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Abstract—Initial access (IA) is identified as a key chal-
lenge for the upcoming 5G mobile communication system
operating at high carrier frequencies, and several tech-
niques are currently being proposed. In this paper, we
extend our previously proposed genetic algorithm (GA)-
based beam refinement scheme to include beamforming at
both the transmitter and the receiver, and compare the
performance with alternative approaches in the millime-
ter wave multi-user multiple-input-multiple-output (MU-
MIMO) networks. Taking the millimeter wave communi-
cations characteristics and various metrics into account,
we investigate the effect of different parameters such as
the number of transmit antennas/users/per-user receive
antennas, beamforming resolution as well as hardware
impairments on the system performance employing differ-
ent beam refinement algorithms. As shown, our proposed
GA-based approach performs well in delay-constrained
networks with multi-antenna users. Compared to the con-
sidered state-of-the-art schemes, our method reaches the
highest service outage-constrained end-to-end throughput
with considerably less implementation complexity. More-
over, taking the users’ mobility into account, GA-based
approach can remarkably reduce the beam refinement
delay at low/moderate speeds when the spatial correlation
is taken into account.

I. INTRODUCTION

The next generation of cellular systems (5G) requires
both higher data rates (in the order of 10-100 Gbps)
and lower end-to-end latencies (down to 1 ms) than
previous generations [1]. For this reason, it is aimed
to utilize frequency bands in the 30-300 GHz range in
order to obtain sufficiently large bandwidths/data rates.
Due to power limitation and high path loss at these
frequencies, the coverage range is typically small so that
highly directional transmissions are required for such
millimeter wave (MMW) communications. On the other
hand, the physical size of antennas at the MMW band is
relatively small, such that large scale beamforming can
be performed in practice [2] [3].

Employing large-scale beamforming during the initial
access (IA) procedure can be a good way to overcome
the increased path loss experienced at higher frequencies.
The most challenging task of IA is that the base stations
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(BSs) make omnidirectional cell searches with direc-
tional beams and at the receiver side the users choose
their best beam direction to detect the BSs. Successful
access means, e.g., that the received power or the signal-
to-noise ratio (SNR) is beyond certain thresholds. Con-
nection being established, the BSs and the users begin
exchanging message and beam refinement procedure
need to be developed here to further improve the beam
directions. The user mobility can also be handled by
beam refinement.

IA beamforming at MMW is different from the con-
ventional one since it is hard to acquire the channel state
information (CSI) at these frequencies. For this reason,
codebook-based beamforming has been recently pro-
posed as an efficient method to reduce the dependency on
CSI estimation/feedback (for detailed literature review,
see Section II). Several works have been presented
on both physical layer and procedural algorithms of
codebook-based beamforming. However, in these works
either the algorithms are designed for special metrics,
precoding/combining schemes and channel models or
the implementation complexity grows significantly by an
increasing number of BSs/users. Moreover, the running
delay of the algorithm has been rarely considered in
the performance evaluation. On the other hand, generic
machine learning-based schemes have been recently
proposed for IA which can be effectively applied for
different channel models with acceptable implementation
complexity.

In this paper, we study the effect beam refinement on
the performance of MMW networks. The contributions
of the paper are three fold. 1) We extend our previously
proposed genetic algorithm (GA)-based beamforming
approach to include beamforming at both the transmitter
and receiver side. Also, 2) we compare different ma-
chine learning based analog beamforming approaches
for the beam refinement during IA, including GA-based
beamforming, Tabu search beamforming [4], link-by-
link beamforming [5] and two-level codebook beam-
forming [6] [7] in large-but-finite multi-user multiple-
input-multiple-output (MU-MIMO) MMW communica-
tion systems. Moreover, 3) we analyze the effect of var-
ious parameters such as the number of transmit/receive



antennas, total power budget and the power amplifier
(PA) efficiency on the network performance. As opposed
to the literature we take the algorithm running delay
into account. Thus, there is a trade-off between finding
the optimal beamforming matrices and reducing the data
transmission time slot, and the highest throughput may
be achieved by few iterations, i.e., a rough estimation
of the optimal beamformer. We study the system per-
formance in terms of the end-to-end throughput with
service outage constraints as well as the implementation
complexity. 4) Furthermore, we evaluate and compare
the performance of the considered algorithms under
various mobile speed of the users.

Our results demonstrate that the running delay of
the algorithms and power amplifier inefficiency affect
the system performance remarkably, which should be
carefully considered in the system design. Moreover,
our proposed GA-based approach outperforms the con-
sidered state-of-the-art schemes, in terms of throughput,
and reaches (almost) the same result as in the exhaustive
search based approach with fewer number of iterations.
Furthermore, when taking the user mobility into ac-
count, the GA-based approach can remarkably reduce
the algorithm running delay based on the beamforming
results in the previous time slots. Thus, the GA-based
beamforming approach can be an appropriate candidate
for IA in future wireless networks.

II. LITERATURE REVIEW

In this part, we present some related research work
on IA. The reader mainly interested in technical details
can skip this section and go to Sections III-V where
we present the system model, the algorithm descriptions
and the simulation results, respectively. Beamforming
techniques at MMW bands have been considered in stan-
dard developments IEEE 802.15.3c (TG3c) [8], IEEE
802.11ad (TGad) [9] and ECMA-387 [10]. The problem
formulation for IA beamforming at MMW frequencies
are introduced in [11] where a fast-discovery hierarchical
search method is proposed. Moreover, several design
options for MMW IA are presented in [12], where the
basic steps in the 3rd Generation Partnership Project
(3GPP) Long Term Evolution (LTE) standard are used
as references, and the overall delay of each design
option as a function of the system overhead is evaluated.
Then, [13] compares three approaches, namely, exhaus-
tive search, two-step and context information-based, in
terms of miss-detection probability and discovery time.
Another comparison work is presented in [14], where
it is shown that different IA protocols have a trade-off
between delay and average user-perceived throughput.

In [15], we introduce a genetic algorithm-based initial
beamforming approach and evaluate the effect of the
algorithm running delay on the network performance.
There are also previous works using the GA-based
selection approach in different communication networks.
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Fig. 1. MMW multiuser MIMO system model.

For instance, in [16] an efficient scheduling scheme is
designed based on the genetic algorithm in the return-
link of a multi-beam satellite system. A turbo-like beam-
forming scheme based on the Tabu search algorithm is
proposed in [4] to reduce both searching complexity
and system overhead. A concurrent beamforming pro-
tocol, which we refer to as link-by-link beamforming,
is presented in [5] to achieve high capacity in indoor
MMW networks. Finally, for multi-stage beamforming,
a tree-structured multi-level beamforming codebook is
designed for MMW wireless backhaul systems in [6].
Also, in [7], a low-complexity multi-stage codebook is
designed to support the IEEE 802.15.3c protocol.

III. SYSTEM MODEL

We consider a MU-MIMO setup with M transmit
antennas at a BS and τ multi-antenna users, each with β
antennas. As a result, there are N = τ×β total antennas
at the receiver side (see Fig. 1). This is an extension of
our work [15] with single receive antennas, and allows
for beamforming at the receiver side. We assume that
each user has perfect receiver CSI. We set M > N . At
each time slot t, the aggregated received signal vector
Y(t) at time t over the users after receive beamforming
can be described as

Y(t) =

√
P

M
U(t)HH(t)V(t)X(t) + Z(t), (1)

where P is the total power budget, H(t) ∈ CN×M is
the channel matrix with the (i, j)th element given by
Hi,j(t) = dγi,jhi,j(t), where di,j is the distance between
the receiver antenna i and the transmitter antenna j and
γ is a path loss parameter, and hi,j(t) denotes the small
scale fading. X(t) ∈ CM×1 is the intended message
signal, V(t) ∈ CM×M is the precoding matrix at the BS,
U(t) ∈ CN×N is the aggregated combining matrix at the
users’ side, and Z(t) ∈ CN×1 denotes the independent
and identically distributed (IID) Gaussian noise matrix.
For simplicity, we drop the time index t in the following.

Furthermore, the channel model H is described as

H =

√
k

k + 1
HLOS +

√
1

k + 1
HNLOS, (2)

where HLOS and HNLOS denote the line-of-sight (LOS)
and the non-line-of-sight (NLOS) components of the



Fig. 2. Schematic of a packet transmission period.

channel, respectively, and the NLOS component is as-
sumed to follow a complex Gaussian distribution. Also,
k controls the relative strength of the LOS and the NLOS
components. In (2), setting k = 0 represents an NLOS
condition while k → ∞ gives an LOS channel. We
use this model because most cases in MMW systems
have the LOS channel. Note that there are additional
simulation results with different settings of k in [15]
assuming single antenna users.

A. Initial Beamforming Procedure

Unlike a conventional beamforming procedure ac-
quiring CSI, in MMW systems we suggest to perform
codebook-based beamforming, which means selecting
a precoding matrix V out of a predefined codebook
WT at the BS while selecting a combining matrix
U out of a predefined codebook WR at the receiver
side, sending test signal and finally making decisions
on transmit/receive beam patterns based on the users’
feedback about their performance metrics. The IA will
be finished as soon as a stable control link is established.
The time structure for a packet transmission can be seen
in Fig. 2, where part of the packet period is dedicated to
design appropriate beams and the rest is used for data
transmission. Thus, we need to find a balance between
the beam design delay and the data transmission period
by choosing an efficient approach.

Here, we use discrete fourier transform (DFT)-based
codebooks [17] at both sides which are defined as

WT = {w(m,u)} = {e−j2π(m−1)(u−1)/Nvec},
m = 1, 2, . . . ,M, u = 1, 2, . . . , Nvec, (3)

for the BS, while

WR = {w(n, u)} = {e−j2π(n−1)(u−1)/Nvec},
n = 1, 2, . . . , N, u = 1, 2, . . . , Nvec, (4)

for the users, where Nvec ≥ max(M,N) is the number
of codebook vectors.

B. Performance Metrics

The machine learning based schemes of [4]-[7] and
[15] are generic, in the sense that they can be im-
plemented for different metrics. For the simulations,
however, we consider the service outage-constrained
end-to-end throughput, the complexity and the average
number of required iterations as the system performance
metric. In some scenarios, it may be required to serve
the users with some minimum required rates, otherwise

service outage occurs. In the K-th iteration round of
the algorithm, the service outage-constrained end-to-end
throughput in bit-per-channel-use (bpcu) is defined as

R(K) = (1− αK)

τ∑
i=1

rKi U(rKi , log2(1 + θ)),

rKi = log2

(
1 + SINRKi

)
,

U(rKi , log2(1 + θ)) =

{
1 rKi ≥ log2(1 + θ)
0 rKi < log2(1 + θ).

(5)

Here, rki denotes the achievable rate of the user i at the
end of the K-th iteration. Also, parameter α is the rela-
tive delay cost for running each iteration of the algorithm
which fulfills αNit < 1 with Nit being the maximum
possible number of iterations. Then, log2(1 + θ) is the
minimum per-user rate while θ represents the minimum
required signal-to-interference-plus-noise ratio (SINR)
of each user. Also,

SINRKi =
P
M gKi,i

BN0 + P
M

∑N
i 6=j g

K
i,j

(6)

is the SINR at the receiver of user i in the iteration
round K. Here, gi,j is the (i, j)-th element of the matrix
GK = |UHKHVK |2 which is referred to as the channel
gain throughout the paper. Moreover, B is the system
bandwidth and N0 is the power spectral density of the
noise. We set BN0 = 1 to simplify the system so that
the power P (in dB, 10 log10 P ) denotes the receiver side
SNR as well.

The optimization problem of (5) is formulated as

max
K,U,V

R(K)

s.t. ∀K ∈ {1, 2, 3, ..., Nit}
∀V ⊆WT

∀U ⊆WR.

(7)

As opposed to, e.g., [5, Eq. 3], [12, Eq. 1], [18, Eq.
43], [19, Eq. 3], [20, Eq. 5]and [21, Eq. 5], we consider
the algorithm running delay in the performance analysis.
As seen in the following, there is a trade-off between
optimizing beamforming matrices and reducing the data
transmission period. In this case the optimal solution
may be achieved by running the algorithms for a limited
number of iterations.

C. On the Effect of Power Amplifier Efficiency

The efficiency of the radio-frequency high Power
Amplifier (PA) should be taken into consideration in the
multi-antenna systems. Here, we consider the state-of-
the-art PA efficiency model [22, Eq. 13], [23, Eq. 3]

ρcons =
ρµmax

ε× ρµ−1out
(8)

where ρcons, ρout, ρmax refer to as the consumed power,
the output power and the maximum output power of the
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PA, respectively. Also, ε ∈ [0, 1] represents the power
efficiency and µ ∈ [0, 1] is a parameter depending on
the PA class. Setting ε = 1, Pmax =∞ and µ = 0 in (8)
represents the special case (with an ideal PA).

D. On the Effect of User Mobility

Beamforming solutions for mobile users at high car-
rier frequencies are important in 5G wireless mobile
communications. Here, we use the following mobility
model to evaluate the performance of our proposed GA-
based beamforming approach and compare the results
with those of the considered state-of-the-art schemes.
Consider Fig. 3 with τ = 4 multiple-antenna users. Here,
we have two cases during the users’ mobility:

- Case 1 Beam refinement with a random queen as
initial guess (dash-line circles in Fig. 3)

- Case 2 Beam refinement with using the queen in
Case1 as initial guess (full-line circles in Fig. 3)

By mobility we exploit the spatial correlation by setting
the queen of the previous time slot as one of the initial
guesses of the next time slot. We assume that we know
the moving speed vm, the time duration of mobility tm
so that we can get an estimate of the user position in a
circle whose radius is found by vm × tm in Case 2.

IV. ALGORITHM DESCRIPTION

In this study, we compare the performance of different
IA beamforming methods as follows.

Extended GA-based Search [15]: The algorithm
starts by making L possible beam selection sets at
both transmitter and receiver, i.e., submatrices of each
codebook. During each iteration, we choose the best
set, named as the Queen, based on the performance
metrics (for example, (5)). Next, we keep the Queen and
regenerate S < L similar sets around the Queen by mak-
ing small changes to the Queen (in the simulations, we
replace 10% of the Queen columns randomly). Finally,
the other L− S − 1 beamforming matrices are selected
randomly to avoid the algorithm from being trapped in
a local minima. After Nit iterations (set by designer),
the Queen is returned as the beam selection result in the

current time slot. In this way, this is an extended version
of our GA-based approach with beamforming at both the
transmitter and the receiver, the basic principles of which
can be found in [15].

Tabu Search [4]: The Tabu-search approach follows
the basic idea as in the GA-based scheme [4] where
we choose and update the Queen by iterations. The
only difference is the evolution method of the Queen in
successive iterations. With Tabu, we use the definition of
neighborhood in [4]: One matrix A is defined as another
matrix B’s neighborhood if 1) A has only one different
column compared with B or 2) the index difference
between the two corresponding columns in A and B is
equal to one. To make S beam selection sets, we change
the queen from previous round to its neighbors.

Link-by-link Search [5]: In this strategy, the beam
design of τ users is not optimized simultaneously. In-
stead, with a greedy approach, the beamforming solution
is settled user-by-user by considering the interference
from the other τ − 1 links. The system performance
improves in successive iterations until it converges to
some (sub)optimal beamforming rules.

Two-level Search [6][7]: Being inspired by multi-
stage beamforming techniques, e.g., [6] and [7], we de-
sign a two-level-codebook search scheme for our system.
In the first level, the BS transmits messages over wider
sectors using the codebook with Nvec/2 columns, while
in the second level it searches the optimal solution within
the best such sector by steering narrower beams with an
Nvec-column codebook.

A. On the Implementation Complexity

To compare different methods, it is necessary that
we consider the implementation complexity of each
algorithm. For this reason, we derive the per-iteration
complexity of different algorithms based on the fact that
the product of matrices of size N ×M and M ×M has
the complexity O(NM2) in MATLAB. In this way, the
per-iteration complexity for the GA-based approach is
given by

CGA = L(2O(N2M) +O(NM2) +O(NM)), (9)

and CTabu = CGA, Clink-by-link = τ × CGA, Ctwo-level =
2×CGA. L is the number of beam selection sets within
each iteration.

V. SIMULATION RESULTS

In the simulations, we use the channel model in (2) in
the cases with k = 0, 3. We set HLOS = 1N×M where
1a×b refers to normalized all-ones complex matrix. Ex-
cept for Fig. 4 which shows an example of the GA-
based procedure, for each point in the curves the results
are obtained by averaging over 104 different channel
realizations. In all figures, we set Nit = 1000 since it
is a sufficiently large number of iterations after which
no performance improvement is observed. Also, in all
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Fig. 4. Examples of the convergence process of the extended GA-
based beamforming for systems with (subplot a) and without (subplot
b) delay costs of the algorithm. M = 32, τ = 4, N = 12, P = −10
dB, k = 0.

figures except for fig. 9, we use the normalized distance
di,j = d = 1. Moreover, we set L = 10, S = 5
and Nvec = 128. In all figures, except for Fig. 7, we
use the ideal PA, i.e., set Pmax = ∞, µ = 0, ε = 1
in (8). In Fig. 7 we study the effect of imperfect PAs.
In Figs. 4-8, we consider the service outage-constrained
end-to-end throughput (5) as the performance metric
with θ = −4 dB. Finally, Table I shows the average
number of required iterations in each algorithm to reach
the (sub)optimal solution.

On the convergence behavior: Figures 4a and 4b
give examples of the GA performance in the cases
with (α = 0.001) and without costs of running the
algorithm (α = 0), respectively (see (5)). From Fig.
4a we observe that very few iterations are required to
reach the maximum throughput. That is, considering the
cost of running the algorithm, the maximum throughput
is obtained by finding a suboptimal beamforming matrix
and leaving the rest of the time slot for data transmission
(see Fig. 2). On the other hand, as the number of
iterations increases, the cost of running the algorithm
reduces the end-to-end throughput converging to zero at
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Fig. 5. Service outage-constrained end-to-end throughput of different
methods. M = 32, τ = 4, N = 12, k = 0, α = 0.

K = 1
α (see (5)).

If there is no running delay, on the other hand, the
system performance improves with the number of itera-
tions monotonically (Fig. 4b). However, the developed
algorithm leads to (almost) the same performance as
the exhaustive search-based scheme with very limited
number of iterations. For example, with the parameter
settings of Fig. 4b, our algorithm reaches more than 90%
of the maximum achievable throughput with less than
100 iterations. Note that with the parameter settings of
Fig. 4, exhaustive search implies testing in the order of
1030 possible beamforming matrices.

Finally, all considered schemes follow the same
ladder-type convergence behavior as in Fig. 4. This
is because with the considered algorithms the system
performance is not necessarily improved in each itera-
tion and may be trapped into local minima. However,
considering a couple of random solution checks in each
iteration helps to avoid the local minima as the number
of iterations increases.

Comparison of different schemes: In Fig. 5, we com-
pare the throughput (5) reached by different considered
algorithms. It can be seen from the figure that for a broad
range of SNRs the GA-based beamforming [15] leads to
the best system throughput, followed by the link-by-link
search [5], Tabu search [4] and two-level search [6], [7].

Moreover, using the same parameter settings of Fig. 5,
in Fig. 6 we compare the cumulative distribution function
(CDF) of per-user throughput (5) reached by different
considered algorithms. From the figure we can see that
the GA-based beamforming [15] leads to the best per-
user throughput distribution, which means more user can
be served by higher throughput, followed by the link-by-
link search [5], Tabu search [4] and two-level search [6],
[7].

Table I shows the average number of iterations N̄
that are required in each scheme to reach a (sub)optimal
solution. Here, the results are presented for k = 0,M =
32, N = 4, 8, 12. We can see that in all methods, except
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TABLE I
AVERAGE NUMBER OF REQUIRED ITERATIONS N̄ IN DIFFERENT

SITUATIONS

M/N GA Tabu link-by-link two-level
32/12 502 498 307 501
32/8 500 501 288 498
32/4 488 502 261 500
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Fig. 7. The effect of power budget and PAs efficiency on the end-to-
end throughput (5). M = 32, τ = 4, N = 12, k = 0, α = 0.

for the link-by-link approach, the required number of
iterations is almost insensitive to the number of receive
antennas.

On the effect of imperfect power amplifier: Figure
7 evaluates the effect of the power amplifier on the
throughput (5). We can see that the inefficiency of the
PA affects the performance remarkably but this effect
decreases with the SNR. This is reasonable because
the effective efficiency of the PAs εeffective = ε( pout

pmax
)µ

increases with SNR.
On the effect of the number of receive antennas:

Figure 8 shows the effect of number of receive antennas
per user β on the throughput (5). As seen in the figure,
the end-to-end throughput increases with the number of
per-user antennas as expected, since multi-antenna tech-
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Fig. 8. Throughput (5) with different number of receive antennas at
the user side β. M = 32, τ = 4, β = 1, 2, 3, 4, k = 3, α = 0,
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niques can improve the data rate remarkably. Moreover,
the relative performance gain of the GA-based scheme,
compared to other considered schemes, increases with
the number of receive antennas, which is an interesting
point when designing large-scale networks.

On the effect of the user mobility: Figure 9 shows
the effect of the users’ mobility on the beam refinement
delay for the considered algorithms. Inspired by [13], we
evaluate the beam refinement delay (we assume that each
iteration takes 10−4 overhead of tm) of each algorithm
in Case 1 and Case 2 to check how well these algorithms
are suitable for the mobile users. The algorithm running
delays in Case 1 and Case 2 of each method are all
presented in the plot. Here, the results are presented
with M = 32, τ = 4, β = 2, k = 0, α = 0,
P = 32 dB, moving time tm = 1 ms, γ = −3.5. As
seen in the figure, both the GA-based algorithm and the
Tabu-based algorithm can remarkably reduce the beam
refinement delay for a broad range of users speeds, since



they can use the beam refinement solution in Case 1 as
the initial guess in Case 2 when the moving distance
is not large. However, as the users speed increases
the beam refinement delay increases slightly, intuitively
because the spatial correlation between the positions in
successive time slots decreases. Moreover, both the link-
by-link search and the two-level-based search do not
show noticeable performance gain.

VI. CONCLUSION

We extended our previously proposed genetic algo-
rithm (GA)-based beam refinement scheme to include
beamforming at both the transmitter and the receiver,
and we compared the performance with alternative beam
refinement algorithms in an MU-MIMO system, in terms
of the service outage-constrained end-to-end throughput
and the implementation complexity. Particularly, our
extended genetic algorithm-based scheme can reach al-
most the same throughput as in the exhaustive search-
based approach with relatively few iterations in delay-
constrained systems. Also, compared to the considered
state-of-the-art schemes, our scheme leads to the high-
est throughput/per-user throughput and the lowest per-
iteration implementation complexity, and the relative
performance gain increases with the number of receive
antennas. Moreover, non-ideal power amplifiers affect
the system performance remarkably, which should be
carefully considered during the system design. Finally,
the GA-based approach can exploit the spatial correlation
and remarkably reduce the beam refinement delay for
a broad range of users speeds, which means it is an
appropriate approach for mobile users. As future work,
we will investigate our proposed algorithm with more
realistic parameter settings/scenarios, and compare the
result with other structured beamforming methods.
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