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Abstract
As urban air quality declines, the corresponding levels of particulate matter (PM) such
as sulfates, nitrates and black carbon rise, posing the greatest risks to human health.
Hence, the control of these particulate emissions constitutes a major global challenge that
commands serious attention. In order to design strategies to mitigate PM emissions, it
is necessary to establish the physical laws that govern their motion and deposition at
these nano-scales. These systems are challenging to understand particularly as both the
decreased momentum exchange with the gas (rarefaction or non-continuum effects due to
the small sizes) and the meandering Brownian particle trajectories need to be studied
simultaneously. For such an effort, numerical methods offer an attractive alternative
to experiments, as the costs of setting up complicated experiments can be offset by
insilico-methods that can provide a more exhaustive description of the particulate flow
physics.

In this work, we propose a suite of numerical tools that can be used for understanding PM
deposition (including its transformation) in traditional after-treatment devices. First, we
undertake a system level modelling of PM deposition in exhaust after-treatment devices,
such as diesel particulate filters (DPF’s), using a computational fluid dynamics driven
approach. We show that the results from a fully Eulerian simulation of the the PM
deposition process (based on the assumption of inertialess inert particles) shows lesser PM
capture than actual experimental data. The noted disagreement can be attributed to the
assumption of inert particles while modelling the deposition. Consequently, a multiphase
direct numerical simulation (DNS) technique, that can handle the fluid scales as well as
the inherent particle-fluid coupling, is identified as an alternative to model these reactive
particulate flows. We formulate such a framework by coupling the extended Langevin
description of the particle with a mirroring Immersed boundary method. Further, to
get an accurate resolution of the particle dynamics, we solve for it using a finite element
based rigid body solver. This entire technique (referred to as the IB-FSI framework) is
implemented in the immersed boundary code IPS IBOFlow (developed by Fraunhoffer
Chalmers centre). We analyse the consequences of resolving Brownian motion in an
unbounded domain using this framework and evaluate the diffusion dynamics (mean
squared displacements, velocity auto-correlation functions and diffusivities) of a spherical
transported particle, in relation to the conventional Lagrangian Langevin treatment.
Moreover, we demonstrate the applicability of such a method to resolve the Brownian
dynamics of PM aerosols with particle densities comparable to a real soot-particle. We
finally extend this framework to describe fractal like soot PM in unbounded domains.

Keywords: Brownian motion, DNS, Immersed boundary method, Nanoscales, PM trans-
formation and Rarefied gas
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Chapter 1
Introduction

This chapter provides a general overview about particulate matter (PM) emissions and
the need for their mitigation. The common sources of PM emissions are first discussed,
followed by possible strategies for their mitigation. The need for in-silica based design and
development strategies is addressed, along with a brief overview of our proposed method.

1.1 Particulate emissions: A general outlook

Urban air quality has been on the decline since the Industrial revolution, particularly due
to the increasing energy demands for the modernization of our society. With the increasing
dependence on fossil fuels, the corresponding levels of particulate matter (PM) such as
PM10 ( particle less than 10 microns in diameter) and PM2.5 (particles less than 2.5
microns in diameter), that contain pollutants such as sulpahtes and nitrates rise, posing
the greatest risks to human health [63]. Emissions from households, industrial plants and
road transport account for a majority of these fine aerosols (PM2.5 and PM10) that are
emitted in Europe (c.f. Fig. 1.1). Hence, the European commission (EC) has implemented
a series of Directives that establishes the health based standards and objectives for these
pollutants (Directive 2008/50/EC of the European Parliament [16]). Stringent measures
to control the emissions of PM (from the various sources) have to be adopted if these
demands from the EC are to be met. Thus, there is a palpable need for strategies for PM
mitigation.

Figure 1.1: Common sources of emissions for PM10 and PM2.5 (figure adapted from
[58]).

PM are usually formed due to incomplete combustion of hydrocarbon-based fuels during
a variety of common combustion processes for power generation, vehicular propulsion etc.
The widespread dispersion of these nanoscale particulates (aerosols) poses a significant
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health hazard, particularly as these can directly settle in the human lung leading to
severe breathing difficulties. There is thus a growing need to curb such emissions which
would necessitate a deeper understanding of the underlying phenomena including the
creation, growth and transformation of PM. In general, these aggregates are composed
of fine primary particles (typical size range 10-20 nm) that coagulate to form irregular
fractal-clusters (See Fig. 1.2) that have a broad size distribution (typically 80 - 500 nm)
[2]. The physical laws governing the dispersion of such aggregates may differ from its
macroscopic (continuum) counterpart in that molecular effects have a more pronounced
effect.

The dimensions of the fractal-like aggregates are usually comparable with the mean
free path of the surrounding gas they are dispersed in, which would mean that they will
no longer experience a continuum but instead collide with the constitutive molecules or
atoms. This results in two primary effects. Firstly, the regular collisions act as a random
driving force on the particle maintaining an incessant irregular motion and secondly,
they give rise to a frictional force (or drag) for a forced motion. The superposition of
these two opposing effects (gives rise to a meandering motion commonly referred to as
Brownian motion [19, 77]) drives the dispersion of PM and knowledge about these complex
phenomena can be utilized to develop strategies for PM mitigation.

Figure 1.2: A typical fractal-like soot aggregate.

1.2 Some strategies for mitigating PM emissions

The most generic mitigation strategy is some form of after-treatment of the exhaust
gases. For vehicular emissions, particularly diesel based propulsion, a combination of the
diesel oxidation catalyst (DOC), diesel particulate filter (DPF) and diesel NOx reduction
catalyst (DeNOx) are employed downstream from the tail pipe to regulate the exhaust.
Note that the emphasis of this work is on PM mitigation (i.e. on the DPF) and a wall-flow
monolith is the most common type of filtration element employed in such an application.
Similar solutions are available for household and industrial exhaust as well (such as
Electrostatic Precipitators (ESPs), Fabric filters etc.). Hence, the solutions proposed can
be extended to these other exhaust treatment devices as well.
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Exhaust In

Exhaust Out

Figure 1.3: An example of a PM emission mitigation device: Diesel particulate filter
(DPF) employed in diesel powered drives.

DPF’s are routinely used today to mitigate PM emissions from vehicular exhausts (from
both diesel and petrol engines). They are commonly made from cordierite or silicon
carbide extruded monoliths (or substrates) in which every second channel is plugged in
either end, creating a chessboard-like appearance of the monolith front and back c.f. Fig.
1.3. A second layer of porous material, called the wash coat, is deposited inside these
monolith channels to maximize the surface area available for PM deposition (c.f. Fig. 1.4).
The exhaust gas is only allowed to enter the channels which are open towards the inlet
side, the so-called inlet channels. The gas is then forced to flow through the porous wall
into the four adjacent outlet channels [45]. The channels have a general dimension with
O(mm), while the pore dimensions in the wash coat layer (where in the PM deposits) are
in the O(µm). Hence the relevant phenomena are typically in the micro-scales. Moreover,
the flow in these channels is laminar (Reynolds numbers are of the order of a couple of
hundreds), meaning that PM accumulates on the inside and on the porous walls of the
inlet channel through Brownian deposition/diffusion and interception.

Figure 1.4: Schematic of the entrance to four monolith channels. These channels have
square cross-sections, which are rounded by the porous wash coat that maximizes the
surface area available for PM deposition. Figure adapted from [79].
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Although effective at PM capture, these DPF’s are associated with a significant fuel
penalty, mainly because of the pressure built up due to deposition (i.e. the channels
are clogged with PM). Hence, smarter technologies to circumvent the deficiencies of
these traditional monolith filters are desirable. Moreover, a deeper understanding of the
movement and deposition of the particulates under these challenging conditions, where
both continuum and molecular effects drive the phenomena, would permit the creation of
materials/devices that would allow for more environmentally friendly and energy-efficient
(clean) transportation.

Thus, there is a need for methods that can provide a heuristic overview of the com-
plex underlying Brownian dispersion phenomena that drives the deposition of the fine
aerosols. This would ultimately contribute towards rapid design and prototyping of PM
mitigation technologies. Numerical tools such as those based on the spatial and temporal
resolution of the governing physics (for example the computational fluid dynamics (CFD)
simulations of the fluid flow in the channels) or tools that can simultaneously solve for both
the particle and fluid descriptions (for example multiphase direct numerical simulation
(DNS) of particulate aerosols), can supplement complex trial and error based design strate-
gies. Moreover, these numerical methods can probe regions inside the monolith channel
that are traditionally harder to access through experimental measurement techniques.
Hence in this work, we emphasize on the development of high fidelity numerical tools that
can accurately model or resolve the necessary particulate flow (i.e. the motion of particles
in the size range 80 nm to 1000 µm) to either supplement or complement traditional
experimental prototyping based design strategies.

1.3 Aim

The transport of PM aerosols (in the size range 80 nm to 1000 µm) in traditional exhaust
after-treatment devices (such as the monolith channels of a DPF) presents a challenging
problem that couples both micro and macro-scale phenomena. Hence, in order to design
the next generation of PM mitigation devices, the knowledge about such particulate
flows needs to be deepened. Consequently, the main objective of the current work is to
develop various strategies to numerically model or describe the PM deposition (including
its transformation) in traditional mitigation devices. These are accomplished as follows -

1. To use computational fluid dynamics based methods to study the movement and
deposition of particulate aerosols in a monolith channel of a DPF (fully Eulerian
single phase simulations assuming inert particulates).

• Solve for Brownian diffusion as a passive scalar transported in a fluid field
given by the in-compressible Navier-Stokes equations.

• Identify if there are any deficiencies with such a simplified treatment.

• Propose alternate methods that can complement or supplement this treatment.

2. To develop a more rigorous numerical method that can handle (and overcome the

5



deficiencies of the fully Eulerian treatment) the transport and deposition of realistic
particulate aerosols in monolith channels.

• Extend the ideas from traditional Langevin based Lagrangian treatment of
Brownian nano-particles (such as the Ounis and Ahmadi model [64]) towards
transport and deposition of particulate aerosols in a monolith channel.

• Utilize well established multiphase DNS frameworks (for example the Immersed
boundary (IB) method), that can simultaneously handle both the particulate
phase and the surrounding fluid phase, to study these dispersed particulate
aerosols.

• Demonstrate the capability of this novel method: Evaluate the diffusion
dynamics (mean square displacements, velocity auto-correlation functions and
diffusivities) of an ideal spherical soot particle.

• Extend the applicability of the method to describe the particle dynamics of a
real fractal shaped soot particle.

1.4 Document structure

This thesis is organized in a similar manner as the aims that are defined in the previous
section (Section 1.3). Consequently, the second chapter discusses the fully Eulerian single
phase simulations of the transport of particulate aerosols in a monolith channel. A brief
overview of the numerical method (including the governing equations), the numerical
set-up and the critical results from this analysis are provided in this chapter. In the
third chapter we briefly describe the traditional Langevin equation based Lagrangian
treatment of particulate aerosols. The results presented in this chapter would be used
as the benchmark to evaluate the performance of the novel multiphase DNS method
that has been proposed in this work. Subsequently, the next (fourth) chapter describes
the more numerically rigorous multiphase DNS framework including a detailed account
of the chosen technique (i.e. the Immersed boundary method coupled to a solver for
evaluating the Langevin dynamics) along with the employed numerical setup and some
critical findings from this assessment. This chapter also describes the extension of this
IB based multiphase DNS method to study the diffusion dynamics of a real soot particle
(with a fractal shape). The last chapter presents some preliminary conclusions from this
work and highlights further scope of this research. The relevant papers are appended in
the end of this thesis.
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Chapter 2
Eulerian treatment of particulate aerosols

Traditionally the (diffusion) dynamics of nanoscale particles in a viscous fluid are studied
in a Lagrangian framework (using a Langevin description), as will be explained later
[43, 10, 64, 65]. Such dynamics are best represented by a diffusivity (particularly as
the probability distribution function for particle displacements is Gaussian at all times),
which is a measure of the mobility or rate of the diffusion process. Chandrasekhar [10]
discussed an analogy between random flight (i.e. Brownian motion) and diffusion and
showed that the motion of a large number of individual particles subjected to random
flights without mutual interference can be described as a diffusion process. Hence, as a
first approximation (and thereby minimizing the computational cost) a fully Eulerian
model derived on the assumption of inertialess inert particles is employed to estimate the
particle dynamics (transport and deposition) of a large number of small particles (with a
fixed Brownian diffusivity) in the substrate channel. The details about this treatment
are provided in this chapter. A brief overview of the governing equations as well as some
of the inherent assumptions and limitations of this method are described in the early
sections. This is followed by a brief account of the numerical set-up and an overview of
the critical results from this assessment.

2.1 Governing equations

The Brownian deposition of particulate aerosols in a fully Eulerian single phase framework
(on the assumption of inertialess particles i.e. in the limit St → 0), can be studied as a
passive scalar (species) transported (by convection and diffusion) in a fluid field given by
the in-compressible Navier-Stokes equations -

∂uj
∂xj

= 0

∂ (ρui)

∂t
+ ρuj

∂ui
∂xj

= − ∂p

∂xi
+
∂σij
∂xj

(2.1)

where σij is the viscous stress tensor

σij = µ

(
2Sij −

2

3
Smmδij

)
, (2.2)

Sij is the strain rate tensor

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(2.3)
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The passive scalar transport (convection-diffusion) equation that is solved along with Eq.
2.1 is given as:

∂εk
∂t

+ uj
∂εk
∂xj

= Dk
∂2εk
∂2xj

, (2.4)

with Dk given as -

Dk =
kBTCc
3πµdp,k

, (2.5)

here, εk is the dimensionless concentration (i.e. mass concentration/mass fraction) of a
passive scalar representing an ensemble of particles of size dp,k with Brownian diffusivity
Dk as given by Einstein [19]. Note that, this approach requires one additional transport
equation (c.f. Eq. 2.4) for every particle size considered, but imposes no additional need
for averaging or any other time step limitations.

The simplifications employed in the Eulerian model, i.e. assumption of ideal inertia-less
inert particles in the limit St → 0, would mean that there are some inherent limitations
with it. These are listed below -

• The system is one-way coupled i.e. the fluid is not affected by the concentration
fields.

• The Schmidt numbers are large, i.e. Sc = µ
ρDk

>> 1, meaning that a finer mesh is
needed to resolve the steep concentration gradients close to the particle surface.

• The Eulerian model requires elaborate extensions to incorporate history effects to
the particle motion (when they are relevant).

In spite of these limitations, the Eulerian framework is still a powerful tool that can be
used to assess the deposition of inert particulates.

2.2 Numerical setup

The simulations were setup based on experiment trials that were conducted on the exhaust
from a Volvo D5 diesel engine with five cylinders and a displacement volume of 2.4 L
that used low-sulphur diesel (see Table 2.1). The exhaust gases are passed through a
generic exhaust after treatment rig: EATS (emission after treatment system) that creates
a systematic variation of the emissions with respect to residence time, temperature and
gas phase compositions by using different set-ups e.g. adding air (upstream dilution) or
different types of substrates (monolithic catalysts). Two inactive cordierite monoliths
(5.66 inches by 6 inches) from Corning Inc. were studied (in the experiments): one bare
substrate and one coated with 6% w/w alumina. The uncoated monolith had square
channels with a (hydraulic) diameter of 1.12 mm while the coated monolith was treated as
having circular channels with a diameter of 1.09 mm. A fast particle analyser (DMS500)
is used in the EATS set-up to measure the PSD changes across the monolith (this is
reported as capture efficiency or deposition efficiency in the Fig. 2.2). A more detailed
account of these experimental trials are available in [74].

8



Figure 2.1: 3D Square monolith channel (left) and inlet cross-section of channel (right).
.

Consequently, a square monolith channel of dimensions 1.118 mm by 1.118 mm and a
length of 15.24 cm has been modelled (based on standard dimensions for the monolith
channel from experiments). A schematic of the geometry employed in these simulations
is shown in Fig. 2.1. The domain boundary conditions are: a constant velocity over
the inlet, a constant (atmospheric) pressure over the outlet, and no-slip at all walls. A
constant velocity over the inlet is deemed a realistic inlet boundary condition since the
dimensions of the channels are small in relation to the velocity gradients of the mean
flow upstream to the catalyst. Additionally,the equation system presented earlier (c.f.
Eqs 2.1, 2.4 and 2.2) is solved with the boundary conditions that xk = 0 on any wall
where the PM may deposit, and xk = x∗k (i.e. an arbitrary set value) at the domain
inlet. The deposition efficiency for nanoparticles of size dp,k is obtained by relating the
mass-averaged value of xk on the domain outlet to x∗k. The equation system is discretized
using the QUICK scheme [44] for the convection terms and a second-order accurate central
differencing scheme for the diffusion terms. The temporal discretization is second-order
implicit. These system of equations were solved in the commercial computational fluid
dynamics (CFD) package Ansys FLUENT.

Table 2.1: Case data for the experimental tests with diesel soot nanoparticles reported in
Figs. 2.2 and 2.3. Addition of air indicates whether air has been added to further dilute
the exhaust gas flow after the engine but before the catalyst substrate, the main point of
which is to change the gas-phase concentrations of background HCs. The two substrates
represent a bare (Cordierite without a wash coat) and a coated substrate (Cordierite with
a 6 % w/w alumina wash coat).

Case Substrate Temperature
in substrate
(degC)

Reynolds
number

Retention
time in

channel (s)

Addition
of air

A1 Cordierite 222 2.7 1.74 No
A2 Cordierite 263 8.1 0.5 No
A3 Cordierite 157 11 0.55 No
B1 Alumina 164 8.3 0.68 Yes
B2 Alumina 163 2.4 2.36 Yes
B3 Alumina 160 2.3 2.48 Yes
B4 Alumina 154 2.0 2.95 No
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2.3 Results: Diffusion in open substrates

The numerical simulations were set-up based on the detailed experimental campaign on
an EATS rig for diesel engine generated PM aerosols (c.f. Table 2.1). Mesh independence
was first established by simulating laminar flow through the channel. The mass weighted
average of the dimensionless outlet concentration (εk) from 5 different fluid meshes are
compared to determine mesh independence . Based on this, a mesh with around 927000
cells is chosen for all the simulations done with this framework. Next, the cases in
Table 2.1 were simulated with an arbitrarily chosen inlet mass fraction of 0.01 (for the
passively transported inert particles). The deposition or capture efficiency (CE) from
the simulations are estimated using the changes in mass weighted average of the mass
fraction of the passive species at the inlet and outlet of the channel as follows -

CE =
mass fractin −mass fractout

mass fractin
(2.6)

2.3.1 Diffusion of PM: assuming inert particulates

The deposition efficiency (Eq. 2.6) of the engine-generated diesel particulate matter in
a monolith substrate (both coated and uncoated) could not be well described by the
Eulerian model as illustrated in Fig. 2.2. More specifically, the experimental deposition
efficiency is significantly higher than the theoretical prediction. However, the relative
qualitative trends in the numerical predictions are consistent with the experimental results,
in that the most pronounced dependency of the deposition efficiency seems to be the
retention time in the substrate – with longer retention times producing higher deposition
efficiencies. It can also be seen that the agreement is relatively acceptable for particles
larger than 100 nm (disagreement increases with decreasing the particle size).Effects such
as inertial impaction in the front of the substrate and thermophoretic deposition (i.e. PM
migration in the direction of decreasing temperature) cannot be responsible for such a
huge difference. Moreover, there are no obvious explanations for the disagreement between
the experimental and the numerical results, except for the fundamental assumption that
the particles were inert.

Hence, to verify if the Eulerian model can indeed capture the deposition of inert PM
aerosols in an open-substrate, the EATS experiments were rerun with cubic-shaped NaCl
crystallites that closely resemble inert spheres (an idea proposed in Tumolva et al. [82]).
The EATS rig is used to study the deposition of these solid nanoparticles that were
generated by atomizing a salt (NaCl) solution followed by drying the droplets in a heated
tube. The deposition (or capture) efficiency from this experimental study is compared with
the corresponding simulation (now the assumption about inert particles is appropriate).
The critical result from this assessment is presented in Fig 2.3. It can be seen quite clearly
that for truly inert particles, the Eulerian model does successfully predict the deposition
of ultra-fine PM aerosols in an open substrate. This observation further lends credibility
to the assumption that a model for reactive PM (including particle transformations) is
indeed the missing link in the study of realistic soot nano-particle deposition. Some more
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detailed results from this evaluation with inert cubic shaped NaCl crystallites are available
in [73, 37].

Figure 2.2: Deposition efficiency of engine-generated nanoparticles in a bare cordierite
substrate (left) and an alumina-coated substrate (right). The solid lines are experimental
values and the dashed lines are simulations. The error bars represent confidence intervals.

Figure 2.3: Deposition efficiency of NaCl nanoparticles in a bare cordierite substrate at
Re = 7.8(left) and Re = 24 (right) at 150 degC. The error bars represent confidence
intervals. Note the similarities between experiments and simulations.

2.3.2 Diffusion of PM: assuming reactive particulates

Further, to accommodate a realistic description of PM deposition, a simple conceptual
model that assumes that the PM aerosol is a mixture of three different types of particles:
truly inert particles, semi-volatile particles and completely volatile particles, has been used
to establish the need for reactive particulates. A detailed account of this conceptual model
and its inception is available in [73] and in the appended Paper A. The experimental
measurements from the EATS rig (ref Table 2.1) are used to ascribe the distribution
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of the three conceptual particle types, including an estimate on the amount of volatiles
semi-volatiles (in terms of mass and molar fractions) [74]. Eight parameters (A1, A2, B1,
B2, K, Q, M1 and M2 ) are fitted to the experimental data for two sigmoidal functions
HCpart (which is the size resolved number fraction of pure volatile particles) and HCfrac
(which is the size resolved mass fraction of volatiles of the remaining particle i.e. when
HCpart is subtracted (see Eqs. 2.7 and 2.8 below).

HCfrac(dp) = A1 +
K −A1

[1 +Qexp{−B1(log10dp −M1)}]1/Q , (2.7)

HCpart(dp) = A2 −
A2

[1 +Qexp{−B2(log10dp −M2)}]1/Q . (2.8)

This conceptual model is coupled with a model for decrease in particle size (to account
for realistic PM transformations) to estimate the PM deposition in the monolith channel.
The decrease in particle size is best described by the hydrocarbon evaporation model of
Giechaskiel and Drossinos [24] (as given below) -

ddp
dt

=
2Mαc (p∞ − pd)
ρpNA

√
2πmkBT

, (2.9)

where M is the molecular mass of the hydrocarbon, αc is a condensation coefficient
(obtained from [24]), p is the partial pressure of the hydrocarbon in the bulk (∞) and on
the surface of the particle (d), NA is the Avogadro’s number and m is the mass of one
hydrocarbon (HC’s) molecule.

As a quick first estimate, the deposition of PM (including realistic transformations)
was assessed using the tanks-in-series (TIS) framework. This method evaluates PM
transport by studying the evolution of the concentration distribution through a series of
N fully mixed tanks. This is given by the molar/mass balance across each individual tank
as follows -

V
dck,n

dt
= q (ck,n−1 − ck,n)− DkShAck,n

dh
, (2.10)

where V is the volume of the tank, ck,n is the concentration of particles of size and type
dp,k (which varies according to Eq. 2.9) in tank n, q is the volumetric flow rate of gas, A
is the total wall surface area available in the tank, Sh = kcdh

Dk
is the Sherwood number for

a monolith channel with hydraulic diameter dh and convective mass transfer coefficient kc.
The deposition efficiency for nano-particles with initial size dp,0 and Brownian diffusivity
Dk(dp) is obtained by relating ck,0 to ck,nt , where nt is the last tank.

The TIS framework is used to fit the experimental data [73] with a simple numeri-
cal estimation of PM deposition. After the fitting procedure is finished, the predicted
deposition efficiency is compared to the experimentally obtained one (see Fig. 2.4).As
shown in the right panel of Fig. 2.4, using the TIS framework with the conceptual model
for particle transformations improves the agreement between experimental observations
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and numerical results in terms of particle deposition efficiencies. Such a close agreement
is an expected result, given the successful indirect validation of the hypothesis that the
PM deposition cannot be fully accounted for by assuming inert particles (c.f. Figs. 2.2
and 2.3). Subsequently, we have also validated the TIS implementation of the conceptual
models against its implementation into a comprehensive Eulerian-Lagrangian framework
[73]. Thus, there is a need to account for particulates in the exhaust gas from vehicular
exhausts as reactive.

Figure 2.4: Particle size distribution (left) and deposition efficiency (right) of engine-
generated diesel particulate matter in a bare cordierite substrate, Re = 2.7 (top) and in
an alumina-coated substrate, Re = 8.3 (bottom).

Hence, a clear deficiency of a purely Eulerian treatment derived on the assumption of
inertialess inert particles has been identified. There is a clear need for a more detailed
account of the reactive nature of the PM (including its transformations) and its transport in
traditional exhaust after treatment devices (such as the monolith channels in a DPF). This
deficiency would be addressed by introducing and utilizing frameworks that can resolve
particle dynamics more thoroughly (in the remaining parts of this thesis). Consequently,
we will discuss a purely Lagrangian description of the system and a more rigorous
multiphase treatment (that can resolve the complex particle-fluid coupling encountered in
these applications).
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Chapter 3
Lagrangian treatment of particulate aerosols

The diffusion dynamics of particulate aerosols which are dilute can be more accurately
described using a Lagrangian treatment. In this method, the particle equation of motion
(Newton’s second law i.e. mdv

dt = ΣForces) is solved for each particle by considering
them as point masses (i.e particle has negligible volume but a finite mass or inertia).
This approach is more apt for studying the deposition of reactive particulates, as any
morphological change in them (such as decrease in the diameter as given by the by the
hydrocarbon evaporation model of Giechaskiel and Drossinos [24]) can be easily incorpo-
rated in the governing equations. In fact, the Langevin equation which is widely regarded
as the governing equation for the Brownian dynamics of micro and nanoscale particles (in
a fluid) can be solved in a Lagrangian frame of reference [43, 10, 64, 65]. In this chapter,
we discuss the well established Langevin treatment. We further describe some simple cases
for the diffusion of an ideal inert spherical particle in an unbounded domain (channel).
The particle dynamics are evaluated in terms of mean squared displacements, velocity
auto-correlation functions and diffusivities and results from this assessment are reported.

Note that we have not extended this treatment towards reactive particulates, particularly
at this stage of the work. This is because the preliminary aim is to establish a rigorous
numerical tool for describing PM deposition in exhaust after treatment devices (such
as the monolith channels in a DPF), and a purely Lagrangian treatment would still be
missing a very essential portion of the particle-fluid coupling (i.e. we do not resolve the
fluid phase around the particle). Moreover, when the particulate flows are dense, as is the
case in the monolith channels of a DPF, the particle-fluid coupling is more pronounced
and the Lagrangian framework breaks down due to the violation of the point-particle
assumption (i.e. the particle volume is not negligent any more). Nevertheless, the results
from such a Lagrangian treatment serve as benchmarks which can be used to validate
the performance of the more rigorous multiphase frameworks (which are described in this
thesis).

3.1 Governing equations: The Langevin treatment

In this thesis, we are concerned with the transport of particulates in the size range 80 nm
to 1000 µm, which would mean that particle sizes are very close to the mean free path
(molecular length scales) of the surrounding fluid. Hence, non-equilibrium behaviour must
be exhibited, meaning that the particulate phase would interact with the constitutive
molecules or atoms of the surrounding fluid. This results in two primary effects. Firstly
the regular collisions act as a random driving force on the particle maintaining an incessant
irregular motion and secondly, they give rise to a frictional force (or drag) for a forced
motion. The superposition of these two opposing effects gives rise to a meandering
motion commonly referred to as Brownian motion. This fundamental theory of Brownian
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diffusion was established by Einstein [19] and Smoluchowski [77] for the diffusion of
micro-scale particles in a viscous fluid and was further extended by Langevin [43]. It is
this random motion of particles that drives the deposition/diffusion process in exhaust
gas after-treatment devices (as explained earlier c.f. Section 1.2). Note that we refer to
such aerosols as rarefied aerosols, meaning that the particle length scales are similar to
the molecular length scales of the surrounding fluid.

3.1.1 Langevin equation

The fundamental theory of Einstein and Smoluchowski is restricted to time scales at
which the decay time of the velocity of the Brownian particle is negligible (i.e much larger
than the particle response time). Hence, a more complete description of the Brownian
motion of a free particle was proposed by Langevin [43, 10], as shown in Eq. 3.1 -

dup

dt
= −γup + S(t), (3.1)

where, up denotes the velocity of the particle, while γ and S(t) denote the systematic (a
dynamical friction) and fluctuating part of the Brownian description of particle motion.
It should be noted that both these parts are related as they are a result of the same
underlying phenomenon, i.e. random collisions with the surrounding molecules. The
frictional term γ is generally described by the steady Stokes drag [78] for fluids at rest.
The fluctuating component S(t) is assumed to be independent of the velocity up and
further fluctuate very rapidly in comparison with variations in the velocity. Uhlenbeck
[83] further showed that Eq. 3.1 is constrained by certain restrictions on the fluctuating
component S(t), i.e. it follows a Gaussian white noise process. Additionally, 〈S(t)〉 = 0,
where 〈...〉 denotes an ensemble average in thermal equilibrium.

Hence, the Langevin equation (3.1) is the momentum equation for the particle with
a random forcing for the non-equilibrium behaviour and with a friction force linear in
instantaneous velocity. Solving this stochastic differential equation (SDE) provides a de-
tailed insight into the diffusive behaviour of the nanoscale particulates as well as furnishes
additional details including the velocity auto-correlation function (the correlation of the
present particle velocity with the velocity at other times). The Langevin equation is valid
provided the following two assumptions are met -

1. The random forcing appears as a white noise at a scale lesser than the particle
response time τp (i.e the time scale of a particle slowing down owing to friction from
the fluid after an initial impulse)

2. The hydrodynamic coupling between the particle and the fluid (i.e. the fluid
friction) is given by the steady state Stokes drag [78] (the friction force is linear in
the instantaneous velocity)

The white-noise assumption is satisfied when the particles are much larger than the
surrounding fluid molecules without being much less dense [30]. The validity of the steady
state drag has been a source of debate for several applications of the Langevin treatment,
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especially when the particle-fluid density ratios are lower (i.e unsteady effects such as
basset history and added mass forces begin to play a role) [67, 3, 30]. However, for typical
particulate aerosols generated by combustion of vehicular fuels, the particle-fluid density
ratios are significantly higher, meaning that the hydrodynamic coupling can be given by
steady hydrodynamic forces and hence the Langevin equation is perfectly suited to study
these systems. There is however another complication and this concerns the continuum
form of the Stokes steady state drag. This is addressed below.

3.1.2 Is the continuum formulation for the steady drag still valid?

The Langevin equation constitutes of a force balance between the hydrodynamic drag
and the Brownian fluctuations. However, under the typical conditions encountered in
exhaust after treatment systems such as monolith channels of a DPF (i.e. deposition of
PM in a size range 1 nm to 1 µm) these particulates do not experience the surrounding
fluid as a continuum. This is because the continuum assumption begins to break down
when the characteristic dimensions of the flow are comparable to the mean free path of
the constitutive molecules (in this case air has a mean free path of ≈ 67 nm at 20 degC
and atmospheric pressure). Under such conditions, the fluid can no longer be regarded as
being in thermodynamic equilibrium and a variety of non-continuum or rarefaction effects
are likely to be exhibited [6]. Consequently, the no-slip boundary condition, traditionally
employed at the particle surface, is no longer applicable and a sub-layer (the Knudsen
layer) of the order of one mean free path starts to affect the fluid interaction between the
bulk flow and the particle.

Figure 3.1: Flow regimes classified based on the Knudsen number (figure adapted from
Roy et.al [70]).

The applicability of the continuum assumption can be determined based on the dimen-
sionless Knudsen number (Kn = 2λ

dp
), defined as the ratio of the mean free path (λ) of

the surrounding fluid to the characteristic length scale of the particle (dp), as shown in
Fig. 3.1. Systems which are strongly rarefied or at the limit of free molecular flow are
characterized by a Kn greater than unity while those which are at the continuum flow
limit are characterized by a Kn much lower than unity. As Kn increases, the rarefaction
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effects become more pronounced and eventually the continuum assumption breaks down.
Hence, the particle-fluid interaction has to be resolved by solving the Boltzmann equation
instead. Nevertheless, conventional continuum descriptions of the forces can be extended
to describe the transitional and slip flow regimes by imposing appropriate slip and tem-
perature jump boundary conditions on the surface [6].

Early attempts at understanding such rarefied flow regimes at low densities began with
Maxwell [53], when he derived a slip boundary condition for a dilute gas using kinetic
theory. This idea was extended by Cunningham [12], who derived an empirical first-order
slip velocity correction factor from hydrodynamic theory for small Kn. Further, Millikan
[54] confirmed (with experimental evidence) that the drag reduction (due to hindered
momentum transfer between the particle and fluid) at higher Kn can be deduced using
the Cunningham correction (Cc), making this an invaluable correlation to study the
rarefaction effects even up to the transition regime (c.f. Fig. 3.1).This is proposed as a
function of Kn as shown below.

Cc(Kn) = 1 +AKn, (3.2)

where A is further a function of Kn that is determined based on empirical data. The
Cunningham correction produces results that are in excellent agreement with the available
experimental data as shown by Alan and Raabe [4]. Mosfegh et.al.[57] summarize the
Cunningham-based slip correction factors (and corresponding A values) that have been
proposed and commonly used by researchers (based on extensive experimental trials),
for air with mean free path of 67.3 nm at 101.3 kPa and 23◦C. Among these, the most
commonly used relation was the one proposed by Davis [13] and is given as -

Cc = 1 +Kn
(

1.257 + e
−1.1
Kn

)
. (3.3)

Other higher-order slip conditions have also been postulated in literature, however these
formulations are not trivial and highly geometry dependent [11]. A simple, yet formally
second-order general slip condition was proposed by Karniadakis et al.[38]. However,
there is not yet a consensus in open literature neither on the best choice for a higher-order
slip formulation, nor on their advantages in complex geometries. Further, most higher
order slip correction methods already fail at very low Knudsen numbers (Kn < 0.1 )
[9] for solid-liquid systems. An added complexity in these aerosol systems is that the
dimensionless Knudsen number (Kn) is in the transition regime (10−1 < Kn < 101)
meaning that extending the continuum description is challenging. Hence, we have to
resort to the more empirically based Cunningham correction in this thesis, and this is
described below.

3.1.3 Extended Langevin approach: Inclusion of the Cunning-
ham correction

In order to be applicable for gas-solid rarefied flows, the ordinary Langevin equation
(Eq. 3.1) is extended to include the Cunnigham correction Cc (first order slip correction
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for rarefaction) for a particle with mass mp and velocity up as developed by Ounis and
Ahmadi [64, 65] -

mp
dup

dt
= −γCup + Funsteady + FBrownian(t), (3.4)

where γC is the Stokes friction factor (Eq. 3.5) including the Cunningham correction
(Cc). Funsteady and FBrownian(t) are the unsteady and stochastic effects experienced by
a Brownian particle. γC is defined for a fluid with dynamic viscosity µf as -

γC =
3πµfdp
Cc

, (3.5)

where the particle time scale is given as

τp =
1

γC
(3.6)

FBrownian(t) is modelled as a Gaussian white noise process with spectral intensity Sij
given as -

Snij = S0δij , (3.7)

where S0 is a function of the Brownian diffusivity D = kBT
γC

of the particle -

S0 =
2Dγ2

C

π
. (3.8)

Thus, FBrownian(t) can be written as -

FBrownian(t) = mpG

√
πS0

∆t
, (3.9)

where, G is a normally distributed independent random number and ∆t is the time
step length at which the Brownian force is active (note that this is not necessarily the
time step used in the integration of the particle equation of motion, as will be explained
later). Ounis and Ahmadi [65] and Maxey and Riley [52] showed that the unsteady drag
effects, i.e. Funsteady (added mass, the Basset history term and the Faxen corrections)
are negligible for sub-micron aerosol particles, hence these can be omitted.

The solution to Eq. 3.4, sans the unsteady effects, will reproduce the following ana-
lytical diffusive behaviour as postulated by Einstein [19]. For a number of particles
diffusing over time, the root-mean-square displacement (MSD) distance in one dimension
(MSDx) should equal the standard deviation σ1D of the Gaussian probability density
function, i.e. -

MSDx = [
1

N

N∑

n=1

(x(t+ dt)− x(t))
2
]
1
2 = σ1D ≡

√
2DC∆t, (3.10)
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It should however be stressed that the solution (or solution process) to Eq. 3.4, a stochastic
differential equation (SDE), is not synonymous with the commonly encountered ordinary
differential equations (ODE). The integration of these SDE’s are constrained by certain
properties of the stochastic time integral as first defined by Itô [33]. To understand these
constraints let us split the integral time interval into a number of small time steps, which
are then summed to give the final solution. This limit result is not independent of the
choice of the intermediate time, which is used while splitting the solution into smaller time
steps, as one would expect from classical Riemann integration laws [7]. This is because the
solution would change depending on the time point at which the integration is started, as
these are random time evolving systems (the trajectories have infinite variation). Hence,
it is very important to decide on the sense or form of the integral which should be solved.
The Itô sense, which has a clear probabilistic interpretation and is most often used to
describe Brownian processes, assumes that the integral is solved from the beginning of the
time interval. This interpretation is most convenient for numerical simulations because
the increment of the stochastic process is uncorrelated with the variables at the same time.
This would mean that, forward stepping explicit schemes are preferred while solving SDE’s
in an Itô sense . More generally, higher order schemes (such as higher order Runge-Kutta
schemes) can introduce spurious drifts in the solution and should be avoided [55].

It should be noted that a purely Lagrangian method such as the one described here, has
a few inherent limitations -

• The flow around the particles is not resolved (only fluid-particle coupling is modelled
through various forces such as drag, added mass etc.).

• The models proposed for the various forces are based on the point-particle assumption
and hence the Lagrangian treatment works best for unbounded flows where dp « h
(channel dimension)

• In order to generate the relevant diffusion dynamics, the particle statistics have to
be ensemble averaged over several trajectories, meaning that this approach can get
very cumbersome computationally.

• This treatment cannot handle two-way (both particle and fluid affect each other) or
four-way coupled (particle-fluid and particle-particle interactions) systems as once
again the models for the various forces have to be altered to include these effects.

Hence, a purely Lagrangian treatment is ill-suited for studying the transport and deposition
of PM in the monolith channels of a DPF. Particularly as both the channel and pore
dimensions can shrink due to the build-up of deposited PM (i.e. the particle and the pore
dimensions are not too dissimilar, violating the point-particle assumption). Nevertheless,
it can still be used to generate relevant benchmarks for unbounded diffusion of particles,
which can be used to evaluate the performance of more rigorous multiphase frameworks
(as will be done in this thesis).
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3.2 Numerical setup

The Ounis and Ahmadi [64, 65] treatment is assessed in a Lagrangian framework. The
particle equation of motion is integrated using a forward Euler explicit time marching
scheme (to solve the extended Langevin equation Eq. 3.4) including the corrected Stokes
drag (Eq. 3.5) as the only hydrodynamic coupling between particle and rarefied gas (the
fluid flow is not solved for). This would mean that this is a one-way coupled gas-solid
system which is stochastically forced by the relevant model for Brownian motion (Eq.
3.9). The time step chosen for the integration of the SDE is based on the particle response
time τp/10. The stochastic forcing is applied at every τp/10th response time (i.e. the
Brownian motion is resolved over 20 time-steps). This was deemed necessary so as to
have a good resolution of the Brownian motion. This assessment was done using a solver
written in a Python environment.

It should be noted that in our assessments we include the Cunningham correction within
the particle density ρp as opposed to directly correcting the Stokes drag. Hence, we
simulate a heavier particle i.e. the same drag reduction is reproduced by having a scaled
particle density (ρpCc). Correspondingly, the Boltzmann constant (kB) is scaled with
the Cunningham correction as well to have the correct Brownian diffusivity D (as in Eq.
3.5). In a nut shell, by doing this we reproduce the exact behaviour as that of the normal
Ounis and Ahmadi treatment (3.4). Consequently, the particle dynamics is calculated
using the uncorrected Stokes drag.

3.3 Results: Langevin treatment in an unbounded do-
main

In this section we study unbounded Brownian diffusion at sufficiently high particle-fluid
density ratios in Stokes flow as given in Table 3.1. The results from this assessment
are used to establish the benchmarks that would be used to evaluate the more rigorous
multiphase frameworks used in this thesis. Further, these simulations would also serve as
the basis for deciding on the simulation duration along with other statistically relevant
criteria that are needed to describe the particle diffusion dynamics. Note that the random
seeds that have been used to initiate the stochastic process in these simulations would be
used in the corresponding multiphase DNS treatments as well. This is done to ensure
that we compare similar stochastic processes while benchmarking the frameworks.

3.3.1 Langevin diffusion of a 400 nm speherical particle

The diffusion dynamics are typically quantified via the mean squared displacement (Eq.
3.10). The displacement of the particle can be defined for different time intervals (or time
lags or lag times) between positions (x, y, z) with the number of possibilities limited to
the duration t of the simulation. In this work, we evaluate a single particle trajectory over
very long periods of time. This in-turn represents multiple particle trajectories ensemble
averaged over much shorter duration. Some typical results from particle diffusion dynamics
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Table 3.1: Cases simulated

Case Particle/Fluid
density ratio

DBP1 2000
DBP2 1000
DBP3 500
DBP4 100

based on the conditions in Table 3.1 are shown in Fig. 3.2. Particle trajectories and
the MSD of the particle are depicted in the panels Fig. 3.2 a and b respectively. The
MSD is non-dimensionalized by the diffusional length scale (MSD∗ = MSD√

Dcτp
). Such a

non-dimensionalization of the results would compensate for the density dependence of
diffusivity. This would mean that, if Stokes drag is the only hydrodynamic coupling, there
should be no differences in the MSD* across the simulations with different particle-fluid
density ratios (as seen in Fig. 3.2b).

Figure 3.2: Particle diffusion dynamics : a) Brownian trajectory of a 400 nm diameter
particle (with density 1000 kg/m3) and b) Non-dimensional MSD after a lag time of 10
response time units across different density ratios after 150 response times (the slopes
indicate the ballistic and diffusive regimes). The red dashed lines ( ) represent the
Einsteins analytical diffusivity (Eq. 3.10).

Further, this figure also depicts a very important property of Brownian diffusion, i.e. tran-
sition from a ballistic to a diffusive regime. The stochastic description of the interactions
of the particle with the surrounding fluid breakdown at the shortest timescales, where the
particle’s inertia is dominant. In this inertia-dominated regime, termed as ballistic, the
particle’s motion is highly correlated and therefore a definition of velocity is plausible (i.e. a
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root mean squared particle velocity Vrms given as Vrms = [ 1
N

∑N
n=1 (v(t+ dt)− v(t))

2
]
1
2 ).

Correspondingly, the MSD∗ approaches (Vrmst)
2 in the ballistic regime below τp, and

reaches 2Dt (Einstein’s result c.f. Eq. 3.10) at larger times (c.f. Fig. 3.2b). More recently,
this transition between regimes has been reported in experimental work as well [31],
which further confirms that the original Ounis and Ahmadi model accurately captures
the Brownian diffusion of a spherical aerosol particle in Stokes flow.

3.3.2 Variation due to tail effects and random seed choice
These simple one-way coupled simulations are also used to determine the simulation
duration and the lag time required to get an adequate statistical description of the
diffusion process (i.e. MSD calculations). Consequently, some simulations with a time
step of τp/200 were run for a 400 nm particle (density of 1000 kg/m3) diffusing in air.
The results from this assessment are shown in Fig 3.3a. It is quite clear that as the lag
time increases, the MSD estimates begin to worsen and show tail fluctuations (i.e. deviate
from the analytical Einstein’s diffusivity). In such cases, it is better to limit the MSD
calculations to lower lag times. For instance, for a simulation that is 150τp long, lag
times up to 20τp give the most relevant statistics. Anything higher would be prone to
severe tail fluctuations. Additionally, the simulation duration also reflects on the statistics
collected (c.f. Fig 3.3b). Shorter simulations would contain lesser information, and since
we are only evaluating a single particle trajectory, it is always better to have the longest
possible simulation (at least 150τp). Moreover, the variation in MSD across different
particle trajectories (different random seeds in the stochastic forcing) is also estimated
c.f. Fig. 3.4. This estimate would be used as the total variation in the stochastic process
(error bars) while comparing the multiphase DNS simulations with the one-way coupled
simulations. Hence, along the lines of these benchmarks, the minimum criteria that will
be followed for the multiphase simulations are set as: a simulation duration of 150τp and
lag time of 10τp.

Hence in this chapter, we have discussed a Lagrangian treatment of the Langevin equation
of motion for a spherical aerosol particle (in an unbounded channel) and established
its validity. We have further assessed the diffusion dynamics over 150 particle response
times. However, this framework cannot be used to study the PM deposition in monolith
channels, particularly as the Lagrangian method fails close to the bounds of the channel
(the point-particle assumption is violated). This would mean that there is a need for a
more rigorous method that can handle these challenging flows (including the particle-fluid
and fluid-particle coupling). Nevertheless, the results from these Lagrangian simulations
will be used as a benchmark to validate the multiphase frameworks that will be described
in the subsequent chapters of this thesis.
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Figure 3.3: Evaluation of tail statistics: a) Effect of lag time duration on the MSD (for a
simulation duration of 150 τp) and b) Effect of simulation duration (in terms of τp) on
the MSD at a time step of τp/200 for a 400 nm particle (density of 1000 kg/m3). The
red dashed lines ( ) represent the Einsteins analytical diffusivity (Eq. 3.10).

Figure 3.4: Variation in particle diffusion dynamics across different random seeds: a) Non-
dimensional MSD across different particle trajectories (different seeds) and b) Diffusivity
(DC) of the particle non-dimensionalized by Einstein’s analytical diffusivity (Dphi) after
150 τp. The red dashed lines ( ) represent the Einsteins analytical diffusivity (Eq. 3.10).
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Chapter 4

Multiphase direct numerical simulations

In the previous chapters, a single phase Eulerian (Chapter 2) and a Lagrangian method
(Chapter 3) have been described in detail. It was inferred that an Eulerian treatment (de-
rived under the assumption of inertialess inert particles) cannot accurately account for the
Brownian deposition of reactive particulates in an open substrate. Further, a Lagrangian
treatment does overcome some of the deficiencies of an Eulerian treatment, however it still
cannot be used to study near wall and pore deposition of particulates (as the flow around
the particle is only modelled and not resolved). Moreover, a deeper insight into the pore
deposition phenomena would permit the designing/creation of materials/devices that
would allow for more environmentally friendly and energy-efficient (clean) transportation.
Hence, there is a need for a framework that can handle the complex non-equilibrium
effects that arise due to the small size of the PM (the sizes are usually comparable to
the mean free path of the carrier phase) in narrow geometries. This framework should
simultaneously resolve the decreased momentum transfer (Cunningham slip correction)
and the Brownian motion which co-exist in these non-equilibrium systems.

A straightforward way to achieve this is by performing Direct Numerical Simulations
(DNS). With this technique, the Navier-Stokes equations governing the gas flow (c.f.
Eq.2.1) are solved directly (using finite volume (CFD), finite element (FEM) or other
numerical discretization techniques). Further, the complete flow field outside the particles
is resolved accurately meaning that the particle-fluid interaction is also inherently resolved
correctly. This solution of the flow is fully coupled to the particle dynamics, to ensure
a two-way coupling between the phases. Such a rigorous treatment can then be used
to probe phenomena in the inaccessible regions of the monolith channels (such as the
pores in the wash coat), which would provide deeper insights into the PM transport and
deposition phenomena.

In this chapter, we discuss some of the common multiphase DNS treatments of PM
aerosols with a focus on a novel multiphase DNS method to treat the dynamics of a
particulate aerosol. A brief account of the Euler-Lagrange method is also provided in this
chapter. However, note that this has not been used in this study and is only presented
here for the sake of completeness. The proposed novel framework is based on the immersed
boundary (IB) method and to our knowledge, this is the first continuum based multiphase
DNS framework that can resolve the particle dynamics of the PM aerosols. We extend
the applicability of the conventional Langevin treatment of particulate aerosols (Ounis
and Ahmadi method c.f. 3.4) towards this IB framework. Consequently in this chapter,
we provide a detail account of the method including a brief note on Immersed boundary
methods. We further demonstrate a proof-of-concept of this method, by using it to study
the diffusion dynamics of a single spherical (ideal) soot particle and extend it towards a
real fractal soot particle in an unbounded domain.
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4.1 Euler-Lagrangian treatment: pseudo-DNS frame-
work

In the multiphase community, the term DNS is also used for simulations where the particle
motion is only modelled (i.e sometimes the flow field around the particles is not fully
resolved). These pseudo-DNS methods have been used to assess deposition of particulates
[73, 46], particularly if the particles are small and the flow is dilute. In most multiphase
applications, it is convenient to make this assumption and further simplify the system by
assuming that the particles (or clusters) do not interact with the surrounding flow (i.e.
one-way coupled). Additionally, the point-particle assumption is central to the Lagrangian
treatment, with the particles assumed to have negligible volume but finite mass. However,
note that the flow between the particles and the particle and flow boundaries is actually
resolved, and used within the particle equation of motion for e.g. Eq. 3.4 to solve for the
diffusion dynamics.

The Fig. 4.1 provides an overview of such a framework. The particulate phase equations,
which are usually described by the extended Langevin equation 3.4 (solved in a Lagrangian
framework), are solved along with the continuum equations for the surrounding fluid (Eq.
2.1) with a suitable discretization technique (could be finite volume, finite element, finite
difference etc.). The coupling between the phases is one-way (i.e. particles do not affect
the fluid) through hydrodynamic drag alone. This is a reasonable assumption, given the
high particle-fluid density ratios (steady effects are dominant) typically encountered in
these systems as shown by Maxey and Riley [52]. This approach represents a pseudo-DNS
approach in that the flow field outside the particles is not fully resolved, but instead
particle motion is calculated from modelled forces.

Figure 4.1: Overview of the Euler-Lagrange framework for studying PM aerosols assuming
that the the total fluid force on the particle mainly includes hydrodynamic drag.

The Eulerian-Lagrangian approach does have some inherent limitations, mainly due to
the Lagrangian point-particle assumption that is central to its utilization. Most of the
deficiencies of a Lagrangian treatment are applicable here as well -
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• This approach is valid as long as the particulate flow is dilute (i.e. one-way coupled
with the fluid) and thus cannot be used to study particle-particle interactions inside
pores during pore fill-up/blocking.

• This approach breaks down when the particle is similarly sized to the flow domain
(i.e. the point particle assumption is invalid), hence cannot be used to study pore
diffusion.

• Similarly, the method fails close to any flow boundaries (particle-wall and particle-
particle boundaries).

• Consequently, the method fails when the particulate flow is two or four way coupled,
as the flow resolution around the particles is required to accurately describe the
particle motion.

• This approach also breaks down at lower density ratios as the unsteady effects (such
as Basset history and added mass effects to name a few) become important, meaning
that the flow around the particle also needs to be resolved.

In-spite of these the Euler-Lagrange method can be used to study macro-scale (i.e
transport across a monolith channel) deposition of PM aerosols, and can be used to assess
the deposition efficiency of particular monolith designs. However, it cannot be used to
study the critical pore diffusion phenomena that are fundamental to designing the next
generation of PM mitigation devices.

4.2 Immersed boundary-FSI method: True DNS

The Euler-Lagrangian treatment is a convenient way of accounting for macro scale PM
deposition in the channels of exhaust after-treatment devices. However, it still lacks the
capability to inherently resolve the fluid-particle and particle-particle coupling due to a
certain degree of modelling that is involved while setting it up. Hence, this framework
cannot be used to study pore deposition of PM aerosols, a critical phenomenon to design-
ing DPF’s. One then has to resort to an approach in which the interaction between the
particles and the gas, the boundaries of the flow and other particles can be accurately
handled (i.e. is resolved and not modelled).

There are several techniques available for the complete DNS of such dispersed mul-
tiphase flows, such as front-tracking (FT), Immersed boundary (IB), Volume of fluid
(VOF) etc. In this work, as an example we utilize an Immersed boundary method to
develop a (continuum based) multiphase DNS framework to study PM deposition. The
fundamental idea behind this framework is to couple the extended Langevin description
of the particle (as formulated in Eq. 3.4) with a Cunningham correction to account for
reduced momentum exchange between the phases (due to rarefaction) as shown in Eq. 3.3,
to describe the diffusion of a spherical nanoparticle in an unbounded channel. The details
of this framework are briefed below, beginning with a general overview on Immersed
boundary methods.
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4.2.1 Immersed boundary methods: A general overview
The immersed boundary methods are a class of numerical techniques employed in the
computational fluid dynamics (i.e. numerical solutions to the Navier Stokes equations
Eq. 2.1 using for e.g. finite volume discretization) of complex flow systems that greatly
simplify the spatial discretization demands. This method, originally proposed by Peskin
[66] to simulate cardiac mechanics and the associated blood flow, solves the governing
equations in a Cartesian grid that does not conform with the complex geometries of the
simulated system. In essence, the object around which the flow has to be assessed, is
immersed in a standard cartesian flow grid, and its presence is accounted for by slightly
modifying governing the Navier-Stokes equations. It should be noted that a surface grid
still has to be generated for the immersed body (IB), however the volume grid on which
the actual governing equations are solved for can be generated with no-regard to this
surface grid [56]. The main advantages of such a treatment are as follows -

• Using a Cartesian grid can significantly reduce the per-grid-point operation count
due to the absence of additional terms associated with grid transformations.

• On a non-body conforming grid, complexity and quality are not significantly affected
by the complexity of the geometry

• Including body motion in IB methods is relatively simple due to the use of a
stationary, non-deforming Cartesian grid

• Dynamic refinement around the immersed object is permissible meaning that the
accuracy is increased at a minimal computational overhead.

Figure 4.2: IB simulation of a fractal soot particle: Note that there is no need for a
body conforming mesh as the surface mesh (colored in blue) of the sphere cuts through an
adaptive Cartesian octree background grid on which the discretized Navier-Stokes equations
are solved (Eq. 2.1).

Incorporating the presence of the IB in the Navier-Stokes equations is the primary
challenge in setting up this framework. Usually this modification takes the form of a
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source term (or forcing function) in the governing equations that reproduces the effect of
the boundary. This is usually done in one of the following ways -

• Continuous forcing: the source term is introduced into the continuous equations
(i.e. prior to the discretization) around the vicinity of the IB

• Discrete forcing: the source term is only introduced in the discretized equations
around the vicinity of the IB (typically within the IB)

• Implicit forcing: there is no source term introduced into the equations. Instead, a
boundary condition is used to constrain the velocity at the IB surface so that the
correct behaviour is reproduced.

The continuous forcing approach is very attractive for flows with immersed elastic bound-
aries, and was originally envisioned by Peskin for the coupled simulation of blood flow and
muscle contraction [66]. In this method the IB is represented as a set of elastic springs
whose locations are tracked in a Lagrangian framework by a collection of massless points
that move with the local fluid velocity. The effect of the IB on the surrounding fluid is
essentially captured by transmitting the elastic stress (calculated using Hooke’s law) to
the fluid through a localized forcing term in the momentum equations [56]. This forcing
is however distributed over a band of cells around each Lagrangian point (based on the
discrete Dirac delta function). Consequently, this approach poses challenges for rigid
bodies as the forcing terms are not easy to implement at a rigid limit. Moreover, due
to the smoothing of the forcing term a sharp representation of the IB is not available.
Consequently, this method is explicit and first-order accurate and unstable.

Hence, for dealing with sharply defined rigid bodies (as we do in this work), a bet-
ter forcing alternative is desired. This can be fulfilled by employing a discrete (or
non-distributive) direct forcing approach that adds the requisite source terms in the
vicinity of the IB. Despite being second order accurate, this approach is only explicitly
formulated and can be unstable for unsteady flows. Alternately, the implicit forcing
approach can also be used to treat bodies with sharply defined edges (as we do in this
thesis). In this method, the velocity at the IB is constrained by an implicitly formulated
immersed boundary condition (IBC) (that is second-order accurate). This unique and
stable treatment is central to the efficiency and accuracy of the multiphase DNS framework
used in this thesis and will be discussed briefly in the following section.

4.2.2 Mirroring immersed boundary method
Let us revisit the governing equations for the flow around the immersed boundaries i.e.
the continuity and momentum equations for in-compressible flow, the Navier–Stokes
equations –

∂uj
∂xj

= 0,

∂ (ρui)

∂t
+ ρuj

∂ui
∂xj

= − ∂p

∂xi
+

∂

∂xj

(
µ
∂ui
∂xj

)
+ fi,

(4.1)
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where fi represents any external source term. Note that Eq. 4.1 is the final form obtained
from the more universal Eq. 2.1. This set of equations is solved together with the implicit
Dirichlet IB condition,

ui = uibi , (4.2)

which sets the velocity of the fluid to the local IB velocity. In the mirroring IB method,
the velocity is set by an implicitly formulated second-order accurate immersed boundary
condition. In this method the interior cells and the cells close to the surface are identified,
see Figure 4.3.

Figure 4.3: 2D view of the adaptive dynamic grid refinement around an immersed spherical
soot particle (diameter of 400 nm). Cell types shown are exterior (blue), interior (yellow)
and mirror or IB cells (red).

For the mirroring cells, that lie close to the surface, their centers (mi) are geometrically
mirrored over the local IB to the exterior points (e) c.f. Eq. 4.3. By mirroring the velocity
field over the IB, second order accuracy is achieved.

uibi =
umi + ue

2
. (4.3)

Typically, the exterior points do not coincide with a grid point, hence implicit tri-linear
interpolation is adopted. When the velocity field is mirrored over the IB a fictitious
velocity field is generated. To fulfill the continuity equation, this field needs to be replaced
by the IB velocity in all flux calculations (note that the velocity within the IB is not used).
A more detailed description of the method is available in [50, 51]. It should be noted that
in the current method the total force (acting on the IB) is given by the surface integral of
the total stress tensor (c.f. Eq. 2.2 consisting of pressure and viscous contributions) over
the IB, as follows -

FIB =

∫

IB

(−pδij + τij)njdS =

∫

IB

(
−pδij + µ

(
∂ui
∂xj

+
∂uj
∂xi

))
njdS, (4.4)
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and the corresponding torque on the IB is estimated using -

TIB =

∫

IB

r× σ · ndS. (4.5)

Here r is the position vector of the IB and σ is synonymous with σij in Eq. 2.2 i.e the
fluid stress tensor for a surface S with normal n . Further, a trapezoidal rule is used for
integrating the stresses and torques on the IB. The IB method described above has been
extensively validated and used for the DNS of complex multiphase flow phenomena [71,
27, 28, 49, 1, 34, 85, 18, 35].

4.2.3 Coupling the IB method with Brownian dynamics

In the previous sections we have established the basis of our IB based continuum multiphase
DNS framework. In this section we handle the application in question, i.e. the diffusion
of a spherical PM in an unbounded channel. In this study the particle sizes are in the
nanoscale and therefore, the non-equilibrium behaviour described in the earlier sections
need to be accounted for. Since we use a continuum framework, similar considerations
about its applicability as in Section 3.1.2 can be extended towards the IB-framework
as well (i.e. we should account for the reduced momentum transfer between the phases
using the Cunningham correction (Cc in Eq. 3.5)). Further, some additional molecular
phenomena that affect the particle diffusion dynamics (such as Brownian behaviour) are
absent in a continuum description (as they have been averaged out while setting up the
equation system 2.1). The Langevin equation Eq. 3.1 indicates that we can incorporate
the relevant Brownian fluctuations by including a stochastic forcing term in our governing
equations (either for the particle, fluid or both). Out of these, the two most viable
alternatives (for handling non-equilibrium fluctuations) are briefly described below -

Stochastic forcing of the fluid: Landau and Lifshitz approach

The first possibility is to include the stochastic fluctuations only within the deterministic
fluid description (by adding stochastic fluxes to the stress tensor) in order to reproduce
the relevant non-equilibrium Brownian behaviour. This constitutes a group of methods
referred to as the fluctuating hydrodynamic approach of Landau and Lifshitz [42] which
is derived using the fluctuating-dissipation theorem of statistical mechanics applicable at
mesoscopic scales [61, 29].

∂ρ

∂t
+
∂ (ρuj)

∂xj
= 0

∂ (ρui)

∂t
+
∂ (ρuiuj)

∂xj
= − ∂p

∂xi
+
∂ (σij + Σ)

∂xj

(4.6)

where Σ is the non-equilibrium fluctuations captured through random stresses modelled
(stochastic momentum flux) as -

Σ =
√
ηkBT [υ(r, t) + υ(r, t)T ], (4.7)
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with υ(r, t) is a standard Gaussian white noise tensor field with uncorrelated components
δ-correlated in space and time.

It should be noted that the LLNS equations are stochastic partial differential equa-
tions that reduce to the Navier Stokes equations (Eq. 2.1) in the limit of large volumes.
The validity of the Landau–Lifshitz Navier–Stokes (LLNS) equations (c.f. eq. 4.6) for
non-equilibrium systems has been assessed extensively in [22] and verified using molecular
dynamics simulations by Mansour et.al. [48]. Further, the LLNS based methods have
been used predominantly in liquid-solid rarefied systems, where in the breakdown of
continuity (i.e. the traditional Navier- Stokes equations) occurs at considerably smaller
scales [23]. Hence, no additional correction for the hindered momentum transfer due
to rarefaction needs to be included, which is not the case in gas-solid rarefied systems.
Hence, this approach has successfully been incorporated in several numerical methods
that describe dynamics of colloidal particles in a liquid [26, 21, 15, 5, 40, 47, 14].

Although the fluctuating hydrodynamic approach has found utility in Brownian par-
ticle dynamics studies, there are still some bottlenecks associated with its implementation
in general finite volume or finite element based DNS frameworks. The main difficulty is in
devising a discretization scheme for the stochastic differential equation primarily because
of the correlation between the form of the required fluctuation-dissipation relations and the
choice of scheme [14]. Further, finite-volume discretizations naturally impose a grid-scale
regularization (smoothing) of the stochastic forcing. Moreover, the non-linear LLNS
equations are ill-behaved stochastic partial differential equations that are challenging to
integrate [84]. Finally, and most crucially, employing the LLNS equations to describe
gas-solid rarefied flow systems is still heavily debated particularly due to the higher Kn
encountered in these systems. Moreover, due to the higher particle-fluid density ratios
encountered in typical exhaust gas after-treatment systems, a Langevin based approach is
more founded due to the prevalence of quasi-steady forces (i.e. unsteady effects such as
history and added mass forces are negligible). Hence we will limit ourselves to the forcing
the particle equation of motion in this thesis.

Stochastic forcing of the particle: Extended Langevin approach

The inclusion of Brownian fluctuations directly on the particles appears more intuitive
and more parallel to the fundamental Langevin equation based methods such as Brownian
or Stokesian dynamics [20, 8], as opposed to forcing the fluid. The most straightforward
way is to use Eq. 3.1 to describe the particle dynamics. This is equivalent to solving the
particle equation of motion (Eq. 3.4) with a stochastic forcing (as described by [83]) term.
Hence, the easiest way to incorporate the Brownian fluctuations in a continuum based
multiphase DNS framework is to directly incorporate the necessary stochastic behaviour
within the particle equation. This is done by incorporating the total hydrodynamic force
from the IB method in the Ounis and Ahmadi model (Eq. 3.4). This coupling is one of
the novelties of the proposed continuum IB based multiphase DNS method. It should be
noted that the method is only valid as long the Langevin treatment has a sound basis (i.e.
PM aerosols have high particle-fluid density ratios and therefore can the unsteady effects
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be neglected).

Consequently, the particle motion is governed by the conservation of linear and an-
gular momentum (Eqs. 4.8 and 4.9). For a particle with mass mp, translational up

and angular velocity ωp, moment of inertia (J ) and including the stochastic forcing
FBrownian(t) (c.f. Eq. 3.9), this is given as:

mp
dup

dt
=
FIB
Cc

+ FBrownian(t), (4.8)

J
dωp

dt
= TIB − ωp × J · ωp, (4.9)

Thus we have a physically consistent way of including both Brownian fluctuations along
with decreased momentum exchange due to rarefaction (using the Cunningham correction
Eq. 3.3) in any given multiphase DNS framework.

4.2.4 Immersed Boundary Octree Flow Solver: IPS IBOFlow
In this work, we use the multi-phase flow solver IPS IBOFlow, developed at Fraunhoffer-
Chalmers Research Centre (FCC). This solver utilizes the previously described mirroring
immersed boundary method (c.f. Section 4.2.2) to efficiently handle the moving particles.
In the solver, the continuity and momentum equations are discretized and solved on an
adaptive Cartesian octree grid [2], c.f. Fig 4.2 (that can be dynamically refined and
coarsened). This ability to locally refine the computational mesh around the immersed
boundaries is one of the highlighting characteristics of this flow solver. Figure 4.3 illus-
trates this local refinement in the case of an immersed spherical particle (representing
an ideally shaped soot particle of diameter 400 nm) along with the corresponding cell types.

The pressure-velocity coupling in Eq. 4.1 is handled using the segregated SIMPLEC
method [17] which first approximates the momentum equation with an estimated pressure
field, and then corrects the pressure by employing the continuity equation. All variables
are stored in a co-located grid arrangement (meaning that the variables such as pressure,
velocity etc. are stored at the cell centres). The Rhie-Chow [68] flux interpolation is
used to suppress pressure oscillations. IPS IBOFlow is coupled with LaStFEM, which is
an in-house finite-element (FEM) based rigid body solver [72] developed at FCC. This
solver can resolve the particle short range dynamics (i.e fluid structure interaction FSI
of rigid objects) to fully resolve the particle diffusion dynamics (i.e. at least two-way
coupled, and has the capability to be extended towards a four-way coupled framework).
From here on this coupled framework will be referred to as the IB-FSI framework. The
FEM solver computes the rigid body motion by solving the linear and angular momentum
conservation equations 4.8 and 4.9. Note that Eq. 4.8 is an extension of the original
Ounis and Ahmadi treatment of aerosol particulates(c.f. Eq. 3.4) with a major difference
that we include the resolved fluid hydrodynamics in this conservation equation.

The Newmark time scheme [60] is used for the temporal integration of the SDE. In
this method, acceleration, velocity and displacement at time t = tn+1 is obtained as a
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function of the values at t = tn (which is always known), by assuming a linear acceleration
during that small time step. This one-step semi-implicit method can be represented by
the following sets of equations -

u̇p
n = u̇p

n +
∆t

2

(
üp
n + üp

n+1
)

(4.10)

un+1
p = unp + ∆tu̇p

n +
1− 2β

2
∆t2üp

n + β∆t2üp
n+1 (4.11)

This scheme is also unconditionally stable with β a tuning parameter that has a default
value of 0.25 (the constant average acceleration method) [60]. The scheme is also confined
within the Itô interpretations [33] of a stochastic integral, and hence can be safely used to
solve the SDE governing the particle motion (Eqs. 4.8 and 4.9). A partitioned approach
is employed to solve the coupled rigid body - IB problem. The grid and assembly are fully
parallelized on the CPU and the resulting large sparse-matrices are solved on the GPU
with a Algebraic Multi-Grid (AMG) solvers [59].

This extension of the original Ounis and Ahmadi model towards a continuum framework,
is the major contribution from this work, and to our knowledge this is the first multiphase
DNS method that can handle the dynamics of aerosol nano-particles in rarefied flows
(i.e both Brownian dynamics and the hindered momentum transfer to break down of
continuum theory are fully accounted for). Further using such a rigid body solver would
mean that the we already have the infrastructure to account for sub-grid particle-particle
and particle-wall interactions as well (these can be included through the widely available
collision, lubrication models etc.). Additionally, as we use an IB method the need for
a body fitted grid is redundant, meaning that we can easily simulate complex particle
shapes. Moreover, this framework can also resolve particle deformation if needed (cou-
pling between hydrodynamics and structural mechanics), however in this thesis we limit
ourselves to simulations of rigid PM aerosols. It should be noted that there are some
inherent limitations with the IB-FSI framework as well, some of these are listed below -

• This DNS framework is computationally expensive particularly for simulating long-
term statistics of Brownian motion.

• Currently, the IB-FSI framework can only be used with unbounded flows, mainly
because the closures to describe rarefaction effects near wall bounded regions are
currently lacking (meaning the method will be inaccurate for near wall particulate
flows).

• The framework is also very sensitive to the particle-fluid density ratios. This
is because both the coupling schemes between the rigid body solver and the IB
solver and the inherent Langevin equations are effected by the density ratios. This
framework in in its current form will breakdown at low particle-fluid density ratios.
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4.3 Numerical setup

We now provide an overview of the numerical setup employed in the simulations along with
its validation. We describe the final numerical setup that has been used for the simulations
including brief accounts on the grid and time-step convergence. A spherical particle is
released at the center of our domain (which is symmetric on all sides) and is subject
to both the hydrodynamic forces (from the DNS) and the stochastic Brownian forcing
(extended Langevin approach). In this IB framework, the Navier-Stokes (NS) equations
(c.f. Eq. 2.1) are discretized on an adaptive octree grid. This grid is further used to
calculate the fluid stresses on the solid as shown in [51, 50] and in Eq. 4.4. These surface
integrated stresses are then coupled with a finite-element based rigid body solver [72] that
can resolve the short range particle dynamics. A schematic of the simulation domain is
shown in Fig 4.4. The simulation conditions (similar to the Lagrangian benchmarks) are
further listed in Table 4.1.

Figure 4.4: Schematic of the simulation domain employed in the particle diffusion studies
(Inset: Octree grid around the 400 nm particle).

4.3.1 Validation of the framework

The IB-FSI framework used in this work is first validated using a standard Stokes settling
case for a spherical aerosol particle (with a diameter of 400 nm) accelerated by a constant
force in the negative z-direction. For such PM systems, it is common to assume a density
of 1000 kg/m3 for all relevant particle sizes (as proposed by Kittelson [39]). This force
was chosen so as to accelerate the particle to its root mean square velocity (Vrms). A
detailed temporal and grid convergence was undertaken in order to show the sensitivity
of the multiphase DNS method to the temporal and spatial discretization employed. The
results from this assessment are shown in Fig. 4.5 below. These results are presented
in terms of the non-dimensional velocity (V simulationz /V analyticalz ) and non-dimensional
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Table 4.1: Simulation settings and fluid properties

Condition Case: Grid
convergence

Case: Time convergence Case:
Diffusion

System size (l x w
x h), microns

10 x 10 x 13 10 x 10 x 13 10 x 10 x
13

Particulate phase: Spherical soot particle
Diameter, nm 400 400 400
Density, kg/m3 1000 1000 1000

Fluid phase: Air
Density, kg/m3 1 1 1

Dynamic
viscosity,Pa.s

1.8e-5 1.8e-5 1.8e-5

Simulation settings
Spatial resolution,
cells/diameter

12, 24, 48, 96 24 24

Temporal
resolution, s

1/100τp,
1/200τp,
1/400τp,
1/800τp

1/10, 1/35, 1/70, 1/100, 1/200τp 1/200τp

time(t/τp). Note that we describe the acceleration of the particle towards it’s terminal
settling velocity. Further, the relative error across the temporal and spatial resolutions in
this study are summarized in the Table 4.2. This error between the simulations and the
analytical results is calculated using -

Relative error =
V analyticalz − V simulationz

V analyticalz

∗ 100. (4.12)

Table 4.2: Spatial and temporal convergence for a spherical particle of density 1000 kg/m3

accelerated by a constant force in the -ve Z direction after 10 particle response times (τp).
The values highlighted in red are the chosen spatial and temporal resolutions for the DNS
framework.

(a) Grid convergence

Grid
resolution

error (%)

12 cells/dia 15.2%
24 cells/dia 5.2%
48 cells/dia 3.3%
96 cells/dia 2.1%

(b) Temporal convergence

Temporal
resolution

error (%)

τp/10 18.8%
τp/35 7.9%
τp/70 3.6%
τp/100 2.2%
τp/200 0.9%
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A variety of grid resolutions were tested, at a fixed Courant number (C = u∆t
∆x ) based on

an initial temporal resolution of τp/100 (i.e. the coarsest spatial resolution of 12 cells/
diameter uses a temporal resolution of τp/100). The successively finer spatial resolutions
employ a correspondingly finer temporal resolution so as to maintain the same Courant
number. A rule of thumb in such multiphase DNS simulations is to have at least 20
cells per diameter as the resolution, and this is realized in our assessments as well (see
c.f. Fig 4.5a). The solution is clearly grid independent if a minimum resolution of 24
cells/diameter is maintained. Moreover, although the reported relative error does decrease
with a finer resolution (as expected), it creates an increased computational overhead.
Hence, in order to counter-balance computational demands and the expected accuracy,
a grid resolution of 24 cells/diameter (with a relative error of ≈ 5.0%) will be used as
the basis for all the studies presented in this thesis. Next, the sensitivity of the IB-FSI
framework to temporal discretization is shown in Fig. 4.5b. It is quite evident that the
chosen simulation time step (represented in terms of the particle response time τp) has
a direct impact on the accuracy of the results, with a temporal resolution of at least
τp/70 needed to produce convergent solutions. Since the computational overhead from
the time step demands are not as severe as those from the grid requirements, we select
the finest possible temporal resolution of τp/200 (with a relative error of ≈ 0.9%) as a
minimum requirement that will always be met in this thesis. As is evident, the error from
the numerical framework has to be kept minimal if we are to perform a true DNS of the
particulate aerosols, and this constraint is maintained throughout this work.

Figure 4.5: Sensitivity assessments on the IB-FSI framework: a) Grid and b) Temporal
convergence after 10 response times. The red lines ( ) represent the analytical Stokes
settling under a constant force in the -ve Z-direction (solved by integrating the particle
equation of motion).
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4.3.2 Final simulation conditions

Based on the detailed sensitivity analysis on the IB-FSI framework, the following final
choices are made for the numerical set-up. A grid resolution of 24 cells/diameter and a
temporal resolution of τp/200 would be used in all the results presented in this thesis.
Further, the Brownian forcing is done every τp/10th timestep to allow for a better res-
olution of the particle acceleration. The diffusion of a single spherical nanoparticle of
diameter 400 nm is studied in an unbounded channel. The effect of particle-fluid density
ratio on the diffusion dynamics would be studied with this numerical setup. The list of
cases that have been studied are listed in Table 4.3.

In a multiphase DNS framework such as this, the hydrodynamic coupling is fully resolved
(by integrating the fluid stresses on the surface of the particle) and not modelled (c.f.
Section 3.1). Hence, in addition to steady and unsteady effects, the full hydrodynamic cou-
pling would also include effects from the presence of flow boundaries as well as proximity
to other particles. However, in this thesis we only wish to demonstrate a proof-of-concept
of our universal framework (i.e. it can be used in any multiphase DNS setting). Hence, we
only demonstrate unbounded Brownian diffusion at sufficiently high particle-fluid density
ratios in Stokes flow as a first example.

Table 4.3: Cases simulated using the IB-FSI framework

Case Particle/Fluid
density ratio

DBP1 2000
DBP2 1000
DBP3 500
DBP4 100

4.4 Results: IB-FSI simulation of an ideal spherical
soot particle (in an unbounded domain)

The IB-FSI framework is used to simulate the diffusion of a typical soot like spherical
particle (with a size of 400 nm) in an unbounded channel (c.f. Table 4.3). These results
are used as a base case to evaluate the overall performance of the framework, particularly
as the Langevin equation for the particle (Ounis and Ahmadi model) will now include the
fully resolved hydrodynamics (as opposed to a quasi-steady model such as Stokes drag)
around the particle. It is expected that at such high particle-fluid density ratios, this
treatment should easily extend towards this application with PM aerosols. This is mainly
because, under these conditions, the unsteady effects are negligible (see Section 3.1.1),
meaning that the solution to the Langevin equation should be similar to the benchmark
tests. Note that for this proof-concept we assume an inert particle and that reactivity
can easily be added if needed.
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4.4.1 Diffusion of a spherical soot-like particle of density 1000
kg/m3

Some general results from the IB-FSI framework simulations (in terms of particle tra-
jectories and MSD* ) are presented in Fig. 4.6. These predictions from the framework
are in excellent agreement with the benchmark Lagrangian one-way coupled simulations,
capturing the transition from the ballistic to the diffusive regime (as detailed earlier c.f.
3.3.1). This close correspondence can be considered as a qualitative validation of the
performance of the framework. Further, the results are within the variability reported
in the benchmark simulations (across different trajectories or 5 different random seeds).
These close comparisons in the MSD* can be further appreciated by examining the
particle positions and velocities between the one-way and two way coupled treatments
(c.f. Fig. 4.7). Note that the same sequence of random numbers, as those used in the
benchmark study, are used in the IB-FSI simulations as well.

Figure 4.6: Particle diffusion dynamics (IB-FSI simulations): a) Trajectory of a 400 nm
diameter particle (with density 1000 kg/m3) and b) Non-dimensional MSD after a lag
time of 10 response time units across different density ratios after 150 response times (the
slopes indicate the ballistic and diffusive regimes). The red dashed lines ( ) represent
the Einsteins analytical diffusivity (Eq. 3.10).

4.4.2 Effect of density ratio on diffusion dynamics

The IB-FSI framework is now used to perform a variety of numerical experiments that
would evaluate the particle diffusion dynamics as a function of particle-fluid density ratio
(c.f. Table 4.3). The aim of this assessment is to demonstrate the applicability of our
framework to study aerosols of particles with soot-like densities. This broad applicability
is shown in the Fig. 4.8a, where in the corresponding MSD* values across realistic
soot-particle densities compare very well with the benchmark Lagrangian results. Note
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Figure 4.7: Particle diffusion dynamics (IB-FSI simulations): a) Position and b) Velocity
of a 400 nm diameter particle (with density 1000 kg/m3) after 150 response times.

that there is negligible variation across the simulated density ratios. Further, the Gaussian
nature of the stochastic forcing in Eq. 3.9 would mean that the consequent stochastic
process is Markovian in nature. Hence, the auto-correlation function (vacf ) for the particle
velocities, given as –

vacf = 〈v(0) · v(t)〉 =
1

N

N∑

n=1

(v(0) · v(t)) , (4.13)

decays with an exponential tail, as shown in Fig. 4.8b. This classical result for Brownian
particles [77] with sufficiently high density ratios, is a further validation of the applicability
and performance of our framework. Note that the analytical exponential decay in Fig.
4.8b is slightly offset at the beginning from the decay of the vacf of the simulated particles.
This is attributed to the ballistic behaviour which is accounted for in the multiphase
DNS treatment. Einstein’s analytical behaviour (Eq. 3.10), on the other hand, does not
include this initial ballistic phase and is purely diffusive. Nevertheless, the two sets of
curves do match with each other after this initial ballistic phase.

We further evaluate the accuracy of the current framework by comparing the root-mean
squared velocities (Vrms) of the particle across the different particle-fluid density ratios.
This is a good metric to judge if the right physics are being captured in our framework
(i.e. if the stochastic behaviour is correctly resolved). The analytical Vrms (given as kBT

mp
),

is a function of the particle density, and this trend is presented in the Fig 4.9 (as the
particle is lighter it will be easily accelerated by molecular collisions, meaning that it
would have an increased Vrms value). It is quite apparent that the IB-FSI framework
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Figure 4.8: Particle diffusion dynamics (IB-FSI simulations): a) MSD* variation and b)
Averaged velocity auto-correlation function (vacf ) across different particle-fluid density
ratios after 500 response times (all the Lagrangian benchmarks are represented by one
curve). The red dashed lines ( ) represent the Einsteins analytical behavior (Eq. 3.10).

closely follows the analytical trend. Note also that the Lagrangian benchmarks closely
mimics the analytical trend, which is a further confirmation that the extended Langevin
equations of Ounis and Ahmadi (Eq. 3.4) offer reasonable benchmark limits for comparing
the performance of our framework. The relative difference between the Vrms values from
the IB-FSI framework and the analytical values are listed in Table 4.4 to the show a
quantitative metric of accuracy (for the the framework), given as -

Relative error =
V analyticrms − V simulationrms

V analyticrms

∗ 100. (4.14)

Table 4.4: Relative error in the IB-FSI framework (calculated using the relative difference
between the Vrms values from the IB-FSI framework and the analytical values) after 150
response times

Case Particle/Fluid
density ratio

error (%)

DBP1 2000 4.5%
DBP2 1000 3.6%
DBP3 500 4.4%
DBP4 100 5.1%

We report a maximal 5% error with this framework , synonymous with the error reported
for our chosen spatial resolution in the validation studies c.f. Section 4.3.1. This is an
acceptable margin, and further shows the feasibility of this DNS framework.
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Figure 4.9: Comparison of Vrms between the IB-FSI framework, Lagrangian benchmark
and Analytical results across density ratios between 2000 and 100 kg/m3 after 500 response
times. The red dashed lines ( ) represents the Analytical values.

4.4.3 Some anomalies: Diffusion at low particle-fluid density ra-
tios

The feasibility of the IB-FSI framework to resolve the relevant particle dynamics of
relatively heavy particulates (typically in the range 2000 and 100 kg/m3) has been demon-
strated in the preceding sections. There are however some limits to its applicability, at
least in the current form. These limitations are determined by the particle-fluid density
ratio of the simulated particulate aerosols. The extended Langevin equation (Eq. 3.4)
in its current form cannot be used to describe the dynamics of lighter particles (density
<10 kg/m3), mainly because the friction (drag) on the particle has not reached a steady
state after having received an impulse from the fluid (i.e. the developing hydrodynamic
motion is not fully described by the steady Stokes drag) [30]. Thus the fluid inertia
(including unsteady effects) must also be included along with the particle inertia (in the
stochastic forcing term Eq. 3.9) to describe the particulate dynamics accurately. This
deficiency with the Langevin treatment was first noted by Rahman [67] and Alder and
Wainwright [3] in some simulations of Brownian motion in a liquid, when they reported a
long-tailed decay in the velocity correlation function vacf (as opposed to the exponential
decay reported in this work c.f. Fig. 4.8). This would mean that the particle motion is
not δ-correlated in time any more, and deviations from true Brownian behaviour will be
exhibited as shown in Fig. 4.10a and b.

Fig. 4.10 demonstrates the diffusion of spherical particles with density <10 kg/m3. These
cases show the failure of the IB-FSI framework (based on the extended Langevin treat-
ment). Fig. 4.10b provides a more measurable metric for convergence towards Brownian
behaviour. Here we plot the ratio between the diffusivity obtained from the simulations
(D) and the Diffusivity (Dphi) set in the Brownian forcing term (3.9) of the extended
Langevin equation over non-dimensional time. Ideally, this curve must approach unity
(as we hope to get the Einstein’s diffusive behaviour using the Langevin equation). Slight
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Figure 4.10: Particle diffusion dynamics (IB-FSI simulations): a) MSD* variation and b)
variation of D

Dphi
which represents the convergence towards Brownian behaviour after 150

response times . The red dashed lines ( ) represent the Einsteins analytical behaviour
(Eq. 3.10).

variations from unity are permissible, due to the inherent stochastic nature of the process,
meaning that based on the chosen random seed the final process will fluctuate around
unity (which is why an ensemble average over several trajectories/processes is desired
for the exact description of Brownian dynamics). However, the behaviour noted for the
curves with particle-fluid density ratio <10 clearly indicates that the particle dynamics
can no longer be accounted for by solving only the Langevin equation of motion, as
some of its inherent assumptions are violated. This deviation from Einstein’s analytical
behaviour can further be confirmed by evaluating the tail decay behaviour of the velocity
auto-correlation function (vacf ) as shown in Fig . 4.11. Clearly, the simulations with a
low-particle to fluid density have a slightly different tail decay than the the analytical expo-
nential decay, indicating the failure of a pure Langevin description of the particle dynamics.

In-spite of these inherent deficiencies at the lower particle-fluid density ratios, our frame-
work is still quite capable at handling the particle dynamics of soot like particles at
realistic densities. The results presented as anomalies, are primarily used to establish the
bounds in terms of applicability for our novel IB-FSI framework.

4.5 Extending the IB-FSI framework to study a real
fractal soot-particle

The IB-FSI framework has been shown to accurately handle the Brownian dynamics
of spherical soot particles (in unbounded domains), however in reality these particles
have fractal morphologies. Our framework is also designed to handle such nuclei mode
fractal aggregates. Since we employ a rigid body solver, the dynamics of these fairly
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Figure 4.11: Averaged velocity auto-correlation function (vacf ) from simulations at low
particle-fluid density ratios (of 10 and 1 kg/m3) compared with the simulation of a higher
particle-fluid density ratio of 1000 kg/m3 after 500 response times .The inset describes
the deviation from the analytical exponential tail decay behavior at these lower density
ratios. The red dashed lines ( ) represent the Einsteins analytical behavior (Eq. 3.10).

complex fractal aggregates can inherently be handled, provided the physics of the system
(i.e. the drag reduction due to rarefaction (Cc in Eq.(3.5)) and Brownian dynamics)
are consistently incorporated. This is the biggest challenge in extending the IB-FSI
framework towards a real soot particle, particularly as the closures needed to account for
the non-equilibrium behaviour would need a characteristic dimension. The fractal nature
of the real aggregate would mean that this has to be accounted in an indirect way.

4.5.1 Fractal aggregate generation

The soot aggregates are formed from the smallest primary hydrocarbon particles (denoted
the nuclei mode particles) that are formed during the combustion process. These increase
in number as the exhaust gas passes through the aftertreatment system via a number
of different nucleation mechanisms (including condensation of volatile substances from
the gas phase). These nuclei mode particles are a few nanometers in size when they first
appear and they thereafter grow to form fractal aggregates. Hence a detailed insight into
the complex transport and deposition of these real aggregates in the pores and channels
of a monolith can definitely aid in designing smarter materials and devices to capture PM
more efficiently. Our novel framework represents the very first continuum-based numerical
method that can resolve the dynamics of such irregularly shaped PM aerosols.

The first challenge in setting up such simulations is to account for rarefaction in particulate
aerosols with non-spherical particles. These fractal aggregates can be described as entities
composed of a number of contacting or partially coalesced primary spheres, where the
number of primary spheres per entity (N ) exhibits a power law relationship with the
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entity’s radius of gyration (Rg) [69, 41] given as -

N = kf

(
Rg
a

)Df

, (4.15)

where a, Df , and kf are the the mean primary particle radius, fractal dimension (exponent),
and fractal pre-factor, respectively. Based on this, we set-up the simulation of a typical
soot particle as shown in Fig. 4.12. These fractal aggregates are generated using standard
particle–cluster (PC) aggregation algorithms that have been implemented by Skorupski
et.al [76]. These algorithms attach one spherical sub-unit to the growing cluster at each
step of the aggregation process in such a way that the scaling law (Eq. 4.15) is fulfilled
exactly at each step for prescribed values of the fractal dimension and pre-factor. The
open-source program FLAGE (Fractal-Like Aggregate Generation Environment), developed
by Krzysztof Skorupski ([75]) is used to create the corresponding aggregates. These are
then post-processed in Netgen and FreeCAD to generate the required surface mesh (stl)
of the object that will be used in the the IB-FSI framework.

Figure 4.12: A typical fractal-like soot aggregate with fractal pre-factor (kf ) 1.3 and fractal
dimension (Df ) 1.78. Inset: SEM of a typical engine generated soot aggregate (figure
adapted from [62]).

4.5.2 Characterizing the fractal aggregate

Recently, Zhang et al. [86] proposed a simple algebraic expression for the orientationally
averaged scalar friction factor (c.f. 3.5) of an arbitrarily shaped aerosol particle across
the entire Kn range using high fidelity DSMC methods. They state that if the Kn of the
fractal particle can be defined in terms of the hydrodynamic radius of the non-spherical
particle (Rh) (as originally defined by Hubbard and Douglas [32]) and the the projected
area (PA), as defined below -

Kn =
λπRh
PA

, (4.16)

a slip correction analogous to the one used for spherical particles (as in Eq. 3.3) can be used
to describe the rarefaction. This would mean that the diffusive Kn is a shape-independent
relation that describes the low-Reynolds number, low-Mach number, orientationally
averaged drag force on arbitrarily shaped particles [86].
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Figure 4.13: Calculation of PA using Monte Carlo sampling: The Orthogonal projection of
the aggregate (in the x-y plane) is indicated by the black dashed circles ( ). P uniformly
distributed points are sampled within a rectangle (box with red dashed lines ) that
encloses this specific orientation of the fractal aggregate. Each sampled point is checked to
determine whether it is inside (Nin) or outside (Nout) the projection of the particle shape.
PA is calculated using Eq. 4.18, and this process is repeated for 104 orientations to obtain
the orientationally averaged projected area PA.

We extend this idea to describe the dynamics of the real soot particle using our IB-FSI
framework. We use the algorithm described by Gopalakrishnan et al. [25] for calculating
orientationally averaged Rh. First passage time simulations (developed by Torquato and
co-workers [81]) of inertialess Brownian walkers are used to estimate the Rh value. More
details about this method are available in the supplementary material of the work by
Gopalakrishnan et al. [25]. As a brief summary, a visual representation of the algorithm
is provided in Fig 4.14. Consequently, a walker can have only two fates; it can either
collide with the aggregate or escape. The number of colliding (NC) and non-colliding
walkers (NNC) are then used to estimate the Rh value as follows -

Rh =
NC

NC +NNC
∗Router (4.17)

The projected area (PA) i.e. the maximum extent of the particle shape on an orthogonal
projection plane, is calculated using a simple Monte-Carlo sampling technique. P uniformly
distributed points are sampled from a rectangle (with area A) that encloses one specific
orientation of the fractal aggregate completely (the value P is tuned for both high accuracy
and optimal computation times). Each sampled point is checked to determine whether
it is inside (Nin) the projection of the particle shape. The final PA for this specific
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orientation is calculated as -

PA =
Nin
P
∗A (4.18)

This calculation is repeated for 104 orientations and the orientationally averaged projected
area is calculated as the arithmetic mean of all these individual projected areas. An
example of this Monte Carlo sampling method is shown for one particular aggregate
orientation in Fig 4.13.

Figure 4.14: Calculation of Rh using the algorithm proposed by Gopalakrishnan et al.
[25]. An inertialess Brownian walker is released from the surface of a sphere with radius
Router >> Rg of the aggregate. This walker is then moved by first passage time simulations.
Based on the motion two fates are assigned to the walker (i.e. it can collide or escape),
and finally after n-steps the Brownian walker either collides or escapes. The number of
colliding and non-colliding walkers are used to calculate Rh (figure adapted from [25]).
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4.5.3 Preliminary results
Based on these calculations, the corresponding dimensions of the soot aggregate that will
be simulated are given in Table 4.5 below -

Table 4.5: Dimensions of the fractal aggregate

Dimension value
Df 1.78
kf 1.3
Rh 174 nm
PA 6.4e−14 m2

As a first assessment, we simulate the soot aggregate described in Fig. 4.12 and Table
4.5 using the IB-FSI framework. Currently, the rotational equation for the aggregate
motion has not been solved, and we only look at the translational behaviour. The
results presented are still in the early stages of development, nevertheless they are briefly
described here to showcase the application of our novel IB-FSI framework to simulate
real PM aerosols. In Fig. 4.15 we compare the pressure distribution around an aggregate
and a spherical particle. This evaluation clearly shows the asymmetric distribution
of the pressure contours around an aggregate. Such a result is extremely valuable to
understanding the complex hydrodynamic phenomena around an aggregate. These results
represent a preliminary assessment, and one of the continuing aims of this work is to
extend these simulations with rotational asymmetry.

Figure 4.15: Comparison between a fractal aggregate and a spherical particle: Pressure
distribution around the particle. Note that the pressure distribution around the aggregate
is asymmetric. (the particles are colored based on pressure).

Thus, the building blocks for a universal multiphase DNS method that can handle the
diffusion of PM aerosols under rarefied conditions has been established. This novel
IB-FSI framework has shown promising capabilities and will be developed even further to
accurately resolve the dispersion of fractal like soot aggregates (including the asymmetric
rotational effects as well). Moreover, the fundamental idea behind this framework is easily
transferable to any multiphase DNS technique, making this method truly universal.
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Chapter 5
Concluding remarks

In this thesis, we have presented and discussed a suite of numerical tools (extending from
single phase to multiphase descriptions of the system) for studying the deposition of
particulate aerosols in conventional exhaust gas after treatment devices such as particulate
filters. We have established that numerical methods and experimental assessments can
be used to complement each other (i.e. by comparing the measured PM capture to a
simulated one we were able to identify the real reactive nature of particulates), to obtain
a heuristic overview of the complicated phenomena encountered in these systems. This
led to the need for more rigorous numerical tools that can accurately resolve the prevalent
physics in such systems. Consequently we have developed a novel multiphase DNS tool
that is suitable to study the transport and deposition of real soot PM in the monolith
channels of a conventional DPF. It should be re-iterated that the proposed numerical
methods are universal and can be applied to any multiphase DNS framework.

Contributions from this work

We summarize the critical contributions from this work in terms of the aims that were
originally stated in the beginning of the thesis (Section 1.3). These are listed as follows -

1. To use computational fluid dynamics based methods to study the movement and
deposition of particulate aerosols in a monolith channel of a DPF (fully Eulerian
single phase simulations assuming inert particulates).

• Established the need for describing PM transport dynamics more rigorously by
identifying the differences between experimental measurements and simulations
(Eulerian convection-diffusion treatment) of the transport of soot particulates
from a diesel engine in a conventional exhaust after-treatment rig.

• Proposed strategies to study the PM deposition process more rigorously (such
as a Lagrangian method and a novel multiphase DNS framework that can
resolve all the inherent coupling between the phases.)

2. Development of a novel numerical method that uses a multiphase Direct Numerical
Simulation (DNS) technique based on the immersed boundary method to fully
resolve the complete particle dynamics (including Brownian dynamics) of particulate
aerosols.

• Proposed a novel Immersed boundary based multiphase DNS framework for
the treatment of rarefied particulate aerosols (IB-FSI framework).

• Extended the applicability of the traditional Ounis and Ahmadi model (3.4)
towards this DNS framework by incorporating the fully resolved hydrodynamics
within the Langevin description of the particle motion.
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• Demonstrated and validated the applicability of this framework to accurately
resolve the particle dynamics of spherical soot like particles (in unbounded
domains).

• Identified classical results such as exponential tail decay of the velocity auto-
correlation function and transition from a ballistic to a diffusive transport
regime (that corresponded well with the traditional analytical models of Einstein
and Smoluchowski).

• Extended the IB-FSI framework to describe fractal shaped soot aggregate
particles (in unbounded domains).

Some limitations

We would also like to emphasize some of the inherent limitations with the novel IB-FSI
framework that was developed during the course of this thesis. These can be summarized
as follows -

1. The IB-DNS framework can accurately resolve the particulate physics provided the
particle-fluid density ratios are sufficiently high (i.e. the Langevin treatment is still
valid due to prevalence of quasi-steady hydrodynamic effects)

2. Currently only unbounded flows can be handled (this is because the closures employed
in the Langevin description to account for rarefaction are developed for unbounded
flows)

3. Similarly, particle-particle interactions are currently not handled as well.

4. The asymmetric rotation of the fractal aggregates still have to be handled correctly.
This is currently absent in the framework (although the necessary infrastructure to
implement and solve any prescribed rigid body motion is in place).

5. Currently, the results have been extrapolated from only a single (but long) realization
of the particle dynamics i.e. we use only a single random seed to initialize our
stochastic process. For a more exact description, an ensemble averaging over several
stochastic process paths is desired.

Future work

This work has established a very powerful numerical method (i.e. IB-FSI framework) to
deal with particulate aerosols. There is however some further scope for the development
of this tool. First and foremost, ensemble averaged results from multiple realizations of
the Brownian dynamics simulations discussed in this work would need to be collected (in
order to conclusively account for the statistical behaviour). The obvious first extension
of this work would be to model near wall deposition of particulates (i.e. PM aerosols
in a bounded domain). Such an extension would demand a greater insight into near
wall rarefaction phenomena. This extension would naturally lead to the next research
question i.e. resolution of particle-particle and particle-wall interactions in rarefied flows.
As stated earlier, all the necessary infrastructure to account for these effects are already
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available in the IB-FSI framework numerically at least, so a detailed investigation into
the physics is heavily desired. For such research questions, the more well established
molecular methods such as discrete simulation Monte Carlo (DSMC) would provide a
more conclusive account of the relevant behaviour, enabling the formulation of simple
closures that can be later used in the IB-FSI framework to account for the right physics.
The inclusion of these two critical extensions to the framework would potentially enhance
its applicability to real world systems even further.
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Chapter 6
Summary of papers

6.1 Paper A

Henrik Ström, Jonas Sjöblom, Ananda Subramani Kannan, Houman Ojagh, Oskar
Sundborg, and Jan Koegler. Near-wall dispersion, deposition and transformation of
particles in automotive exhaust gas aftertreatment systems. International Journal of Heat
and Fluid Flow 70 (2018), 171 –180. issn: 0142-727X. doi: https://doi.org/10.1016/
j.ijheatfluidflow.2018.02.013

6.1.1 Motivation and division of work

This paper aims at highlighting a fundamental knowledge gap in the numerical modelling
of particulate aerosols. Modelling PM as inert spheres does not entirely reflect on the
real transport and deposition of such particulates. I am a co-author mainly contributing
to some of the results and reviewing of the final manuscript. My main contribution
consisted of setting up and performing both the experiments and simulations for assessing
the capture of inert particulates in a monolith channel. The other authors contributed
towards some of the other results presented in the work. Jonas Sjöblom and Henrik Ström
co-supervised this work.

6.1.2 Results and discussion

In this paper, we evaluate the deposition of diesel (combustion) generated nano-particles
using a combination of experimental and numerical techniques. Successful optimization
of any after-treatment device that can control PM emissions relies on the existence of
numerical tools to predict the momentum, heat and mass transfer between these types
of particles and the surrounding gas phase. We evaluate the need for such tools by
highlighting the importance of understanding the transport and deposition of real reactive
PM in the channels of a regular mitigation device such as a DPF. It is clearly demonstrated
using both experimental and numerical evidence that modelling PM as inert spheres that
are trapped by Brownian deposition does not capture the right behaviour (as noted in
experiments), meaning that PM are reactive. This is further in-directly confirmed by
performing numerical and experimental trials with inert NaCl particulates. The purpose
of this is to show that both experiments and simulation correspond well if inert material
is studied, and diverge when real reactive PM are studied with models for inert spheres.
Further, a conceptual model is proposed that is able to explain the initially observed
discrepancies between measurements and simulations, by describing the particulate matter
as a mixture of three different types of particles: truly inert particles, semi-volatile
particles and completely volatile particles. Hence a clear need for more rigorous tools
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that can handle the transport and deposition of reactive particulates is identified (such as
multiphase DNS modelling strategies).

6.2 Paper B

Ananda Subramani Kannan, Vasileios Naserentin, Andreas Mark, Dario Maggiolo, Gaetano
Sardina, Srdjan Sasic, and Henrik Ström. A novel multiphase DNS method for the
resolution of Brownian motion of soot-like particles in a rarefied gas using a continuum
framework. To be submitted to a journal (2018)

6.2.1 Motivation and division of work
The main objective of this work is to propose a novel multiphase DNS technique based on
the immersed boundary method to study the diffusion dynamics of soot aerosols (addressing
the need identified in Paper A). Besides being the main author, my contribution consisted
of setting up and conceptualizing the simulations, post-processing and analyzing the
results. The co-authors supervised and reviewed this work and provided valuable feedback
on the analyzed results and on the drafted manuscript.

6.2.2 Results and discussion
In this paper we formulate a novel numerical method that couples the extended Langevin
description with a mirroring immersed boundary (IB) method (multiphase DNS). This
technique would allow for the inclusion of the resolved fluid flow (around the particle)
within the conventional extended Langevin description which generally uses quasi-steady
relations to account for the hydrodynamics. We analyse the consequences of resolving
Brownian motion in an unbounded domain using this framework and evaluate the dif-
fusion dynamics (mean squared displacements, velocity auto-correlation functions and
diffusivities) of a spherical transported particle, in relation to the conventional treatment.
The proposed method is able to capture the transition from a particle-inertia dominated
(highly correlated) ballistic regime to a non-correlated diffusive one (as given by the
Stokes-Einstein relation) and further accurately estimate the resulting diffusivity of a
spherical nanoparticle. Moreover, the standard exponential decay of the velocity auto-
correlation function (for the Brownian diffusion of heavy particles) is also noted in the
simulations of the gas-solid system. Our results show that the proposed model can be
used within any multiphase DNS framework to reproduce the meandering motion of soot
particles under rarefied conditions. It should however be stressed that this method is
valid so long as the Langevin treatment and the Cunningham correction have a basis (i.e.
high particle-fluid density ratios and unbounded flows).
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