 Mats ANDERSSON & Elizabeth WULCAN

[13], introduced products of principal value and residue currents, like

(1.2) [1/f1] . . . [1/fr]∂̄[1/fr+1]∧ . . .∧∂̄[1/fm].

The product of principal value currents is commutative, but when there
are residue factors, like ∂̄[1/fj ], present these products are not (anti-)com-
mutative in general.
In the literature there are various generalizations and related currents,

for instance the abstract so-called Coleff–Herrera currents introduced by
Björk, see [12], the Bochner–Martinelli type residue currents introduced
in [21], and generalizations in, e.g., [3, 5, 9].

In order to obtain a coherent approach to questions about residue and
principal value currents the sheaf PMX of pseudomeromorphic currents on
X was introduced in [10], and further developed in [7]; this sheaf consists
of direct images under holomorphic mappings of products of test forms and
currents like (1.2). See Section 2 below for the precise definition. This sheaf
is closed under ∂̄ and under multiplication by smooth forms. Pseudomero-
morphic currents have a geometric nature, similar to positive closed (or
normal) currents. For example, the dimension principle states that if the
pseudomeromorphic current µ has bidegree (∗, p) and support on a vari-
ety of codimension larger than p, then µ must vanish. Moreover one can
form restrictions 1Wµ of the pseudomeromorphic current µ to analytic (or
constructible) subsets W ⊂ X, such that

(1.3) 1V 1Wµ = 1V ∩Wµ,

see Section 2.2. The notion of pseudomeromorphic currents plays a decisive
role in, for instance, [7, 8, 10, 11, 15, 16, 18, 22, 23, 24, 25].
It is well-known that one cannot multiply currents in general. Several

attempts to find a working calculus for principal value and residue cur-
rents have been made. A famous result by Coleff and Herrera, [13], see
also Passare, [20], asserts that (1.2) has all expected (anti-)commutativity
properties as long as the common zero set of f1, . . . , fm has codimension
m. Various extension are introduced in the references above. In [10] we
proved that one can give a reasonable meaning to a product [1/f ]µ for any
holomorphic function f and pseudomeromorphic current µ; more precisely
one should consider this as an operator

(1.4) µ 7→ [1/f ]µ

on the sheaf PMX .
We have not found a way to define a reasonable product of general pseu-

domeromorphic currents. Our first objective in this paper is to study a

ANNALES DE L’INSTITUT FOURIER
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generalization of principal value currents leading to an extension of (1.4).
Following [7] we say that a current a is almost semi-meromorphic, a ∈
ASM(X), if it is the direct image under a modification of a semi-mero-
morphic current, i.e., a current of the form ω[1/f ], where f is a holomor-
phic section of a line bundle and ω is a smooth form with values in the
same bundle. Almost semi-meromorphic currents are pseudomeromorphic
and in many ways they generalize principal value currents. For example,
it turns out that they form an (anti-)commutative algebra, see Section 4.
Moreover ASM(X) is closed under ∂, see Proposition 4.16. Taking ∂̄ of
a ∈ ASM(X), however, yields an almost semi-meromorphic current plus
a residue current supported on the Zariski singular support, ZSS(a), of
a, which is the smallest analytic set where a is not smooth. Many of the
currents in the references above can be considered as (products of) the
residues of almost semi-meromorphic currents. Theorem 4.8 states that the
mapping (1.4) holds for any almost semi-meromorphic current a instead
of [1/f ]. More precisely, there is a unique extension to X of the current
a∧µ, defined in the obvious way in X \ZSS(a), such that its restriction to
ZSS(a) is zero.
A second objective is to prove that PMX and ASM(X) are closed under

interior multiplication by a holomorphic vector field ξ and under the Lie
derivative with respect to ξ; see Sections 3 and 4.5.

In Section 2 we recall basic known properties of the sheaf PMX and
provide some new results, e.g., Theorem 2.15 gives a new quite natural
characterization of pseudomeromorphicity. Section 4 is devoted to the study
of ASM(X).

Ackowledgment. We are grateful to the referee for carefully reading
and pointing out unclarities and misprints.

2. Pseudomomeromorphic currents

In one complex variable s one can define the principal value current
[1/sm] for instance as the value[

1
sm

]
= |s|

2λ

sm

∣∣∣
λ=0

of the current-valued analytic continuation of λ 7→ |s|2λ/sm, a priori defined
for Reλ� 0, see, e.g., [3, Lemma 2.1]. We have the relations

(2.1) ∂

∂s

[
1
sm

]
= −m

[
1

sm+1

]
, s

[
1

sm+1

]
=
[

1
sm

]
.
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878 Mats ANDERSSON & Elizabeth WULCAN

It is also well-known that

(2.2) ∂̄

[
1
sm

]
· ξ ds = 2πi

(m− 1)!
∂m−1

∂sm−1 ξ(0)

for test functions ξ and m > 1; in particular, ∂̄[1/sm] has support at
{s = 0}. Thus

(2.3) s̄∂̄

[
1
sm

]
= 0, ds̄∧∂̄

[
1
sm

]
= 0.

We say that a function χ on the real line is a smooth approximand of
the characteristic function χ[1,∞) of the interval [1,∞), and write

χ ∼ χ[1,∞),

if χ is smooth, equal to 0 in a neighborhood of 0 and 1 in a neighborhood
of ∞. It is well-known that [1/sm] = limε→0 χ(|s|2/ε)(1/sm).
Let tj be coordinates in an open set U ⊂ CN and let α be a smooth form

with compact support in U . Then

(2.4) τ = α∧
[

1
tm1
1

]
. . .

[
1
tmk

k

]
∂̄

[
1

t
mk+1
k+1

]
∧ . . .∧∂̄

[
1
tmr
r

]
,

where m1, . . . ,mr > 1, is a well-defined current, since it is the tensor
product of one-variable currents (times α). We say that τ is an elemen-
tary (pseudomeromorphic) current, and we refer to [1/tmj

j ] and ∂̄[1/tm`

` ]
as its principal value factors and residue factors, respectively. It is clear
that (2.4) is commuting in the principal value factors and anti-commuting
in the residue factors. We say the intersection of U and the coordinate plane
{tk+1 = · · · = tr = 0} is the elementary support of τ . Clearly the support
of τ is contained in the intersection of the elementary support of τ and the
support of α.

Remark 2.1. — Since ∂ does not introduce new residue factors, ∂τ is
an elementary current, cf. (2.1), whose elementary support either equals
the elementary support H of τ or is empty. Moreover ∂̄τ is a finite sum of
elementary currents, whose elementary supports are either equal to H or
coordinate planes of codimension 1 in H, cf. (2.2).

2.1. Definition and basic properties

Let X be a reduced complex space of pure dimension n. Fix a point
x ∈ X. We say that a germ µ of a current at x is pseudomeromorphic at

ANNALES DE L’INSTITUT FOURIER
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x, µ ∈ PMx, if it is a finite sum of currents of the form

(2.5) π∗τ = π1
∗ . . . π

m
∗ τ,

where U ⊂ X is a neighborhood of x,

(2.6) Um
πm

−→ . . .
π2

−→ U1
π1

−→ U0 = U ,

each πj : Uj → Uj−1 is either a modification, a simple projection Uj−1×Z →
Uj−1, or an open inclusion (i.e., Uj is an open subset of Uj−1), and τ is
elementary on Um ⊂ CN .

By definition the union PM = PMX = ∪xPMx is an open subset (of
the étalé space) of the sheaf C = CX of currents, and hence it is a subsheaf,
which we call the sheaf of pseudomeromorphic currents(1) . A section µ of
PM over an open set V ⊂ X, µ ∈ PM(V), is then a locally finite sum

(2.7) µ =
∑

(π`)∗τ`,

where each π` is a composition of mappings as in (2.6) (with U ⊂ V) and
τ` is elementary. For simplicity we will always suppress the subscript ` in
π`. If ξ is a smooth form, then

(2.8) ξ∧π∗τ = π∗ (π∗ξ∧τ) .

Thus PM is closed under exterior multiplication by smooth forms. Since
∂̄ and ∂ commute with push-forwards it follows that PM is closed under
∂̄ and ∂, cf. Remark 2.1.

Remark 2.2. — Let τ be an elementary current with elementary support
H. Since H is the intersection of an open set U and a linear subspace,
each of its components is irreducible, and it follows that, in fact, τ is a
finite sum of currents τ` such that the support of τ` is contained in an
irreducible component of H. We may therefore assume that each τ` in (2.7)
has irreducible elementary support.

Remark 2.3. — One may assume that each τ` in (2.7) has at most one
residue factor. Indeed, in [21], see also [4, Corollary 3.5], it is shown that
the Coleff–Herrera product

∂̄[1/tmk+1
k+1 ]∧ . . .∧∂̄[1/tmr

r ]

equals the Bochner–Martinelli residue current of tmk+1
k+1 , . . . , tmr

r , which, see,
e.g., [3], is the direct image under a modification of a current of the form
α∧∂̄[1/f ], cf. Example 4.18 below. It follows, cf. [6, Lemma 3.2], that (2.4)

(1)The definition here is from [7]; in the original definition in [10] simple projections
were not included.

TOME 68 (2018), FASCICULE 2



880 Mats ANDERSSON & Elizabeth WULCAN

is the direct image under another modification of a finite sum of elementary
currents with at most one residue factor.

Proposition 2.4. — Assume that µ ∈ PM has support on the subva-
riety V ⊂ X.

(1) If the holomorphic function h vanishes on V , then h̄µ = 0 and
dh̄∧µ = 0.

(2) If µ has bidegree (∗, p) and codimV > p, then µ = 0.

This proposition is from [10]; for the adaption to nonsmooth X, see [7,
Proposition 2.3]. Part (1) means that the action of the current µ only
involves holomorphic derivatives of test forms. We refer to part (2) as the
dimension principle. We will also need, [6, Proposition 1.2]:

Proposition 2.5. — If π : X ′ → X is a modification, then
π∗ : PM(X ′)→ PM(X) is surjective.

2.2. Basic operations on pseudomeromorphic currents

Assume that µ is pseudomeromorphic on X and that V ⊂ X is a sub-
variety. It was proved in [10], see also [7], that the restriction of µ to the
open set X \ V has a natural pseudomeromorphic extension 1X\V µ to X.
In [10] it was obtained as the value

(2.9) 1X\V µ := |f |2λµ|λ=0

at λ = 0 of the analytic continuation of the current valued function λ 7→
|f |2λµ, where f is any tuple of holomorphic functions such that Z(f) = V .
It follows that

1V µ := µ− 1X\V µ

has support on V . It is proved in [10] that this operation extends to all
constructible sets and that (1.3) holds. If α is a smooth form, then

(2.10) 1V (α∧µ) = α∧1V µ.

Moreover, if π : X ′ → X is a modification, a simple projection or an open
inclusion and µ = π∗µ

′, then

(2.11) 1V µ = π∗ (1π−1V µ
′) .

In this paper it is convenient to express 1X\V µ as a limit of currents
that are pseudomeromorphic themselves.

ANNALES DE L’INSTITUT FOURIER
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Lemma 2.6. — Let V be a germ of a subvariety at x ∈ X, let f be a
tuple of holomorphic functions whose common zero set is precisely V , let
v be a positive and smooth function, and let χ ∼ χ[1,∞). For each germ of
a pseudomeromorphic current µ at x we have

(2.12) 1X\V µ = lim
ε→0

χ(|f |2v/ε)µ.

Because of the factor v, the lemma holds just as well for a holomorphic
section f of a Hermitian vector bundle.
In case V is a hypersurface and f is one single holomorphic function, or

section of a line bundle, the lemma follows directly from Lemma 6 in [17]
by just taking T = fµ. We will reduce the general case to this lemma.
The proof of this lemma relies on the proof of Theorem 1.1 in [17], which
is quite involved. For a more direct proof of Lemma 2.6, see the proof of
Proposition 3.4 in [1, Chapter 2].
Proof. — Let π : X ′ → X be a smooth modification such that π∗f =

f0f ′, where f0 is a holomorphic section of a Hermitian line bundle L→ X ′

and f ′ is a nonvanishing tuple of holomorphic sections of L−1. In view of
Proposition 2.5 we can assume that µ = π∗µ

′, where µ′ is pseudomeromor-
phic on X ′. Then

|π∗f |2π∗v = |f0|2|f ′|2π∗v,

and from [17, Lemma 6] we thus have that

lim
ε→0

χ(|π∗f |2π∗v/ε)µ′ = 1X′\π−1V µ
′.

In view of (2.11) we get (2.12). �

Remark 2.7. — Lemma 2.6 holds even if χ = χ[1,∞). However, in general
it is not obvious what χ(|f |2v/ε)µ means. Let χδ be smooth approximands
such that χδ → χ[1,∞). It follows from the proof of Lemma 6 in [17] that for
small enough ε, depending on µ, f , and v, the limit
limδ→0 χ

δ(|f |2v/ε)µ exists and is independent of the choice of χδ; thus
we can take it as the definition of χ(|f |2v/ε)µ. In fact, it turns out that
after a suitable change of real coordinates one can realize χ(|f |2v/ε)µ as a
tensor product of two currents. In particular we get

χ(|f |2/ε) 1
f
· ξ =

∫
|f |2>ε

ξ

f
,

cf. (1.1).

We will need the following observation.

TOME 68 (2018), FASCICULE 2
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Lemma 2.8. — If µ has the form (2.7), then

1V µ =
∑

supp τ`⊂π−1V

π∗τ`.

It follows from the proof below that we just as well can take the sum
over all ` such that the elementary supports of τ` are contained in π−1V .
Proof. — In view of (2.11) we have that

1V µ =
∑
`

π∗ (1π−1V τ`) .

If supp τ` ⊂ π−1V , then clearly 1π−1V τ` = τ`. We now claim that if supp τ`
is not contained in π−1V , then 1π−1V τ` = 0. If supp τ` 6⊂ π−1V , the el-
ementary support H of τ` is not contained in π−1V . Assume that H has
codimension q. Then τ` is of the form τ` = α ∧ τ ′, where α is smooth and
τ ′ is elementary of bidegree (0, q). It follows from (2.10) that

1π−1V τ` = α∧1π−1V τ
′.

By Remark 2.2 we may assume that H is irreducible, and therefore π−1V ∩
H has codimension at least q + 1 in U . Since 1π−1V τ

′ has support on
π−1V ∩ H it must vanish in view of the dimension principle. Thus the
lemma follows. �

We now consider another fundamental operation on PM introduced
in [10].

Proposition 2.9 ([10]). — Given a holomorphic function h and a pseu-
domeromorphic current µ there is a pseudomeromorphic current T such
that T = (1/h)µ in the open set where h 6= 0 and 1{h=0}T = 0.

Here h may just as well be a holomorphic section of a line bundle. Clearly
this current T must be unique and we denote it by [1/h]µ. In [10] the current
[1/h]µ was defined as (|h|2λµ/h)|λ=0.

Remark 2.10. — Notice that(2) h[1/h]µ = 1{h6=0}µ; in particular,
h[1/h]µ 6= µ in general. For example, z[1/z]∂̄[1/z] = 0.

Since [1/h]µ = (1/h)µ in {h 6= 0} and [1/h]µ = 1{h6=0}[1/h]µ, it follows
from (2.12) that

(2.13)
[

1
h

]
µ = lim

ε→0
χ(|h|2v/ε) 1

h
µ.

(2)We have not exluded the possibility that h vanishes identically on some (or all)
irreducible components of X.

ANNALES DE L’INSTITUT FOURIER
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One can also define

(2.14) ∂̄

[
1
h

]
∧µ := ∂̄

([
1
h

]
µ

)
−
[

1
h

]
∂̄µ,

i.e., so that “Leibniz’s rule” holds. Notice that if π : X ′ → X is a modifica-
tion and µ = π∗µ

′, then

(2.15)
[

1
h

]
µ = π∗

([
1
π∗h

]
µ′
)
, ∂̄

[
1
h

]
∧µ = π∗

(
∂̄

[
1
π∗h

]
∧µ′
)
.

This follows, e.g., from (2.8) and (2.13). It is also readily checked that

(2.16) ∂̄

(
∂̄

[
1
h

]
∧µ
)

= −∂̄
[

1
h

]
∧∂̄µ.

Remark 2.11. — Since [1/f ][1/g] = [1/(fg)] = [1/g][1/f ] it follows
from (2.14) that

∂̄

[
1
f

]
·
[

1
g

]
+
[

1
f

]
∂̄

[
1
g

]
= ∂̄

[
1
g

]
·
[

1
f

]
+
[

1
g

]
∂̄

[
1
f

]
.

However, it is not true in general that [1/g]∂̄[1/f ] = ∂̄[1/f ] · [1/g]. For
instance, [1/z]∂̄[1/z] = 0, whereas ∂̄[1/z] · [1/z] = ∂̄[1/z2].

We now consider tensor products and direct images under simple projec-
tions.

Lemma 2.12. — If µ ∈ PMX and µ′ ∈ PMX′ , then µ⊗µ′ ∈ PMX×X′ .

This is precisely [6, Lemma 3.3]. It is easy to verify that

(2.17) 1V×V ′µ⊗ µ′ = 1V µ⊗ 1V ′µ′.

Lemma 2.13. — Assume that p : Z ×W → Z is a simple projection.
If µ is in PMZ×W and p−1K ∩ suppµ is compact for each compact set
K ⊂ Z, then p∗µ is in PMZ .

Proof. — Since pseudomeromorphicity is a local property, after multi-
plying µ if necessary by a suitable cutoff function we can assume that µ
has compact support. By compactness and a partition of unity we then
have a finite representation µ =

∑
` π∗τ`. Now the lemma follows from the

very definition of PM. �

Example 2.14. — Assume that τ is an elementary current on X, p is a
simple projection X × X ′ → X, and χ is any test form in X ′ with total
integral 1. Then the tensor product τ⊗χ is an elementary current in X×X ′
such that p∗(τ ⊗ χ) = τ .

The following result provides a new, quite natural definition of pseu-
domeromorphicity.

TOME 68 (2018), FASCICULE 2
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Theorem 2.15.
(1) Assume that X is smooth. Then a germ of a current µ at x ∈ X is

pseudomeromorphic if and only if it is a finite sum

(2.18) µ =
∑
`

(f`)∗τ`,

where f` : U` → X are holomorphic mappings and τ` are elementary.
(2) If X is a reduced space of pure dimension and π : X ′ → X is a

smooth modification, then a current µ on X is pseudomeromorphic
if and only if there is a pseudomeromorphic current µ′ on X ′ such
that µ = π∗µ

′.

Proof. — By definition a germ of a pseudomeromorphic current is of the
form (2.18). Now assume that f : U → X is any holomorphic mapping
and τ is elementary in U ⊂ CN . Let F : U → U × X be the mapping
F (s) = (s, f(s)). Let F̃ be F considered as a biholomorphism onto the
graph Γ ⊂ U × X and let i : Γ → U × X be the natural injection. Then
clearly F̃∗τ is pseudomeromorphic on Γ and in view of [6, Theorem 1.1(i)],
F∗τ = i∗F̃∗τ is pseudomeromorphic in U × X. Clearly, it has compact
support in U ×X. If p is the projection U ×X → X, we can therefore apply
Lemma 2.13, and conclude that f∗τ = p∗F∗τ is pseudomeromorphic in X.
Thus part (1) is proved. Part (2) is just Proposition 2.5. �

Corollary 2.16. — Assume that f : W → X is a holomorphic map-
ping and X is smooth. If µ is pseudomeromorphic on W with compact
support, then f∗µ is pseudomeromorphic on X.

Proof. — We may assume that µ = π∗τ , where π : U →W is a mapping
as in the definition of pseudomeromorphicity and τ is elementary in U .
Then we can apply Theorem 2.15(1) to the mapping f ◦ π : U → X. It
follows that f∗µ = f∗π∗τ = (f ◦ π)∗τ is pseudomeromorphic in X. �

Remark 2.17. — Notice that in the proof of Theorem 2.15 we only
used [6, Theorem 1.1(i)], which asserts that i∗ maps PMW into PMX

if i : W → X is an embedding of a reduced pure-dimensional space W
into a manifold X, in the relatively simple case when W is a smooth sub-
manifold. The general case now follows from Corollary 2.16. Part (ii) of [6,
Theorem 1.1] is a partial converse: If µ = i∗ν is pseudomeromorphic in X
and 1Wsingµ = 0, then ν is pseudomeromorphic onW . The proof of this fact
relies on the possibility to make a so-called strong resolution. This means
that there is a resolution X ′ → X that is a biholomorphism outside W ,
and such that the strict transform of W is a smooth resolution of W .

ANNALES DE L’INSTITUT FOURIER



DIRECT IMAGES OF SEMI-MEROMORPHIC CURRENTS 885

3. Action of holomorphic differential operators and vector
fields

Let X be a reduced analytic space of pure dimension. We already know
that ∂ maps PMX into itself. We shall now consider a more general state-
ment, and to this end we need the following result that is interesting in
itself.

Proposition 3.1. — Assume that µ ∈ PMx where x ∈ X. If h ∈ Ox
is not identically zero on any irreducible component of X at x, then there
is µ′ ∈ PMx such that hµ′ = µ.

Remark 3.2. — By a partition of unity we can get a global such µ′ if
µ and h are global. If µ has compact support in U ⊂ X we can choose µ′
with compact support in U .

Remark 3.3. — If µ has support on V we may assume as well that µ′
has. Indeed, µ = 1V µ = 1V hµ

′ = h1V µ
′, so we can replace a given solution

µ′ by 1V µ′.

Example 3.4. — Proposition 3.1 is not true if h is anti-holomorphic. In
fact, if z̄µ′ = 1, then [1/z]µ′ is equal to 1/|z|2 outside 0. Thus
limε→0 χ(|z|2/ε)µ′/z does not exist, and hence µ′ cannot be pseudomero-
morphic, cf. Proposition 2.9 and (2.13).

Proof of Proposition 3.1. — First assume that τ is an elementary pseu-
domeromorphic current in CNt and h is a monomial. By induction it is
enough to assume that h = t1. If t1 is a residue factor in τ , then we just
raise the power of t1 in that factor one unit. Otherwise we take τ ′ = (1/t1)τ .
Then hτ ′ = τ .
We may assume that µ = π∗τ , where π : U → X and τ is elementary of

the form (2.4). By Hironaka’s theorem we can find a modification ν : U ′ →
U such that, locally in U ′, ν∗π∗h is a monomial and ν∗tj are monomials
(times nonvanishing functions). By a partition of unity in U ′ and repeated
use of (2.15) it follows that τ is a finite sum of currents ν∗τ ′, where

τ ′ := ν∗α∧
[

1
ν∗tm1

1

]
. . .

[
1

ν∗tmk

k

]
∂̄

[
1

ν∗t
mk+1
k+1

]
∧ . . .∧∂̄

[
1

ν∗tmr
r

]
.

Each such term is a sum of elementary currents τ` in view of (2.14). By
the first part of the proof there are elementary currents τ ′` in U ′ such that
ν∗π∗h τ ′` = τ`. Now the proposition follows in view of (2.8). �
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Theorem 3.5. — Assume that X is smooth at x ∈ X.
(1) If z is a local holomorphic coordinate system at x and

(3.1) µ =
′∑

|I|=p

µI∧dzI

is a germ in PMx, then each µI is in PMx.
(2) If ξ is a germ of a holomorphic vector field, then the contraction

ξ¬µ and the Lie derivative Lξµ are in PMx.

Notice that (2) is not true for anti-holomorphic vector fields. For example,
µ = (∂/∂z̄)¬∂̄(1/z) is a nonzero current of degree 0 with support at 0. In
view of the dimension principle, it cannot be pseudomeromorphic.
Proof. — We will first assume that µ has bidegree (n, ∗) so that µ =

µ̂∧dz, where µ̂ has bidegree (0, ∗), and show that µ̂ is pseudomeromor-
phic. We may assume that µ = π∗(τ∧ds), where π : U → X is a map-
ping as in the definition of pseudomeromorphicity, s are local coordinates
in U ⊂ Cm, and τ is elementary. Since π has generically surjective dif-
ferential, we can write s = (s′, s′′) = (s′1, . . . , s′n, s′′n+1, . . . , s

′′
m) so that

h := det(∂π/∂s′) = det(∂z/∂s′) is generically nonvanishing in U . By
Proposition 3.1 and Remark 3.2 there is a pseudomeromorphic τ ′ with
compact support in U such that hτ ′ = τ in U . Now

µ̂∧dz = π∗(τ∧ds) = π∗(τ ′∧hds′∧ds′′) = π∗(τ ′∧π∗dz∧ds′′)
= ±π∗(τ ′∧ds′′)∧dz.

Thus µ̂ = ±π∗(τ ′∧ds′′) is pseudomeromorphic. In general, µI∧dz =
±µ∧dzIc , where Ic is the complementary multiindex of I. It follows from
above that µI is pseudomeromorphic. Thus (1) follows.
The first statement of (2) follows immediately from (1), and the second

one follows since Lξµ = ∂(ξ¬µ) + ξ¬(∂µ). �

3.1. The sheaves PMZ
X and WZ

X

Let X be a reduced analytic space, let Z ⊂ X be a (reduced) subspace
of pure dimension, and denote by PMZ

X the subsheaf of PMX of currents
that have support on Z. We say that µ ∈ PMZ

X has the standard extension
property, SEP, on Z if 1Wµ = 0 in U for each subvariety W ⊂ U ∩ Z of
positive codimension, where U is any open set inX. LetWZ

X be the subsheaf
of PMZ

X of currents with the SEP on Z. In case Z = X we usually write
WX rather than WX

X .
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Example 3.6. — Note that an elementary current in U with elementary
support H is in WH

U .

It is easy to see that Theorem 3.5 holds for PMZ
X as well, since neither

∂ nor contraction can increase support. Somewhat less obvious is that also
the SEP is preserved.

Theorem 3.7. — The sheaf WZ
X is invariant under ∂, and the state-

ments in Theorem 3.5 hold for WZ
X instead of PM.

This theorem is a consequence of the following general equalities.

Proposition 3.8. — Assume that µ is a pseudomeromorphic current
on X. If V ⊂ X is any analytic subset, then

(3.2) 1V ∂µ = ∂1V µ.

If ξ is a holomorphic vector field, then

(3.3) 1V ξ¬µ = ξ¬1V µ.

Proof. — Note that (3.3) follows in view of (2.12). Let us therefore focus
on (3.2). By (1.3) it is enough to consider V = Z(h), where h is a nontrivial
holomorphic function. Take χ ∼ χ[1,∞) and let χε = χ(|h|2/ε). Now

(3.4) χε∂µ = ∂(χεµ)− ∂χε∧µ.

If the last term tends to 0 when ε → 0, after taking limits we get that
1h6=0∂µ = ∂(1h6=0µ), which is equivalent to (3.2). Let χ̂(t) = tχ′(t) + χ(t),
and notice that also χ̂ ∼ χ[1,∞). According to Proposition 3.1 there is a
pseudomeromorphic µ′ such that µ = hµ′. The last term in (3.4) is therefore

χ′(|h|2/ε)h̄∂h∧µ/ε = χ′(|h|2/ε)|h|2∂h∧µ′/ε = χ̂(|h|2/ε)∂h∧µ′ − χε∂h∧µ′,

which tends to 1h6=0∂h∧µ′ − 1h6=0∂h∧µ′ = 0. �

4. Almost semi-meromorphic currents

We say that a current on X is semi-meromorphic if it is of the form
ω[1/f ], where f is a generically nonvanishing holomorphic section of a line
bundle L → X and ω is a smooth form with values in L. For simplicity
we will often omit the brackets [ ] indicating principal value in the sequel.
Since furthermore ω[1/f ] = [1/f ]ω when ω is smooth we can write just
ω/f .
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4.1. The algebra ASM(X)

Let X be a pure-dimensional reduced analytic space. We say that a
current a is almost semi-meromorphic in X, a ∈ ASM(X), if there is a
modification π : X ′ → X such that

(4.1) a = π∗(ω/f),

where ω/f is semi-meromorphic in X ′. We say that a is almost smooth
in X if one can choose f to be nonvanishing. We can assume that X ′ is
smooth because otherwise we take a smooth modification π′ : X ′′ → X ′

and consider the pullbacks of f and ω to X ′′, cf. (2.15). If nothing else is
said we tacitly assume that X ′ is smooth.
Notice that if U ⊂ X is an open subset, then the restriction aU of a ∈

ASM(X) to U is in ASM(U). In fact, if (4.1) holds, then U ′ := π−1U → U
is a modification of U , and aU is the direct image of the restriction of ω/f
to U ′.
If V has positive codimension in U ⊂ X, then π−1V has positive codi-

mension in U ′ and 1V a = π∗(1π−1V (ω/f)) = π∗(ω1π−1V (1/f)) = 0 in U ,
cf. (2.11), (2.10), and the dimension principle. Thus ASM(X) is contained
in W(X).

Remark 4.1. — One can introduce a notion “locally almost semi-mero-
morphic current” and consider the associated sheaf. However, for the mo-
ment we have no need for such a concept.

Example 4.2. — Assume that X = {zw = 0} ⊂ C2. Let a : X → C be 1
and 0 on the z-axis and the w-axis, respectively, except at the origin. Then
a is almost smooth. Indeed the normalization ν : X̃ → X consists of two
disjoint components and a = ν∗ã, where ã is 0 and 1, respectively, on these
components.

Given a modification π : X ′ → X, let sing(π) ⊂ X ′ be the (analytic)
set where π is not a biholomorphism. By the definition of a modification
it has positive codimension. Let a be given by (4.1) and let Z ⊂ X ′ be
the zero set of f . By assumption also Z has positive codimension. Notice
that a ∈ ASM(X) is smooth outside π(Z ∪ sing(π)) which has positive
codimension in X. We let ZSS(a), the Zariski-singular support of a, be
the smallest Zariski-closed set V ⊂ X such that a is smooth outside V .

Example 4.3. — Assume that a ∈ ASM(X) is almost smooth. Then
a = π∗ω, where ω is smooth, and thus ZSS(a) ⊂ π(sing(π)). This inclusion
may be strict. For example if a is smooth, then ZSS(a) is empty. In this case
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ω = π∗a outside sing(π) and since both sides are smooth across sing(π),
by continuity, then ω = π∗a everywhere in X ′.

Given two modifications X1 → X and X2 → X, there is a modification
π : X ′ → X that factorizes over both X1 and X2, i.e., we have X ′ → Xj →
X for j = 1, 2. Therefore, given a1, a2 ∈ ASM(X) we can assume that
aj = π∗(ωj/fj), j = 1, 2. It follows that

a1 + a2 = π∗

(
ω1

f1
+ ω2

f2

)
= π∗

f2ω1 + f1ω2

f1f2
,

so that a1 + a2 is in ASM(X) as well. Moreover, A := π∗(ω1∧ω2/f1f2)
is an almost semi-meromorphic current that coincides with a1∧a2 outside
the set π (sing(π) ∪ V (f1) ∪ V (f2)). If we had other representations aj =
π′∗(ω′j/f ′j), j = 1, 2, we would get an almost semi-meromorphic A′ that
coincides generically with a1∧a2 on X. Since almost semi-meromorphic
have the SEP, thus A = A′. Hence we can define a1∧a2 as A. Similarly,
since

a2∧a1 = (−1)deg a1 deg a2a1∧a2, a1∧(a2 + a3) = a1∧a2 + a1∧a3

and
a1∧(a2∧a3) = (a1∧a2)∧a3

hold generically on X and because of the SEP they hold on X. Thus
ASM(X) is an algebra.

Remark 4.4. — Notice that the almost smooth currents form a subal-
gebra of ASM(X).

Example 4.5. — Clearly ZSS(a1∧a2) ⊂ ZSS(a1) ∪ ZSS(a2) but the
inclusion may be strict. Take for instance z1/z2 and z2/z3.

Example 4.6. — The most basic example of an (almost semi-)meromor-
phic current is the principal value current associated with a meromorphic
form. Let f a be meromorphic k-form on X, i.e., locally f = g/h where
h is a holomorphic function that is generically nonvanishing and g is a
holomorphic (k, 0)-form. By definition g/h = g′/h′ if and only if g′h− gh′
vanishes outside a set of positive codimension. In that case

(4.2) g

[
1
h

]
= g′

[
1
h′

]
outside a set of positive codimension. By the dimension principle there-
fore (4.2) holds everywhere. Thus there is a well-defined almost semi-
meromorphic current [f ] associated with f . Notice that ZSS([f ]) is con-
tained in the pole set of the meromorphic form f , so unless X is smooth
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it may have codimension larger than 1. Actually, ZSS([f ]) is equal to the
pole set of f . In fact, by continuity ∂̄f = 0 where f is smooth, and by a
classical result proved by Malgrange (at least for functions), [19], then f is
holomorphic there.

The following lemma will be crucial in what follows.

Lemma 4.7. — If a is almost semi-meromorphic in X, then there is a
representation (4.1) such that f is nonvanishing in X ′ \ π−1ZSS(a).

Proof. — Let V = ZSS(a) and assume that we have a representa-
tion (4.1) and that X ′ is smooth. Let Z be the union of the irreducible
components of the divisor defined by f that are not fully contained in
π−1V . Since X ′ is smooth, Z is a Cartier divisor and thus the divisor of
a section f ′ of some line bundle L′ → X ′. It follows that g := f/f ′ is a
holomorphic section of L⊗ (L′)−1 in X ′ that is nonvanishing in X ′ \π−1V .
Outside sing(π) ∪ Z ∪ π−1V we have that

(4.3) ω = fπ∗a = f ′gπ∗a.

By continuity, (4.3) must hold in X ′ \ π−1V since both sides are smooth
there.
We claim that ω̃ := ω/f ′ is smooth in X ′. Taking this for granted, then

(4.4) π∗
ω̃

g

is in ASM(X) and the zero set of g is contained in π−1V . Since (4.4)
coincides with a outside V ∪ π(sing(π)) it follows by the SEP that (4.4)
indeed is equal to a in X. Thus the lemma follows.

The claim is a local statement in X ′ so given a point in X ′ we can choose
local coordinates t in a neighborhood U of that point and consider each
coefficient of the form ω with respect to these coordinates. Thus we may
assume that ω is a function and that ω = f ′γ where γ = gπ∗a is smooth
in U \ π−1V , cf. (4.3) and the comment thereafter. For all multiindices α
thus

(4.5) ∂αω

∂t̄α
∂̄

1
f ′

= 0

in U \ π−1V , since f ′∂̄(1/f ′) = 0. By assumption Z ∩ π−1V has positive
codimension in Z. By the dimension principle it follows that (4.5) holds
in U for all α, since ∂̄(1/f ′) has support on Z. From [2, Theorem 1.2] we
conclude that ω̃ is smooth in U . It follows that ω̃ is smooth in X ′. �
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4.2. Action of ASM(X) on PMX

We will now extend Proposition 2.9 to general almost semi-meromorphic
currents.

Theorem 4.8. — Assume that a ∈ ASM(X). For each µ ∈ PM(X)
there is a unique pseudomeromorphic current T in X that coincides with
a∧µ in X \ ZSS(a) and such that 1ZSS(a)T = 0.

Let V = ZSS(a). If such an extension T exists then T = 1X\V T =
1X\V a∧µ and so T is unique. Moreover, if h is a holomorphic tuple such
that Z(h) = V , then

(4.6) T = lim
ε→0

χ(|h|2v/ε)a∧µ

in view of Lemma 2.6. We will denote the extension T by a∧µ as well.
Proof. — As observed above, if the extension T exists, then (4.6) holds.

Conversely, if the limit in (4.6) exists as a pseudomeromorphic current T on
X, then it must coincide with a∧µ in X \ V . In particular, χ(|h|2v/ε)T =
χ(|h|2v/ε)a∧µ for each ε > 0 and hence, taking limits and using Lemma 2.6,
we get 1X\V T = T , i.e., 1ZSS(a)T = 0. To prove the theorem it is thus
enough to verify that the limit in (4.6) exists as a pseudomeromorphic
current.
In view of Lemma 4.7 we may assume that a has the form (4.1), where

Z = Z(f) is contained in π−1V and ω/f = π∗a in X ′ \ π−1V . Let χε =
χ(|h|2v/ε), so that π∗χε = χ(|π∗h|π∗v/ε). By Proposition 2.5 there is µ′ ∈
PM(X ′) such that π∗µ′ = µ. Thus

χεa∧µ = χεa∧π∗µ′ = π∗ (π∗χεπ∗a∧µ′) = π∗

(
π∗χε

ω

f
∧µ′
)
.

In view of Proposition 2.9 and Lemma 2.6,

π∗χε
ω

f
∧µ′ → 1X′\π−1V

ω

f
∧µ′

when ε→ 0. In particular, the limit is a pseudomeromorphic current. Thus
the limit in (4.6) exists and is pseudomeromorphic. �

Notice that the definition of a ∧ µ is local, so that it commutes with
restrictions to open subsets of X. Thus for each a ∈ ASM(X) we get a
linear sheaf mapping

(4.7) PMX → PMX , µ 7→ a ∧ µ.
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Proposition 4.9. — Assume that a ∈ ASM(X). If W is an analytic
subset of U ⊂ X and µ ∈ PM(U), then

(4.8) 1W (a∧µ) = a∧1Wµ.
Proof. — On the one hand (4.8) holds in the open set U \ ZSS(a)

by (2.10) since a is smooth there. On the other hand both sides vanish
on ZSS(a), so (4.8) holds in all of U ; indeed 1ZSS(a)(a∧1Wµ) = 0 by def-
inition, cf. Theorem 4.8, and 1ZSS(a)1W (a∧µ) = 1W1ZSS(a)(a∧µ) = 0 in
view of (1.3). �

Proposition 4.10. — Each a ∈ ASM(X) induces a linear mapping

(4.9) WZ
X →WZ

X , µ 7→ a ∧ µ.
Proof. — To begin with, certainly a∧µ has support on Z if µ has.

Let U be an open subset of X and assume that W ⊂ U ∩ Z has posi-
tive codimension in U ∩ Z. Then 1W (a∧µ) = a∧1Wµ = 0 if 1Wµ = 0,
cf. (4.8). �

Example 4.11. — Assume that µ is inWX . Then µ′ := [1/h]µ is inW as
well and if h is generically nonvanishing, then hµ′ = h[1/h]µ = 1{h6=0}µ =
µ, cf. Remark 2.10.
Proposition 4.12. — Assume that a1, a2 ∈ ASM(X) and µ ∈ PMX .

Then

(4.10) a1∧a2∧µ = (−1)deg a1 deg a2a2∧a1∧µ.
Proof. — Notice that both sides of (4.10) coincide outside ZSS(a1) ∪

ZSS(a2) and the restictions to ZSS(a1) ∪ ZSS(a2) vanish. �

In particular, one of the aj may be a smooth form. We conclude that
both (4.7) and (4.9) are E-linear.
Proposition 4.13. — If a1, a2 ∈ ASM(X) and µ ∈ WX , then

(4.11) a1∧a2∧µ = (a1∧a2)∧µ, (a1 + a2)∧µ = a1∧µ+ a2∧µ.
In fact, (4.11) holds outside V := ZSS(a1)∪ZSS(a2) and since 1V µ = 0

the equalities follow from (4.8).
Example 4.14. — Both equalities in (4.11) may fail for a general µ ∈

PMX . Let a1 = 1/z1, a2 = z1/z2, a3 = 1/z2, and µ = ∂̄(1/z1). Then
(a1a2)µ = (1/z2)∂̄(1/z1), but a2µ = 0, and so a1a2µ = 0. Moreover

(a1 + a3)µ = z2 + z1

z1z2
∂̄

1
z1

= 0

but
a1µ+ a3µ = 1

z1
∂̄

1
z1

+ 1
z2
∂̄

1
z1

= 1
z2
∂̄

1
z1
.
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4.3. Vector-valued almost semi-meromorphic currents

We will need to consider almost semi-meromorphic currents that take val-
ues in a holomorphic vector bundle E → X. We say that a ∈ ASM(X,E)
if there is a representation (4.1), where as before f is a holomorphic sec-
tion of L → X ′ and now ω takes values in L ⊗ π∗E. Clearly then a is a
current with values in E. If η is a test form with values in the dual bundle
E∗, then a.η = π∗((ω/f).π∗η). Let ej be a local frame for E in U and
let ξ be a test function with support in U . If ξ′ = π∗ξ, e′j = ej ◦ π and
ω = ω1e

′
1 + ω2e

′
2 + . . . , then

(4.12) ξa =
∑
j

π∗(ξ′ωj/f)ej .

Proposition 4.15. — Assume that X is smooth. There are natural
isomorphisms

(4.13) ASMp,∗(X,E) ' ASM0,∗(X,ΛpT ∗1,0(X)⊗ E).

Proof. — First notice that if F,G are vector bundles of the same rank
over X ′ and h is a holomorphic section of Hom(F,G) that is generically
invertible, then there is a holomorphic section g of Hom(G,F ) ⊗ detG ⊗
(detF )−1 such that hg = s · IG, where s is a generically nonvanishing
section of detG⊗ (detF )−1.
For simplicity we assume that E is a trivial line bundle; the general

case is proved in the same way. Now, let F = π∗ΛpT ∗1,0(X) and G =
ΛpT ∗1,0(X ′). Then we have a natural mapping h : F → G as above, defined
by just mapping the frame element dzI to its pullback π∗dzI . Clearly h is
an isomorphism where π : X ′ → X is biholomorphic.
Now, if a ∈ ASM0,∗(X,ΛpT ∗1,0(X)), then we have the representation

a = π∗(ω/f), where ω takes values in F ⊗ L. Then hω is a (p, ∗)-form
in X ′ with values in L. It follows that a′ := π∗(hω/f) is an element in
ASMp,∗(X). We claim that a′ = a. By the SEP it is enough to verify the
identity where π is a biholomorphism. Let z be coordinates in an open
subset U ⊂ X \ π(sing π), and let ξ be a test function with support in U .
Then, cf. (4.12),

ξa =
′∑

|I|=p

π∗(ξ′ωI/f)∧dzI = π∗

ξ′ ′∑
|I|=p

ωI/f∧π∗dzI

 = π∗(ξ′hω/f)

= ξπ∗(hω/f) = ξa′.

Conversely, since h−1 = g/s, if a′ ∈ ASMp,∗(X), then a′ = π∗(ω̃/f),
where ω̃ is a (p, ∗)-form with values in L, then gω̃ takes values in
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F ⊗ detG ⊗ (detF )−1 ⊗ L and sf takes values in detG ⊗ (detF )−1 ⊗ L,
so that a = π∗(gω̃/sf) is an element in ASM0,∗(X,ΛpT ∗0,1(X)). Again one
verifies that they coincide in X \ π(sing π). �

Notice that if p = 1, then s is a section of the relative canonical bundle
KX′/X = KX′ ⊗ π∗K−1

X .

4.4. Residues of almost semi-meromorphic currents

We shall now study the effect of ∂ and ∂̄ on almost semi-meromorphic
currents.

Proposition 4.16. — If a ∈ ASM(X), then ∂a ∈ ASM(X) and b :=
1X\ZSS(a)∂̄a ∈ ASM(X).

Thus we have the decomposition

(4.14) ∂̄a = b+ r,

where r := 1ZSS(a)∂̄a has support on ZSS(a).
Proof. — Assume that a = π∗(ω/f) and let D = D′ + ∂̄ be a Chern

connection on L→ X ′. Then

∂a = π∗

(
∂
ω

f

)
= π∗

f ·D′ω −D′f∧ω
f2 ,

which is in ASM(X).
In view of Lemma 4.7 we may assume that Z(f) ⊂ π−1V , where V =

ZSS(a). Now

(4.15) ∂̄a = π∗
∂̄ω

f
+ π∗∂̄

1
f
∧ω.

By (2.11),

(4.16) 1X\V ∂̄a = π∗

(
1π−1(X\V )

∂̄ω

f

)
+ π∗

(
1π−1(X\V ) ∂̄

1
f
∧ω
)

= π∗

(
∂̄ω

f

)
;

thus 1X\V ∂̄a ∈ ASM(X). For the last equality we have used Proposi-
tion 2.9 and the fact that ∂̄(1/f) has support on π−1V . �

In the same way we have: If a ∈ ASM(X,E) then (4.14) holds, where b =
1X\ZSS(a)∂̄a is in ASM(X,E) and r = 1ZSS(a)∂̄a is a pseudomeromorphic
current with support on ZSS(a) that takes values in E.
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Clearly the decomposition (4.14) is unique. We call r = r(a) the residue
(current) of a. Notice that if a is almost smooth, then r(a) = 0.

Remark 4.17. — If a = π∗(ω/f) is any representation of a, then still
(4.15) holds, and since the first term is in ASM(X) we conclude that

r(a) = π∗

(
∂̄

1
f
∧ω
)
.

Notice that the current ∂̄(1/f) is the residue of the principal value cur-
rent 1/f . Similarly, the residue currents introduced, e.g., in [3, 9, 21] can be
considered as residues of certain almost semi-meromorphic currents, gen-
eralizing 1/f .

Example 4.18. — Let us describe the construction of the residue cur-
rents in [3]. Let f be a holomorphic section of a Hermitian vector bundle
E → X, and let σ be the section over X \Z(f) of the dual bundle E∗ with
minimal norm such that fσ = 1. We can find a modification π : X ′ → X

that is a biholomorphism X ′ \ π−1Z(f) ' X \Z(f) such that π∗f = f0f ′,
where f0 is a holomorphic section of a line bundle L → X ′, div f0 is con-
tained in π−1Z(f), and f ′ is a nonvanishing section of π∗E ⊗ L−1. Then

π∗σ = σ′/f0,

where σ′ is a smooth section of π∗E∗ ⊗ L. Thus

π∗
(
σ∧(∂̄σ)k−1) = σ′∧(∂̄σ′)k−1

(f0)k

is a section of Λk(π∗E ⊕ T ∗0,1(X ′)) in X ′ \ π−1Z(f); for the reader’s con-
venience note that ∂̄σ has even degree in Λk(π∗E ⊕ T ∗0,1(X ′)). It follows
that

Uk := σ∧(∂̄σ)k−1

has an extension to an almost semi-meromorphic section of Λk(E⊕T ∗0,1(X)),
as the push-forward of σ′∧(∂̄σ′)k−1/(f0)k. Clearly ZSS(Uk) ⊂ Z(f). Now
the residue current R in [3] is the residue of the almost semi-meromorphic
current U =

∑
k Uk. More precisely, if δf denotes interior multiplication

by f , then (δf − ∂̄)U = 1 − R, i.e., ∂̄U = R + δfU − 1, where R is the
residue and δfU −1 is almost semi-meromorphic. If E is trivial with trivial
metric, the coefficients of R are the Bochner–Martinelli residue currents
introduced in [21].

Clearly Theorem 4.8 extends to vector-valued currents. As a consequence
of this theorem we can define products of residues of almost semi-meromor-
phic currents and pseudomeromorphic currents:
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Definition 4.19. — For a ∈ ASM(X,E) and µ ∈ PMX we define

(4.17) ∂̄a∧µ := ∂̄(a∧µ)− (−1)deg aa∧∂̄µ,

where a∧µ and a∧∂̄µ are defined as in Theorem 4.8. Moreover we define

r(a) ∧ µ := 1ZSS(a)∂̄a ∧ µ.

Thus ∂̄a∧µ is defined so that the Leibniz rule holds. It is easily checked
that

(4.18) r(a) ∧ µ = lim
ε→0

∂̄χ(|h|2v/ε)a∧µ,

if Z(h) = ZSS(a). In particular this gives a way of defining products
of ∂̄ and residues of almost semi-meromorphic currents. For example, the
Coleff–Herrera product ∂̄(1/f1)∧ . . .∧∂̄(1/fp) can be defined by inductively
applying (4.17). In [5] the first author defined products of more general
residue currents in this way.
Notice that in general a1∧∂̄a2 is not equal to ±∂̄a2∧a1, cf. Remark 2.11,

and neither is

(4.19) ∂̄a1∧∂̄a2 = ±∂̄a2∧∂̄a1

in general; take, e.g., a1 = 1/z and a2 = 1/zw.

Theorem 4.20. — Assume that a1, . . . , ap are almost semi-meromor-
phic currents of degree (∗, k1 − 1), . . . , (∗, kp − 1), respectively, and that

(4.20) codim (ZSS(ai1) ∩ · · · ∩ ZSS(air )) > ki1 + · · ·+ kir

for all {i1, . . . , ir} ⊂ {1, . . . , p}. Then

(4.21) ∂̄a1∧ . . .∧∂̄aj∧∂̄aj+1∧ . . .∧∂̄ap
= (−1)(deg aj+1)(deg aj+1+1)∂̄a1∧ . . .∧∂̄aj+1∧∂̄aj∧ . . .∧∂̄ap.

Remark 4.21. — In fact, one can modify the proof below so that one
can replace any factor ∂̄ai in (4.21) by ai. More precisely, let bi be either
ai or ∂̄ai for i = 1, . . . , p. Then

(4.22) b1∧ . . .∧bj∧bj+1∧ . . .∧bp
= (−1)deg bj ·deg bj+1b1∧ . . .∧bj+1∧bj∧ . . .∧bp.

Remark 4.22. — If the almost semimeromorphic parts of ∂̄ai vanish,
then it is enough to assume

(4.23) codim (ZSS(a1) ∩ · · · ∩ ZSS(ap)) > k1 + · · ·+ kp.
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Indeed, note that in this case the currents in (4.21) have support on V :=
ZSS(a1)∩ · · · ∩ZSS(ap). Thus it is enough to prove (4.21) in a neighbor-
hood of x ∈ V , and there (4.23) implies (4.20).
In particular, the Coleff–Herrera product ∂̄(1/f1)∧ . . .∧∂̄(1/fp) is

(anti-)commutative in its factors if the codimension of {f1 = · · · = fp = 0}
is at least p.

Proof. — Let Vj = ZSS(aj). Moreover, let bi be either an almost semi-
meromorphic current or ∂̄ of an semi-meromorphic current for i = 1, . . . , r,
cf. Remark 4.21, and assume that α is smooth. Then note that

(4.24) b1∧ . . .∧b`∧α∧b`+1∧ . . .∧br
= (−1)degα(deg b1+···+deg b`)α∧b1∧ . . .∧br.

Assume that

(4.25) ∂̄a1∧ . . .∧∂̄aj−1∧aj∧∂̄aj+1∧ . . .∧∂̄ap
= (−1)deg aj(deg aj+1+1)∂̄a1∧ . . .∧∂̄aj−1∧∂̄aj+1∧aj∧∂̄aj+2∧ . . .∧∂̄ap.

Applying ∂̄ to (4.25) yields (4.21) in view of (4.17).
To prove (4.25) we will proceed by induction. First assume that p = 2.

Then in view of (4.24),

(4.26) a1∧∂̄a2 = (−1)deg a1(deg a2+1)∂̄a2 ∧ a1,

where a1 or a2 is smooth, i.e., outside V1 ∩ V2. Because of the assump-
tion (4.20), (4.26) holds in all of X by the dimension principle. Next,
assume that (4.25) holds for p = `. In view of (4.24), (4.25) holds for
p = `+1, where aj or aj+1 is smooth. Moreover, by (4.24) and the assump-
tion that (4.25) holds for p = `, (4.25) holds for p = `+ 1, where (at least)
one of a1, . . . , aj−1, aj+2, . . . , a`+1 is smooth. Thus (4.25) holds for p = `+1
outside V1 ∩ · · · ∩ V`+1, and thus by (4.20) and the dimension principle it
holds in all of X. Hence (4.25) and thus (4.21) hold for all p. �

The following example shows that r(a) = 0 does not imply that r(a)∧µ =
0. This points out the importance of keeping in mind that µ 7→ r(a)∧µ is
an operator on PMX rather than a “product”.

Example 4.23. — Let us consider the setting in Example 4.18. Assume
in addition that Z(f) has codimension at least 2. Note that then r(σ) = 0
by the dimension principle, since it has bidegree (0, 1) and support on Z(f),
which has codimension > 2. However, if τ is the almost semi-meromorphic
part of ∂̄U , then r(σ)∧τ is the residue current R from [3] which is nonzero,
cf. Example 4.18.
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Remark 4.24. — There are other (weighted) approaches to products of
residue currents, see, e.g. [20, 26], which coincide with the products above
under suitable conditions.

4.5. Action of holomorphic differential operators and vector
fields

Finally we prove that ASM(X) is preserved under the action of holo-
morphic vector fields.

Theorem 4.25. — Let ξ be a holomorphic vector field on a smooth
manifold X. If a ∈ ASM(X), then the contraction ξ¬a and the Lie deriv-
ative Lξa, a priori defined on X \ ZSS(a), have extensions as elements in
ASM(X).

Since the extensions, if they exist, must be unique, we can simply say
that ξ¬a and Lξa are in ASM(X).

Proof. — Let π : X ′ → X be a modification so that a has the form (4.1).
Then ξ′ := π∗ξ is a global section of π∗T (X), that is the natural lifting
of ξ to T (X ′) over X ′ \ sing(π). By duality the mapping π∗T ∗1,0(X) →
T ∗1,0(X ′) from the proof of Proposition 4.15 induces a holomorphic mapping
T (X ′)→ π∗T (X) that is the identity outside sing(π). If h denotes this dual
map, by the first part of the same proof there is a holomorphic mapping
g : π∗T (X) → T (X ′) ⊗ KX′/X such that hg = sIπ∗T (X), where s is a
holomorphic section of KX′/X . Thus gξ′/s is a semi-meromorphic vector
field on X ′ that coincides with ξ′ on X ′ \ sing(π). Moreover, b := sξ′ is
smooth. Outside π(sing(π)) ∪ ZSS(a) we now have that

ξ¬a = π∗

(
ξ′¬ω
f

)
= π∗

(
b¬ω
sf

)
and it is clear that the right hand side defines an almost semi-meromorphic
current in X. Finally, Lξa = ξ¬(∂a) + ∂(ξ¬a) is in ASM(X) in view of
Proposition 4.16. �

By similar arguments one can prove that La is in ASM(X) if a is
an almost semi-meromorphic (0, q)-current and L is any (global) holo-
morphic differential operator. More precisely, one can show that La =
π∗(s−NL′(ω/f)) for some N , where s is the section of KX′/X in the proof
above and L′ is a holomorphic differential operator (with values in KN

X′/X).
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Corollary 4.26. — Let X be an open subset of Cnz . If

(4.27) a =
′∑

|I|=p

aI∧dzI

is in ASM(X), then each aI is in ASM(X). If a ∈ ASM(X) has bidegree
(0, ∗), then ∂a/∂zj is in ASM(X) for each j.
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