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A B S T R A C T

The Hf0.5Nb0.5Ta0.5Ti1.5Zr refractory high-entropy alloy with excellent corrosion resistance in the 3.5 wt% NaCl
solution is identified in this work. This refractory high-entropy alloy exhibits much better general corrosion
resistance than that of the 316L stainless steel, due to its corrosion current density being about one fifth of that in
the latter. Meanwhile, the pitting potential of Hf0.5Nb0.5Ta0.5Ti1.5Zr reaches an unusually high value of +8.36 V,
much higher than that of reported high-entropy alloys. The superior passivity of Hf0.5Nb0.5Ta0.5Ti1.5Zr is ac-
credited to the formation of a single-phase solid solution containing high amount of homogenously distributed
passivity-promoting elements, and also the existence of metallic Ta and OH− species in the passive film, which
contribute to the high immunity to passive film breakdown.

1. Introduction

Corrosion is one of the most common failure modes of metals, and
the cost due to corrosion of metals has been over 3% of the world's gross
domestic product annually in recent years [1]. To alleviate the for-
midable challenge, corrosion control is considered as one of the stra-
tegic areas for metals-based civilization [2]. Generally, some metals or
alloys would show inherently low corrosion rates due to the formation
of passive films. However, the localized pitting, which rapidly leads to
the failure of metals, cannot be avoided once the passive film breaks
down [3]. Accordingly, design and fabrication of new alloys with high
passivity, have drawn much attention of materials scientists and en-
gineers [4].

High-entropy alloys (HEAs), which are composed of at least four
principal metallic elements, are newly emerging metallic materials [5].
The alloying concept that is brought by HEAs, opens up an enormously
large and unexplored compositional space. HEAs, depending on com-
positions, have exhibited many attractive properties in terms of hard-
ness, strength, wear resistance, and resistance to high-temperature
softening [6,7]. Besides, some HEAs have shown excellent corrosion
resistance due to the claimed good passivation characteristics [8–10]. It
is therefore quite intriguing to further explore the potential of HEAs, as
novel metallic materials that could have high passivity.

As reported, the superior passivity of HEAs can be understood and

explained based on their composition and structure. Usually, the HEAs
with high corrosion resistance contains large amounts of passive ele-
ments such as group IVB elements (Ti, Zr, and Hf) and group VIB ele-
ments (Cr, Mo, and W), which facilitate the formation of stable barrier
films [8–12]. Besides, the entropy stabilized single solid solution phase
that is formed in HEAs can also contribute to preventing the pitting
corrosion, which would preferably occur at the phase boundaries where
the composition shows large variations [10]. However, to the best of
our knowledge, pitting potential, Epit, of known HEAs are no more than
+3 V in the 3.5 wt% NaCl solution [9–18]. In other words, it remains to
be a tremendous challenge to design novel alloys with high passivity.
Here, we present a refractory HEA (RHEA) with surprisingly high Epit in
aqueous chloride solutions, which makes it a promising material to be
used in extremely demanding and highly-sensitive service environ-
ments.

2. Experimental

The RHEA studied in this work, Hf0.5Nb0.5Ta0.5Ti1.5Zr, was devel-
oped in our previous work [7]. It was prepared by arc melting high
purity (> 99.9%) elemental materials on a water-cooled copper plate in
the Ar atmosphere. The ingots were flipped and re-melted five times for
improved homogeneity. The final ingot has the dimension of about
66mm (length)× 28mm (width)× 10mm (thickness). After
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solidification, the samples for experiments, with strictly the dimension
of 10mm×10mm×1mm, were prepared from the ingots by elec-
trical discharge machining followed by grinding and polishing.

The microstructures and element distribution were investigated by
back-scattering electron imaging (BSE), electron backscatter diffraction
(EBSD) and energy disperse spectroscopy (EDS) using a field-emission
scanning electron microscope (NOVA NanoSEM 230, FEI). The crystal
structure was examined by an X-Ray diffractometer (XRD, Bruker D8
Advance) using the Cu K-alpha radiation (λ=1.5406 Å), operating at
40 kV and 200mA. Chemical compositions of the passive films formed
on the HEA samples were analyzed by X-ray photoelectron spectroscopy
(XPS, ESCALAB250XI, Thermo Fisher) using the Al K-alpha X-ray
source (1486.6 eV).

The electrochemical measurements were performed using a
Princeton PARSTAT4000A electrochemical workstation with a con-
ventional three-electrode electrochemical cell, consisting of the HEA
sample (with an exposed area of 1 cm2), Pt sheet saturated-calomel
electrode (SCE) as the working electrode, counter electrode, and re-
ference electrode. Before tests, RHEA samples were epoxy en-
capsulated, polished, degreased in alcohol, washed in distilled water
and dried in air. All tests were carried out in the 3.5 wt% NaCl solution
(pH=7 ± 0.2, open to air) at ambient temperature (25 °C). The po-
tentiodynamic-polarization tests were performed at a scan rate of
1mV/s from an initial potential of −1.3 V till the current density
reached a maximum of 1mA/cm2. To confirm the data reproducibility,
ten parallel Hf0.5Nb0.5Ta0.5Ti1.5Zr RHEA samples were measured and
the standard deviation of the Epit was calculated. The EIS tests were
carried out at open circuit potential with a sinusoidal potential ampli-
tude of 10mV, running from 100 kHz to 10mHz. For comparison, 316L
stainless steels (SS) and pure Ti (> 99.9%) were also tested under the
same condition.

3. Results and discussion

According to the BSE image, inverse pole figure (IPF) map and the
XRD pattern as shown in Fig. 1, the Hf0.5Nb0.5Ta0.5Ti1.5Zr RHEA forms a
single-phase bcc solid solution with equiaxed grains. It is noted that
here that the microstructure looks different to the microstructure that
was reported for the same material before [7,19], mainly because of the
different cooling rate that was used here and in previous work. The
average grain size of the Hf0.5Nb0.5Ta0.5Ti1.5Zr RHEA is ~160 μm. In
addition, EDS mapping of constituent elements in Figs. 1c–g shows that
each element distributes quite homogeneously. Here in
Hf0.5Nb0.5Ta0.5Ti1.5Zr, a single bcc solid solution with homogenously
distributed passivating elements, is expected to possess a superior
passive property.

As shown in the polarization curve in Fig. 2a, 316L SS exhibits a
typical passivation behavior, and the extracted electrochemical para-
meters are quite analogous to previous studies [20]. For the
Hf0.5Nb0.5Ta0.5Ti1.5Zr RHEA, its corrosion current density (icorr) is
about one fifth of that of 316L SS, indicating that the general corrosion
resistance of this RHEA is much better than that of 316L SS. In addition,
the excellent corrosion resistance of the Hf0.5Nb0.5Ta0.5Ti1.5Zr RHEA
could be confirmed by its icorr being quite close to that of pure Ti
(Fig. 2a).

More strikingly, a highly significant passivation behavior, as char-
acterized by the extremely noble Epit of +8.36 V (standard devia-
tion=0.11), can be observed. The protective film is formed almost
spontaneously at the corrosion potential (Ecorr), based on the feature
that the polarization curve changes directly into the passive region
without a noticeable active to passive transition [11]. There exist two
passive regions, with the first passive region (−0.1–1.47 V) showing a
stable passive current density, whereas the second passive region
(1.9–8.36 V) showing sporadic current fluctuations, due to the forma-
tion and re-passivation of metastable pits [21]. The current fluctuations
occur sporadically and annihilate rapidly in this wide passive region,

indicating a strong film repairing ability [22,23]. In the second passive
region, the passive current densities (ipass) of pure Ti increase gradually.
By contrast, the ipass of the Hf0.5Nb0.5Ta0.5Ti1.5Zr RHEA is quite stable.

Fig. 2b–f show the Bode and Nyquist plots of the films formed on the
RHEAs after passivation for 10 mins at the potentials within the passive
region (specifically, 1.0 V, 1.9 V, and 5.0 V), and passivation for 3 mins
at 8.5 V, respectively. Two electrical equivalent circuits in Fig. 2g (Qpass

and Qpit are the constant phase element (CPE) for passive films without
pits and containing pits/metastable pits, respectively; Rpass and Rpit are
the polarization resistance depending on passive films without or with
pits; Rct is the charge-transfer resistance; Rs is the solution resistance)
are used to fit the EIS spectra (Fig. 2g) [24,25]. As shown in the Bode
plots (Fig. 2b), high and slanted impedance modulus values and the
relatively stabilized phase angles (70–85°) at the medium-low fre-
quencies for the samples passivated at the potentials within the passive
region are observed, indicating a capacitive response which relates to
the presence of the barrier passive films [26,27]. All the Nyquist plots
(Fig. 2c–f) are characterized by an unfinished semi-circle, a feature
which is potential dependent [27]. Meanwhile the values of impedance
(|Z|) increase with the increase of passivation potentials (Fig. 2b), due
to the increase of passive film thickness (δ, which could be compared by
1/Y0, here Y0 is the proportionality factor for CPE impedance) and in
the order of (Y0–1.0v > Y0–1.9v > Y0–5.0v) [11]. In addition, Rpass or Rpit
of the samples passivated at the potentials in the passive region are
tremendously high (Rpass-1.0V= 2.78× 1015, Rpass-1.9V= 6.64×1014,
Rpit-5.0V= 6.13×1014 Ωcm2, respectively), confirming that the formed
passive films can act as semi-conductive barriers to anti-corrosion. By
contrast, the sample passivated at 8.5 V shows a feature of passive
breakdown, according to the characteristics of non-existent capacitive-
like behavior (Fig. 2b), and the low Rpit value (Rpit-8.5V=
2.97×103 Ωcm2, shown in Fig. 2f).

To thoroughly understand these passivation behaviors, the passive
films formed on the RHEAs were analyzed by XPS (Fig. 3). When the
polarization tests run to the critical potentials within the passive region,
the passive film is composed of a mixture of TiO2, ZrO2, HfO2, Nb2O5,
and Ta2O5 (Fig. 3b–f) [28,29]. All these species with stable chemical
states have been demonstrated to benefit the formation of continuous,
stable and protective passive films [8,28–30]. Meanwhile, OH− species
and metallic state Ta are also observed (Fig. 3a, d). The OH− species,
which may come from the hydrated metal oxides or adsorbed H2O, can
repair the passive film integrity and increase the resistance to the attack
from chloride ions [28,31,32]. The metallic state Ta, a unique feature
for the protective passive film formed on Ta alloys [8,33], has also been
found on the surface of β type Ti–Ta–Hf–Zr alloys after polarization
within the passive region [34]. By contrast, there exist no OH− species
and metallic Ta on the surface of samples after polarization to the
transpassive region (8.5 V) (Fig. 3a). Instead, besides the highly charged
and stable oxides species (TiO2, ZrO2, HfO2, Nb2O5, Ta2O5), suboxide
species such as Zr2O3, NbO2, Ti2O3, Hf2O3, TaO2 are detected in the
destructed film (Fig. 3b–f) [8]. Ti2O3 is regarded as the inducement for
the metastable pits [30]. Besides, suboxides such as Zr2O3, Hf2O3,
NbO2, and TaO2 seen in the passive film are also regarded as un-pro-
tective oxides [8].

It seems that the existence of metallic Ta and OH− species in the
passive film could be responsible for the superior passivity of the
Hf0.5Nb0.5Ta0.5Ti1.5Zr RHEA. Furthermore, another factor should also
be considered: the alloying concept of HEAs ensures that the high
content of passivity-promoting elements is homogeneously distributed
in the single-phase solid solution. Therefore, the compositional limit of
added elements can be relaxed, so more passivity-promoting elements
than in conventional alloys can be added. Besides, the preferential
corrosion occurred in the phase boundaries or inhomogeneous com-
positions could be avoided, thanks to the formation of a homogeneous
single-phase solid solution [10].

In summary, it can be concluded that a superior corrosion resistance
is achieved in the Hf0.5Nb0.5Ta0.5Ti1.5Zr RHEA, and is accredited to
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both the formation of a single-phase solid solution containing high
amount of homogenously distributed passivity-promoting elements,
and the high stability of the formed passive film. Epit of the
Hf0.5Nb0.5Ta0.5Ti1.5Zr RHEA reaches an unusually noble value of
+8.36 V. Nowadays, enormous efforts have been motivated to design
new alloys to improve the resistance to localized corrosion. A detailed
comparison of the corrosion behavior between the
Hf0.5Nb0.5Ta0.5Ti1.5Zr RHEA, and conventional passive alloys (Ni-, Ti-,

Cu-, Al-based alloys and stainless steels) and other reported HEAs in the
3.5 wt% NaCl solution is plotted in Fig. 4 [9–18,20,35,36]. As shown in
Fig. 4, some HEAs already exhibit higher Epit than that of conventional
passive alloys. Particularly, the Hf0.5Nb0.5Ta0.5Ti1.5Zr RHEA that is
studied here, exhibits the highest Epit among all reported HEAs, show-
casing the tremendous possibility of RHEAs for future applications,
such as seawater desalination, naval armament, and chemical vessels.

Fig. 1. a: BSE image, b: IPF map, c–g: EDS mapping and h: XRD pattern of the Hf0.5Nb0.5Ta0.5Ti1.5Zr RHEA.
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Fig. 2. a: Polarization curves of the Hf0.5Nb0.5Ta0.5Ti1.5Zr RHEA, 316L SS and pure Ti in the 3.5 wt% NaCl solution, b–f: Nyquist and Bode plots of the
Hf0.5Nb0.5Ta0.5Ti1.5Zr RHEA in the 3.5 wt% NaCl solution, g: Equivalent electrical circuit for fitting the EIS experimental data.
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Fig. 3. XPS spectra made at the outer surface of samples after polarization ran to the chosen potentials.
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4. Conclusion

The corrosion resistance of the Hf0.5Nb0.5Ta0.5Ti1.5Zr RHEA in the
3.5 wt% NaCl solution is investigated in this work. This RHEA exhibits
much better general corrosion resistance than that of 316L SS, due to its
much lower corrosion current density. Meanwhile, an unusually noble
Epit of +8.36 V for the Hf0.5Nb0.5Ta0.5Ti1.5Zr RHEA is revealed. The
superior passivity is mainly attributed to the formation of a single-phase
solid solution containing high amount of homogenously distributed
passivity-promoting elements (Hf, Nb, Ta, Ti and Zr), and the existence
of metallic Ta and OH− species in the passive film. The work presented
here exemplifies that the alloying strategy of HEAs could be an im-
portant future research direction, to meet the global challenge of cor-
rosion control.
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