
Boundary objects in agile practices: Continuous management of systems
engineering artifacts in the automotive domain

Downloaded from: https://research.chalmers.se, 2025-06-18 03:25 UTC

Citation for the original published paper (version of record):
Wohlrab, R., Pelliccione, P., Knauss, E. et al (2018). Boundary objects in agile practices: Continuous
management of systems engineering artifacts in
the automotive domain. ACM International Conference Proceeding Series: 31-40.
http://dx.doi.org/10.1145/3202710.3203155

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)

Boundary Objects in Agile Practices: Continuous Management
of Systems Engineering Artifacts in the Automotive Domain

Rebekka Wohlrab
Chalmers | University of Gothenburg

Systemite AB
Gothenburg, Sweden
wohlrab@chalmers.se

Patrizio Pelliccione
Eric Knauss

Chalmers | University of Gothenburg
Gothenburg, Sweden

{patrizio.pelliccione,eric.knauss}
@cse.gu.se

Mats Larsson
Systemite AB

Gothenburg, Sweden
mats.larsson@systemite.se

ABSTRACT
Automotive companies increasingly include proven agile methods
in their plan-driven system development. The adoption of agile
methods impacts not only the way individuals collaborate, but also
the management of artifacts like requirements, test cases, safety
documentation, and models. While practitioners aim to reduce un-
necessary documentation, there is a lack of guidance for automotive
companies with respect to what artifacts are needed and how to
manage them. To close this knowledge gap and create practical
guidelines, we conducted a design-science study together with 53
practitioners from six automotive companies. Using interviews,
surveys, and focus groups, we analyzed categories of artifacts and
practical challenges to create applicable guidelines to collabora-
tively manage artifacts in agile automotive contexts. Our findings
indicate that different practices are required to manage artifacts that
are shared among different teams within the company (boundary
objects) and those that are relevant within a specific team (locally
relevant artifacts).

CCS CONCEPTS
• Software and its engineering→ Software developmentmeth-
ods; Agile software development; Documentation; Collaboration in
software development;

KEYWORDS
Agile systems engineering, empirical software engineering, large-
scale agile, documentation

ACM Reference Format:
Rebekka Wohlrab, Patrizio Pelliccione, Eric Knauss, and Mats Larsson. 2018.
Boundary Objects in Agile Practices: Continuous Management of Systems
Engineering Artifacts in the Automotive Domain. In ICSSP ’18: International
Conference on the Software and Systems Process 2018 (ICSSP ’18), May 26–
27, 2018, Gothenburg, Sweden. ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/3202710.3203155

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICSSP ’18, May 26–27, 2018, Gothenburg, Sweden
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-6459-1/18/05. . . $15.00
https://doi.org/10.1145/3202710.3203155

1 INTRODUCTION
The agile paradigm has been in the focus of research for many years
and is becoming more widely adopted in industry [7]. Based on
benefits and success in software development, the agile paradigm
has also been applied to systems engineering and product develop-
ment contexts in several domains [13]. As it has become apparent
that companies in competitive markets need to adopt cost-effective
practices and flexibly react to change, the automotive industry also
aims to improve agility and flexibility on system level [8]. However,
besides the growing system complexity, the importance of safety,
and a plethora of variants, also knowledge management has been
reported a challenge in automotive software engineering [4, 8].

This knowledge is often represented in artifacts like require-
ments, test cases, and architecture models. We refer to these arti-
facts as systems engineering artifacts in this paper. When adopting
agile methods and aiming to become more efficient, practitioners in-
tend to reduce unnecessary documentation and improve knowledge
management [14, 25].

However, finding the ‘right’ amount of documentation in agile
projects is challenging [30]. To support practitioners in large-scale
agile contexts, Dingsøyr et al. advocated more research on inter-
team coordination and knowledge sharing and “case studies to pro-
vide industry practitioners with research-based advice” [6]. There
is a lack of guidance for automotive companies with respect to what
documentation is needed in agile automotive contexts and how to
manage this documentation in large-scale agile organizations [16].

In this paper, we seek to create guidelines for the management of
systems engineering artifacts in agile automotive contexts based on
an understanding of challenges and practices to manage artifacts.
In this context, we are interested in understanding what typical
relevant artifacts are and what they are used for. Concretely, we
aim to get this understanding by answering the following research
questions:

RQ1:What are practices to manage artifacts in agile automotive
systems engineering?

RQ2: What practical challenges exist with managing systems
engineering artifacts in agile automotive contexts?

Based on these findings regarding practices and challenges, we
developed guidelines for practitioners to manage systems engineer-
ing artifacts in several iterations.

In our study, we relied on the concept of “boundary objects” [33],
i.e., artifacts used across boundaries between several groups in an

31

https://doi.org/10.1145/3202710.3203155
https://doi.org/10.1145/3202710.3203155
https://doi.org/10.1145/3202710.3203155

ICSSP ’18, May 26–27, 2018, Gothenburg, Sweden Wohlrab et al.

organization. This was done to focus the interviews on artifacts rel-
evant for several groups and identify what guidelines are applicable
to manage such artifacts.

We conducted a design-science study [12] with six automotive
companies that are aiming to become more agile and reduce unnec-
essary documentation. In this design science study, we iteratively
created and evaluated guidelines for the continuous management
of systems engineering artifacts. Besides a review of related work,
we conducted a case study to explore artifacts, practices, and chal-
lenges. We developed and evaluated guidelines in several iterations,
using focus groups, interviews, and a questionnaire.

The participating companies were four automotive OEMs, an
automotive supplier, and a supplier of an information management
tool used in the automotive domain. The participants were 53 ex-
perts with various backgrounds and 41 anonymous questionnaire
respondents.
Contributions: Our contributions are (i) an analysis of artifacts
and practices, (ii) a catalog of challenges, and (iii) guidelines to
manage systems engineering artifacts.

Our findings indicate that artifacts that are only relevant within
one team should be created only when they are actually needed. In
contrast, boundary objects should be created upfront with a light-
weight approach to allow for early impact analysis and decision
making. Our guidelines address several practical challenges, e.g.,
degradation of artifacts and collaboration across different locations.
We expect the guidelines to be applicable to automotive or even gen-
eral systems engineering, but future studies are needed to examine
their generalizability.

The remainder of this paper is structured as follows: We present
related work in Section 2. Participating companies are described
in Section 3 and our research method is presented in Section 4.
Section 5 presents our findings. Each of its subsections ends with a
discussion. Table 3 shows an overview of our findings which are
discussed with conclusions and future work in Section 6.

2 RELATEDWORK
Several studies have analyzed the role of communication in agile
practices, concluding that while intra-team communication im-
proved when transitioning to agile, coordination between teams
is challenging [26]. Hummel et al. motivated the need for differ-
ent communication modes in distributed agile teams, especially
if knowledge needs to be retained for maintenance reasons [14].
Other findings indicate that agile methods can facilitate knowl-
edge sharing in a team, but documentation cannot be replaced
completely [18].

Bass examined artifact inventories in large-scale agile develop-
ment, and concluded that “there are no agile ceremonies specifically
designed to create and refine any of these artifacts”, which are es-
pecially needed to coordinate cooperating teams [1]. Our paper
works towards closing this gap by designing guidelines to manage
artifacts, also across team borders.

Rüping [30] listed typical artifacts required in agile contexts, but
stated that it is challenging to elicit documentation requirements
and identify the right amount of documentation. The need for more
“research on methods and tools that facilitate agile documentation”
has been proclaimed [35].

Heldal et al. [11] presented a classification of models: Descriptive
artifacts “describe a subject that already exists”, either implicitly in
the modeler’s mind (an idea of the future architecture) or explicitly
(e.g., representing an already running system). Prescriptive artifacts
are used to create a subject that does not exist yet, e.g., models used
for code or artifact generation. We consider this classification in
our study, and broaden the scope to other artifacts.

The underlying concepts of this study have been influenced by
coordination theory, concerned with the management of depen-
dencies between activities [21]. This is often supported by shared
resources and various artifacts. The focus on genre repertoires helps
understand communication in various (often distributed) commu-
nities and how it changes over time [24]. In our study, we discuss
the concept of boundary objects [33] to focus discussions on arti-
facts that can be used to collaborate between different teams. This
concept was initially coined by Star and Griesemer [33]. There
exist several case studies related to boundary objects, e.g., related
to architectural descriptions as boundary objects in agile systems
engineering and requirements for their creation [25]. Blomkvist
et al. [2] focused on how boundary objects can be leveraged in
distributed agile user-centered design. They concluded that in dis-
tributed teams, boundary objects can facilitate communication.

In this paper, we focus on the automotive domain which comes
with several challenges. These challenges are connected to knowl-
edge management [4], traceability and scattered information [28],
variability, and compliance with several standards. Diebold et al. [5]
concluded that it is possible to combine agile methods with Auto-
motive SPICE compliance, but that there still exist open challenges
and a need for guidelines, e.g., with respect to architecture docu-
mentation. Our study aims to address these challenges and develop
practical guidelines to support practitioners with the management
of systems engineering artifacts.

3 INVOLVED COMPANIES AND
PARTICIPANTS

This section presents the companies and participants involved in
our study.

Company A, which participated in our exploratory case study,
is an automotive manufacturer with more than 15,000 employees.
The study came into place because we were asked for support with
the continuous management of artifacts. The top-level organization
follows the V-model process. Whereas some software development
teams moved to agile development three years ago, other depart-
ments started the transition about a year ago. In one department,
the SAFe framework is followed [19]. In another department, an
adapted form of Scrum [31] has been used for about three years. It
is a large-scale software development context with several dozen
cross-functional teams collaborating across at least five locations.

Companies B, C, and E are automotive OEMs and Company
F is an automotive supplier. We included different companies to
validate our findings and get diverse perspectives on the continuous
management of artifacts. Whereas in Company B, the transition
to agile practices has been finalized several years ago, the other
companies face very similar situations as Company A: Parts of
the organizations still work in a plan-based way while especially

32

Boundary Objects in Agile Practices ICSSP ’18, May 26–27, 2018, Gothenburg, Sweden

Table 1: Participants with companies, roles, and experience

No. Company Role Experience

1 A Logical architect > 20 years
2 A Chief architect > 17 years
3 A Product owner > 15 years
4 A Requirements manager 19 years
5 A Process manager > 25 years
6 A Team leader (functional dev.) 17 years
7 A Product owner 15 years
8 A Scrum master > 2 years

9 B Software architect 9 years
10 C Systems architect ∼ 20 years
11 D Chief Technical Officer > 30 years

12–28 E & F Testers 1–30 years
29–53 E & F Software developers/engineers 1–30 years

inside of development teams, agile practices are common. The most
commonly followed agile method in these companies is Scrum.

Company D is a supplier of an information management tool
used in the automotive domain, supporting customers in determin-
ing what artifacts to capture in the tool and customizing the tool
accordingly. The interviewee was selected to validate the findings
because of his experience and insights that went beyond the scope
of a single automotive company.

Table 1 gives an overview of our 53 participants in interviews
and focus groups with their companies, roles, and the years of expe-
rience with systems engineering. Additionally, our study involved
41 anonymous questionnaire respondents.

4 RESEARCH METHOD
We followed a design-science approach [12]. Figure 1 shows our
methods and our contributions to the knowledge base of agile in-
formation management. Our contributions are practices to manage
artifacts, challenges, as well as guidelines to manage systems en-
gineering artifacts in agile automotive contexts. Our guidelines
provide principles and advice to create, maintain, and use artifacts.

The following sections present our research method in further
detail. We discuss threats to validity in Section 4.4.

4.1 Understand Environment
We explored the environment from a research perspective by re-
viewing and discussing related work (see Section 2). We conducted

Figure 1: Overview of our design-science research approach

an informal literature review to inform our study, searching system-
atically for literature on themanagement of documentation/artifacts
in large-scale agile software engineering. As we were unable to find
guidelines for practitioners concerning the management of artifacts,
we decided as a first step to extend the body of knowledge with
an exploratory case study, collecting participants’ experiences and
discerning guidelines based on emerging themes in the qualitative
data. We focused on Company A to get an in-depth understanding
of artifacts, practices, and challenges. Over a period of 14 weeks, we
conducted semi-structured interviews with participants 1–8, who
are involved in agile initiatives or chosen because of their in-depth
knowledge of agile methods and systems engineering artifacts. We
used an interview guide1 with open-ended and specific questions.
The length of the interviews was between 45 and 80 minutes, with
an average of 60 minutes.

We recorded and transcribed the interviews and followed Cres-
well’s analysis approach for qualitative data [3]. We created an
analysis guide with a detailed explanation of our analysis method2.
We systematically coded the data using an editing approach [29],
which involved the creation of new codes and constant revision,
merging, and splitting of codes. We then discussed relations be-
tween codes and arrived at themes to report on.

4.2 Develop/Build
In this phase, we elicited and developed guidelines. The first ideas
for potential guidelines were elicited based on our case study find-
ings and our literature review.We then organized a focus group [34]
of about two hours to discuss initial findings. The participants
included two representatives from industry and two senior re-
searchers with several years of experience with agile methods and
documentation. We first presented practices, challenges, and ini-
tial ideas for guidelines. We then asked the participants to discuss
the guidelines’ comprehensibility, consistency, and completeness.
The guidelines were refined and interdependencies and relations
to challenges were discussed in several iterations. Another discus-
sion point were the implications and relevance for researchers and
practitioners. As an outcome of the focus group, the findings were
grouped and structured as in Table 3.

4.3 Justify/Evaluate
This phase was concerned with the validation and refinement of our
findings. Two focus groups of about 1.5 hours were organized with
Companies E and F. Complementing the selection of interviewees in
the case study, we set up one focus groupwith 17 testing experts and
one with 25 software developers and engineers. First, we presented
the identified artifacts, practices, and challenges. We then discussed
the guidelines to understand differences between companies and
their transitions to agile.

Additionally, we conducted interviews of 45 minutes with par-
ticipants 9–11. We started with a short presentation. We asked the
interviewees whether they agreed with the findings, whether any
information was missing, and what conclusions or implications
they thought of.
1https://www.dropbox.com/s/uprp1a4e373bdt2/interview_guide_syseng_artifacts.
pdf
2https://www.dropbox.com/s/t2gj5w4w38qx0u5/analysis_guide_syseng_artifacts.
pdf

33

https://www.dropbox.com/s/uprp1a4e373bdt2/interview_guide_syseng_artifacts.pdf
https://www.dropbox.com/s/uprp1a4e373bdt2/interview_guide_syseng_artifacts.pdf
https://www.dropbox.com/s/t2gj5w4w38qx0u5/analysis_guide_syseng_artifacts.pdf
https://www.dropbox.com/s/t2gj5w4w38qx0u5/analysis_guide_syseng_artifacts.pdf

ICSSP ’18, May 26–27, 2018, Gothenburg, Sweden Wohlrab et al.

Finally, we prepared an anonymous questionnaire to gather quan-
titative data. The questionnaire3 included Likert scale questions [20]
in order to measure to what degree practitioners agreed with the
findings. The questionnaire included an explanatory video of about
5 minutes about main findings, terminology, and concepts. We sent
the questionnaire to all participants and additional contacts from
the automotive domain. We received 41 answers, filtered out the
ones that only answered demographic questions on the first page,
and used 31 responses for analysis.

4.4 Threats to Validity
We consider six validity threats in qualitative research, as presented
by Maxwell [22]:

Descriptive Validity:We used transcripts and notes to analyze
our participants’ responses. The transcripts did not allow us to
analyze the tone of voices, which might influence the meaning. To
mitigate this, we captured timestamps that allowed us to revisit the
recordings in case of unclear statements. Moreover, we contacted
all participants to validate our findings using a questionnaire.

Interpretative Validity: To improve interpretative validity, we
tried to establish a common terminology, use the interviewees’
wording, and begin focus group sessions with presentations to
explain the context of the study. We used paraphrasing during the
interviews to resolve unclarities. However, we had to translate some
interviews from Swedish to English which might have influenced
our interpretation.

Theoretical Validity: To mitigate bias and preconceptions de-
veloped during the study, we critically discussed our findings with
other researchers. We also thoroughly evaluated our findings using
the methods described in Section 4.3.

Researcher Bias: The researchers’ background, values, and pre-
conceptions influence the conclusions of any qualitative study. A
thorough evaluation of our findings helped to mitigate this threat.
We included a diverse sample of participants in order to get different
perspectives on the topic.

Reactivity: It is difficult to avoid the researchers’ influence on
participants and the setting of the study [22]. Many influencing
factors exist, e.g., the way questions are phrased and intoned. We
tried to mitigate this threat by trying to formulate the questions as
unbiased as possible. The interview guide was reviewed to rephrase
ambiguous questions.

Generalizability: We conducted our study together with more
than 50 participants from six companies. As our design-science
approach consists of several phases, the participants were involved
in different parts of the data collection. Validating our guidelines in
several steps with various automotive companies helps to mitigate
threats to generalizability. We expect our findings to be transferable
to other industries, especially in large-scale agile contexts. However,
dedicated studies are needed for this purpose, as will be discussed
in Section 6.

5 FINDINGS
In our study, we endeavor to understand practices and challenges
of the continuous management of systems engineering artifacts
and facilitate the management by designing guidelines. The data
3https://www.dropbox.com/s/3t17e341r8mj0ch/questionnaire_syseng_artifacts.pdf

was initially collected in the exploratory case study with Company
A, and confirmed by participants of other companies. In this sec-
tion, we present artifacts and practices (Section 5.1), challenges
(Section 5.2), and designed guidelines for practitioners (Section 5.3).
Each subsection ends with a discussion of the findings with re-
lated work. Table 3 provides an overview of all findings with their
implications and discussed related work.

5.1 Artifacts and Practices (RQ1)
This section answers RQ1: What are practices to manage artifacts
in agile automotive systems engineering?

We found that the scope and role of artifacts have a vast impact
on how they are created, used, and managed. In this study, we
discuss artifacts from the perspective of a team in an organization
and its collaboration with other teams. Table 2 gives an overview
of artifacts, current practices, the main effort of managing them,
their relevance and role, and the involved organizational areas. It
should be noted that in the interviews, we did not discuss concrete
instances of artifacts, but rather talked about general concepts
and types. However, in some cases, interviewees also mentioned
concrete documents or instances.

5.1.1 Architecture Models and Descriptions. The architecture
was considered especially important by our interviewees because
it gives stakeholders an understanding of the big picture of the
system, and facilitates communication:

“If someone wants to get the full picture, then it’s impossible to
not have some kind of understanding how things are working,
how things are coupled and connected. [...] And that’s why the
architecture is so important [...], to communicate about the prod-
uct.” (Logical architect)

Some departments use a systems engineering tool to store the
architecture in a model, whereas text descriptions are common in
other departments. Company A struggles with capturing a model
of the high-level architecture and managing it as a living docu-
ment. It is partly due to distributed departments that store infor-
mation in heterogeneous ways. The consequence of not having an
architecture model is architecture degradation, which is difficult to
counteract.

5.1.2 High-level Requirements. Requirements were mentioned
by all interviewees. Parts of Companies A and C still work in plan-
driven practices with requirements specifications that are handed
over using formal processes. Requirements specifications are partly
replaced by user stories.

A chief architect stated that system requirements on a high level
are needed, specifying the functionality and interaction of features.
High-level functions need to be documented as a common reference
for subsequent steps in the development and testing processes.
A requirements manager stressed the effort of finding the “right
level of detail” and communicating this information to involved
stakeholders.

5.1.3 Variability Information. Automotive companies develop
products with many variants and it is essential that this complexity
can be handled throughout the systems’ lifecycles. A logical archi-
tect stated that variants are the artifacts he most commonly looks
for in the tool. Variability information is currently not specified in

34

https://www.dropbox.com/s/3t17e341r8mj0ch/questionnaire_syseng_artifacts.pdf

Boundary Objects in Agile Practices ICSSP ’18, May 26–27, 2018, Gothenburg, Sweden

Table 2: Classification of artifacts with current practices, management effort, relevance, and affected organizational areas

Scope Artifact Current practices Main effort for stakeholders Relevance Area

Bo
un

da
ry

ob
je
ct
s Architecture

Models &
Descriptions

Practices differ in departments. Not
consistently managed as a living
document.

Handle scattered information.
Counteract architecture degradation.

“Big picture” of the
system’s structure and
design decisions.

Architecture,
development,
maintenance

High-level
Requirements

Used in many parts of the
organization. To some extent
replaced by user stories.

Find appropriate level of detail so that
information is useful for stakeholders.

High-level functionality
and purpose, common
reference of product.

Product
management,
development

Variability
Information

Spread throughout several tools and
systems.

Manage complexity and deal with
scattered information.

Central for all phases of
the lifecycle.

All areas

Lo
ca
lly

re
le
va
nt

ar
tif
ac
ts Documen-

tation
Varying, depending on processes.
Mostly text documents.

Create documents on an appropriate
level of detail, deal with changes,
motivate developers.

Compliance with
legislations and standards.

Function
design and
development

Low-level
Require-
ments & Tests

Less detailed descriptions, more test
cases than during plan-driven
development.

Keep requirements up-to-date. Find the
right level of detail to avoid
overspecification.

Low-level quality
assurance. Comm. with
suppliers.

Lower-level
development
and test

Prescriptive
Models

Used in teams to generate code and
signal databases.

Ensure that people are aware of
(otherwise implicit) rationales and
intentions of models.

Code generation on a low
level, ensured consistency.

Lower-level
design and
development

a central location but instead spread throughout several tools and
systems. This complicates the collection of relevant information.
However, in one of the departments’ visions, it is stated that the
main features and variants should be documented consistently “as
a reference for development, production, and maintenance.”

5.1.4 Documentation. Certain documentation is required by
customers and authorities. This stays relevant when moving to
agile. A chief architect mentioned documentation for customers to
describe how functions can be configured. Apart from this, all inter-
viewees mentioned documentation for authorities or compliance
purposes. Documentation practices vary between organizational
units, but are mostly based on textual descriptions written by devel-
opers. The effort consists mostly in finding the right level of detail,
dealing with change, and motivating developers to invest time in it.

5.1.5 Low-level Requirements and Tests. Traditionally, the log-
ical design is described with a high level of detail in a systems
engineering tool. A logical architect elaborated on an exemplary
requirement and described that “if you put a semicolon in the end,
you could almost generate code from it.” These artifacts are needed
for quality assurance on a low level. However, the detailed spec-
ification requires developers to keep the models and the code up
to date and in sync. Detailed requirements specifications are espe-
cially necessary when suppliers are involved, as mentioned by a
logical architect. The interviewee adds that when used in in-house
development, some information is “so close to the software code
level that [he is] questioning” its relevance. A chief architect stated
that many developers have an aversion to documenting low-level
requirements and keeping them in sync with the code.

A chief architect mentioned that whereas requirements were
neglected after the change to agile, the importance of test cases
increased. More test cases exist than when plan-driven practices
were followed and to some extent, “test cases themselves start to be
the requirements.” The chief architect stressed that this only works

because there has not been any major development of completely
new functionality.

Note, that in our model, low-level requirements sent to sup-
pliers also belong to locally relevant artifacts as they are impor-
tant for a smaller team in a company. Looking at it from an inter-
organizational perspective, they can also be seen as boundary ob-
jects between the OEM and suppliers.

5.1.6 PrescriptiveModels. Two kinds of prescriptivemodels play
a role in Company A: Simulink models and models used to generate
signal databases for communication networks. A chief architect
described that using Simulink models for code generation motivates
developers. Simulink models are automatically consistent with the
final code, as opposed to low-level requirements mentioned above.
A logical architect described that because it is used in this way, “it
must be updated. Otherwise, it will not work.”

However, there are some issues with using only prescriptive
models. A Scrum master pointed out that “you capture how it’s
done but not why.” Also, a team leader for functional development
stressed that prescriptive models should be complemented with
high-level descriptions:

“The model gives you the solution. This is how to do it. And then
you don’t know if that is the actual requirement. So there needs
to be, I think, some written text on a higher level [...], saying
what the intention is.” (Team leader)

This shows the importance of setting models into a context and
pointing out their intentions and rationales.

5.1.7 Summary and discussion of findings. When analyzing the
scope of using artifacts, we see that architecture models and de-
scriptions, high-level requirements, and variability information are
relevant for several teams and areas. As they are central to integrate
work of different teams, these artifacts can be considered boundary
objects. As mentioned before, we consider boundary objects from

35

ICSSP ’18, May 26–27, 2018, Gothenburg, Sweden Wohlrab et al.

10%

10%

11%

90%

90%

89%

100 50 0 50 100
Percentage

F1: There exist loc. relevant artifacts
 and boundary objects.

F2: People are more motivated
 to maintain prescriptive artifacts.

Overall, the findings are useful.

Response strongly disagree disagree agree strongly agree

Figure 2: Questionnaire responses regarding F1 and F2

the perspective of a team and the coordination with other teams.
We also found a number of artifacts relevant for a smaller group
of people: Documentation, low-level requirements and tests, and
prescriptive models. We arrive at the first research finding:

F1: Artifacts are either important to support system-level thinking
in an organization or play a role inside a team.

The effort of managing locally relevant artifacts is less connected
to finding information scattered across an organization, but more
to the intentions and maintenance of actual information. Related
work confirms especially the importance of architecture models
and descriptions that can play the role of boundary objects [25].
The importance of architecture models in the automotive domain
(and above all when moving to agile in the large) and the need to
explicitly document them has been stressed by related work [27, 28].
We found that engineers are more motivated to keep prescriptive
artifacts updated as they are directly related to other artifacts:

F2: Stakeholders’ motivation to manage prescriptive models is
higher than dealing with descriptive artifacts.

Selic mentioned that indeed, modeling languages that produce
executable models are a promising approach for agile documen-
tation [32]. Developers using prescriptive architecture models in
the automotive domain keep them up to date as there is a direct
impact on the implementation [9]. However, descriptive artifacts
are important, e.g., to provide a “big picture” and support decisions,
to capture variability, and as documentation for customers and
authorities.

Figure 2 shows the questionnaire responses regarding F1, F2, and
the usefulness of our findings. A majority agrees or strongly agrees
with the findings and considers them useful.

5.2 Challenges With Managing Artifacts (RQ2)
In this section, we answer RQ2: What practical challenges exist
with managing systems engineering artifacts in agile automotive
contexts?

Ch1: Diversity vs alignment. The first challenge is concerned with
the trade-off between autonomy for cross-functional teams and the
required alignment of their work:

“You want that the teams work similarly when it comes to ques-
tions about the whole system. But at the same time, we want that
the teams are as autonomous as possible so that they work at
their own pace.” (Product owner)

This issue does not only have an impact on the organization,
but also on artifacts like the architecture. In order to address this
challenge, one department in Company A plans to create a forum
for experts to exchange system-level ideas.

Ch2: Degradation of artifacts. Architecture degradation is a preva-
lent issue after introducing agile practices. A chief architect ex-
plained this challenge as follows:

“We thought the teams would try to influence the complete prod-
uct. But [they] have been focused inwards, on their deliverables.
When they looked outside then to see where their functionality
fits. There is no drive from the organization itself to change the
architecture.” (Chief architect)

Several interviewees reported that ownership and responsibili-
ties to maintain artifacts is not naturally assumed by stakeholders.
According to a Scrum master, especially architecture models and
requirements face degradation.

Ch3: Mix of plan-driven and agile methods. A product owner men-
tioned that a big problem is that the top-level organization does
not have “a full understanding of software”, due to different profes-
sional backgrounds. The interviewee mentioned the importance of
mechanics and the synchronization with their development cycles.
These artifacts cannot be easily integrated every day but require
appropriate representations, e.g., in models. Practitioners need to
find agile ways of working within one team or department and
synchronization mechanisms with external organizational units.

Ch4: Deciding on important artifacts. One needs to constantly
identify what artifacts are important and this is difficult in practice,
as stressed by a team leader for functional development and a
requirements manager:

“A lot of things you do in an iteration is only needed to communi-
cate between members of a team. So you have to think carefully
about what is most important to maintain the software and cor-
rect it.” (Requirements manager)

A system architect from Company C faces similar problems in his
organization: Besides identifying what artifacts are relevant, also
the level of granularity is difficult to set. Currently, architectural
models are on a too detailed level which should be reduced in the
future.

Ch5: High staff turnover. The quality of systems engineering
artifacts depends a lot on the individuals in charge. A product owner
stated that this is a problem when, for example, the architectural
design should be documented:

“We have had a high turnover of consultants who write this. So
that functions that we created were changed because the new
ones did not understand them.” (Product owner)

The staff turnover is one of themotivators to reconsider information
management and capture knowledge explicitly.

Ch6: Different locations and backgrounds. A team leader for func-
tional development saw geographic distribution as the biggest chal-
lenge and pointed out that following an agile method “requires
that you can talk just like this.” Different time zones complicate the
scheduling of meetings.

Other issues are related to professional backgrounds: Business
stakeholders “speak a different language” than engineers. A process
manager stated that barriers between groups have to be overcome
to establish an agile culture and “fight the control culture.” This in-
terviewee underlined the necessity of actively investing in keeping
the culture.

36

Boundary Objects in Agile Practices ICSSP ’18, May 26–27, 2018, Gothenburg, Sweden

10%

13%

14%

17%

32%

41%

90%

87%

86%

83%

68%

59%

100 50 0 50 100
Percentage

Ch3: Mix of agile
and plan-driven practices

Ch2: Degradation of artifacts

Ch4: Deciding
on important artifacts

Ch1: Diversity vs alignment

Ch5: High staff turnover

Ch6: Different
locations/backgrounds

strongly disagree disagree strongly agreeagreeResponse

Figure 3: Questionnaire responses regarding the challenges

5.2.1 Summary and discussion of findings. We found several
challenges of managing artifacts: Aligning diverse teams, degrada-
tion of artifacts, mixing plan-driven and agile methods, identify-
ing important artifacts, staff turnover, and different locations and
backgrounds. Figure 3 shows the responses to the questionnaire
regarding the identified challenges. Many of the challenges were
confirmed, not only by questionnaire respondents but also by inter-
viewees and focus group participants. For instance, a tester from
Company E stated that they “have seen virtually all challenges in
[their company].”

We confirm several of the challenges reported by Petersen and
Wohlin [26], e.g., the management overhead to align the work of
different teams. While they report that the move to agile reduced
the need for documentation, they do not refer to any challenges
with artifacts. The challenges of deciding on important artifacts
and handling artifact degradation was mentioned by other related
studies [10, 18, 30]. Moreover, related work confirms that different
departments typically establish agile practices at different points in
time, and a mix of methods is used [17].

5.3 Guidelines to Manage Artifacts
In this section, we present the developed guidelines to support the
management of systems engineering artifacts in agile automotive
contexts. In Figure 4, our guidelines are depicted in boxes. Arrows
show transitions between guidelines and loops show that they
should be executed frequently. We describe guidelines grouped by

1. Allow for
flexible artifact

creation

1. Identify artifacts,
decide on a

strategy

2. Evaluate
artifacts’ relevance

and usage

Team

Boundary Objects (5.3.2)

1. Communicate
boundary objects

and interfaces

2. Manage
boundary

objects
2. Manage locally
relevant artifacts

TeamTeam Team Team

Analysis and Evaluation (5.3.1)

Locally relevant artifacts
(5.3.3)

Team

Figure 4: Guidelines to manage artifacts

three areas, i.e., analysis and evaluation (Section 5.3.1), boundary
objects (Section 5.3.2), and locally relevant artifacts (Section 5.3.3).

5.3.1 Analysis and Evaluation. An agile organization needs to
identify relevant artifacts and periodically evaluate them:

Identifying boundaries and deciding on a strategy should
be the first step when defining an information management strat-
egy, as a requirements manager and a process manager mentioned.
Structuring the collected information in a table like Table 2 helps
to categorize artifacts and discuss them. Our interviewees stressed
that this collection of data has to cover the whole organization and
the product’s lifecycle.

We phrase the following guideline:
(G1) Involve stakeholders from different areas to identify what arti-

facts are boundary objects and locally relevant artifacts. Find
out how and by whom they are used, who should be responsible
at what point in time, and how traceability can be established.
A structure like Table 2 can support this task.

The following aspects should be part of the strategy:

Relevance and intentions of capturing artifacts. To avoid that
information is not read, the intentions of capturing information
have to be known when documents are produced. A requirements
manager explained that it is a central task to define boundary ob-
jects and make sure that they exist for a reason. An agreement
should be found as to what level of detail is needed to avoid “over-
specification.” In Table 2, we capture this aspect in the “Relevance”
column.

Affected areas and stakeholders of artifacts. A requirements man-
ager and a product owner stressed that responsibilities and owner-
ship should be clarified. A chief architect gave several examples of
teams that varied the level of internal documentation over time, for
instance, due to varying complexity of the developed functionality
and the team members’ backgrounds. In Table 2, we show affected
organizational areas in the “Area” column.

Strategies for traceabilitymanagement. Apart from the consumers
and producers, traceability between artifacts should be part of the
strategy. Six interviewees mentioned the importance of traceability.
For instance, a logical architect stressed the importance of traceabil-
ity for change impact analysis. A Scrummaster and a chief architect
stated that traceability is especially needed to demonstrate compli-
ance with standards.

Evaluating artifacts’ relevance and usage is necessary at pe-
riodic intervals to identify whether artifacts are still needed or
should be discarded. A Scrum master mentioned that features to
automatically analyze the usage of information might help with
these activities in the future.
(G2) Make sure that you evaluate artifacts’ relevance and usage

at frequent intervals. Depending on how the system evolves
throughout its lifecycle, artifacts might become more relevant
or should be discarded. Boundary objects could be converted
into locally relevant artifacts and vice versa.

5.3.2 Management of Boundary Objects. Boundary objects im-
pact several groups and should thus be handled with care. We found

37

ICSSP ’18, May 26–27, 2018, Gothenburg, Sweden Wohlrab et al.

that practitioners should (1) communicate boundary objects and
interfaces, and (2) manage boundary objects.

Communicating boundary objects and interfaces is sup-
ported by the currently used systems engineering tool where ar-
tifacts are stored and linked to top-level objects. One example of
a top-level object is the high-level architecture, including compo-
nents and their interfaces. A requirements manager stressed that
one needs to “define why things are connected. Otherwise, you
start to add [information] but you actually break an intention.”

For some boundary objects, the communication of decisions
can be done in two levels of communities or groups. A product
owner explained that in a top-level community, decisions concern-
ing boundary objects could be taken, and then propagated to lower
level groups “to spread the knowledge.” In this context, it is rec-
ommendable to store artifacts in a tool that is easy to access, to
mitigate issues of scattered information. According to the CTO
from Company D, different views of the data can help teams see
their parts in the “big picture” and satisfy different information
needs.

We phrase the following guideline:
(G3) For each boundary object within your organization, establish

a group of representatives from affected teams to discuss issues
and later propagate that information. Store information in an
accessible tool.

In some cases, we saw that requirements specifications play the
role of boundary objects to collaborate with suppliers. In these
cases, the communication is more formal than in the case of intra-
organizational boundary objects.

Managing boundary objects and refining them with time is
important. A requirements manager stated that one needs to decide
on relevant boundary objects upfront but also come back to them
later on. Especially for the architecture, it is important to capture
the right information at the right point in time, as we express in
Guideline 4:
(G4) Find a lightweight and flexible approach to defining high-

level artifacts upfront. Exploit this information to make impact
analysis and changes, to avoid suboptimal decisions. With time,
the artifacts should be refined and become more mature.

A Scrum master mentioned that “keeping it up to date is the tricky
part” and that regular reviews are necessary to identify relevant
artifacts and see “which parts are less needed.” However, artifacts
should only be updated if the outdatedness becomes a problem
and their relevance should be continuously assessed. Some can be
deleted completely whereas others should be archived.

5.3.3 Management of Locally Relevant Artifacts. Locally relevant
artifacts are managed within a well-connected team. We found that
practitioners should (1) allow for flexible ways of artifact creation,
and (2) manage locally relevant artifacts.

Allowing for flexible artifact creation is relevant as the order
of artifact creation might change and become more flexible when
transitioning to agile practices. A product owner stated that it is not
required to have formal requirements specification on a detailed
level in the beginning. At a later point in time, requirements are
needed for maintenance, compliance with safety regulations, etc.

Artifacts are typically not directly needed at the beginning of the
development but need to be captured and versioned at a later point:

“[There is] the concept phase, where it is very fluent and agile.
Then settling it down into the formal versioning. And then some-
time it [...] lies around, but is still needed.” (Scrum master)

Whereas some documentation “lies around”, as this interviewee
puts it, it is necessary to update other artifacts and keep them
consistent. Concretely, we found that documentation or low-level
requirements and tests are not required in the concept phase, but
need to be in place at a later point in time for maintenance and
aftermarket.
(G5) Produce locally relevant artifacts, especially those for docu-

mentation, as late as possible and only when they are actually
needed. If possible this documentation should be automatically
generated from other artifacts and code.

Managing locally relevant artifacts in continuous ways is
a need expressed by several interviewees. It is also important to
establish and maintain traceability to high-level artifacts. This point
was seen as essential by a software architect from Company B who
is involved in a project improving traceability. A logical architect
stated that both the traceability and the artifacts themselves need
to be maintained:

“As many people rely on this information, especially to reason
about changes, it is important that it is maintained. Today, it is
up to each engineer to take care of this task.”

(Logical architect)
We found that especially for Simulink models and other prescriptive
models there is a high intrinsic motivation to keep artifacts updated.
Stakeholders see a use in creating and maintaining this information.
(G6) Aim to make locally relevant artifacts reusable (as with pre-

scriptive models) and convey their relevance and use. Establish
traceability to boundary objects.

5.3.4 Summary and discussion of findings. We presented gen-
eral guidelines regarding the analysis and evaluation of artifacts
and dedicated guidelines for the management of boundary objects
and locally relevant artifacts. Figure 5 shows the responses to the
questionnaire regarding the guidelines. A majority of the respon-
dents consider the guidelines at least moderately valuable. In the
focus group sessions in Companies E and F, several participants
stressed the usefulness of the distinction between boundary objects

7%

4%

4%

11%

11%

0%

82%

79%

79%

68%

68%

50%

11%

18%

18%

21%

21%

50%

0 25 50 75 100
Percentage

G1: Identify artifacts

G2: Evaluate artifacts

G3: Groups of
representatives
G4: Lightweight

creation
G5: Produce

as late as possible
G6: Reuse

loc. relevant artifacts

not at all valuable of little value moderately valuable very valuable extremely valuableResponse

Figure 5: Questionnaire responses regarding the guidelines

38

Boundary Objects in Agile Practices ICSSP ’18, May 26–27, 2018, Gothenburg, Sweden

Table 3: Our findings, participants, implications, relation to challenges, and discussed related work

Finding Part. Implications/Relation to Challenges (RQ2) [10, 17, 18, 26, 30]

A
rti
fa
ct
s(
RQ

1)
[9
, 2
5,
27
,2
8,
32
]

F1: Artifacts are either important to support system-
level thinking in an organization or are used inside a
team.

1, 2,
4, 8,
E&F4

I1: Tool solutions should allow for flexibility with the definition of important artifacts
and processes to create, update, and use them. Practitioners would benefit from
methods and tools supporting organization-wide collaboration.

F2: Stakeholders’ motivation to manage prescriptive
models is higher than dealing with descriptive arti-
facts.

1, 2,
5–8

I2: Tools and methods supporting the automatic management of prescriptive models
would be useful for practitioners. Especially descriptive models that do not play the
role of boundary objects should be carefully assessed.

Gu
id
el
in
es

[2
,9
,1
5,
23
,3
0]

G1: Involve stakeholders from different areas to iden-
tify what artifacts are boundary objects and locally
relevant artifacts.

2, 3,
4, 6,
10

I5: Reflecting on boundary objects and locally relevant artifacts helps to identify
important artifacts (Ch4). Practitioners can establish boundary objects as a “contract”
between plan-driven and agile teams (Ch3) and across locations and backgrounds
(Ch6).

G2: Make sure that you evaluate artifacts’ relevance
and usage at frequent intervals.

4, 8 I6: Following this guideline helps to counteract challenges with the degradation of
artifacts (Ch2). It can also mitigate the consequences of high staff turnover (Ch5).

G3: For each boundary object within your organiza-
tion, establish a group of representatives.

1–7,
11

I7: This guideline can constitute a mechanism to align the work of different teams
while allowing for diversity (Ch1).

G4: Find a lightweight and flexible approach to defin-
ing high-level artifacts upfront.

2, 4,
6, 8,
E&F4

I8: Researchers should work towards lightweight methods to find the right level of
upfront specification. Practitioners can follow the guideline to counteract artifact
degradation from the start (Ch2).

G5: Produce locally relevant artifacts as late as possi-
ble and only when they are actually needed. Aim to
generate artifacts

3, 5,
8

I9: Producing artifacts as late as possible helps to avoid the degradation of artifacts
(Ch2). This guideline is in line with F2 as the motivation to manage prescriptive
models (for artifact generation) was found to be high.

G6: Make locally relevant artifacts reusable and con-
vey their relevance and use. Establish traceability to
boundary objects.

2, 7,
8, 9

I10: Practitioners trying to align different groups in the organization (Ch1) should
focus on traceability to boundary objects. Researchers can focus on increasing the
reusability of artifacts to alleviate the maintenance effort.

4 E&F means that there existed a general consensus about the finding/guideline in the focus groups.

and locally relevant artifacts. They want to work towards concrete
lightweight creation approaches in the future.

G4 is in line with the more specialized related work on “just
enough architecting”, i.e., postponing all unessential decisions until
the appropriate time [23]. G3 recommends to create groups of
representatives for each boundary object, which is related to the
literature on Communities of Practice [15].

Rüping suggested to start agile documentation early in the project
and update it depending on how frequently it is read, potentially
even on a day-to-day basis [30]. Apart from how frequently users
access the artifacts, we found that also the role of the artifacts in
the organization plays a role and should be assessed when updating
them.

Finally, locally relevant artifacts are always relevant within a
“team.” Contrariwise, there can be different levels of boundary ob-
jects, shared between different companies (e.g., an OEM and its
suppliers), shared in the entire company, or with a scope limited to
a few teams.

6 CONCLUSIONS AND FUTUREWORK
In this paper, we sought to create guidelines for the management of
systems engineering artifacts in agile automotive contexts, based
on an understanding of challenges and practices to manage artifacts.
We used a design-science approach with more than 50 practitioners
from six companies.

Table 3 shows an overview of our findings. For each of the find-
ings, we present implications for research and practice. We also

show the relation between the guidelines and the identified chal-
lenges (RQ2) in the Implications column. In the leftmost column,
we show references to related work discussed in Section 5. The par-
ticipants (see Table 1) who mainly support the findings are shown
in the column “Part.”

Our findings suggest that it is central to identify artifacts and eval-
uate artifacts’ relevance and usage at frequent intervals. Boundary
objects (used to cross boundaries between several groups) should
be managed upfront with a lightweight approach and be contin-
uously revised. Artifacts used within one team can be managed
with a flexible approach and should only be created when they are
actually needed.

This study allows practitioners to get insights into guidelines
for artifact creation and maintenance. Our guidelines can be used
as a starting point to critically reflect on the use and relevance
of artifacts and create company-specific strategies. Researchers
can benefit from a new perspective on continuous management
of systems engineering artifacts based on empirical evidence. Our
findings indicate that it might be desirable to not design all artifacts
up-front, but allow for flexible artifact creation.
Future work: Methods and tools to support inter-team collabora-
tion to manage boundary objects could help practitioners in the
future. Researchers can also work towards tool support to assess ar-
tifacts’ relevance and usage depending on how artifacts are accessed
by stakeholders in different teams.

Future work is needed to understand boundary objects and lo-
cally relevant artifacts in other contexts and domains. The actual
boundary objects and locally relevant artifacts might differ de-
pending on the involved disciplines and relationships of involved

39

ICSSP ’18, May 26–27, 2018, Gothenburg, Sweden Wohlrab et al.

companies (e.g., supplier and OEM relationships). For instance, the
difficulty of managing variability information might not be as grave
in other industries. We believe that the presented guidelines are
valuable also for other domains, but dedicated studies are needed
to scrutinize their applicability.

ACKNOWLEDGMENTS
We are very grateful for the support of the participants in this study
and we thank for all the clarifications provided when needed.

This work was partially supported by the Next Generation Elec-
trical Architecture (NGEA) and NGEA step 2 projects by VINNOVA
FFI (2014-05599 and 2015-04881), the Software Center Project 27
on RE for Large-Scale Agile System Development, and by the Wal-
lenberg AI, Autonomous Systems and Software Program (WASP)
funded by the Knut and Alice Wallenberg Foundation.

REFERENCES
[1] Julian M. Bass. 2016. Artefacts and agile method tailoring in large-scale offshore

software development programmes. Information and Software Technology 75
(2016), 1–16. https://doi.org/10.1016/j.infsof.2016.03.001

[2] Johan Kaj Blomkvist, Johan Persson, and Johan Åberg. 2015. Communication
through Boundary Objects in Distributed Agile Teams. In Proceedings of the 33rd
Annual ACM Conference on Human Factors in Computing Systems (CHI’15). ACM,
New York, NY, USA, 1875–1884. https://doi.org/10.1145/2702123.2702366

[3] John W. Creswell. 2008. Research Design: Qualitative, Quantitative, and Mixed
Methods Approaches (3 ed.). Sage Publications Ltd., London, England.

[4] Joseph D’Ambrosio and Grant Soremekun. 2017. Systems engineering chal-
lenges and MBSE opportunities for automotive system design. In International
Conference on Systems, Man, and Cybernetics (SMC). IEEE, 2075–2080. https:
//doi.org/10.1109/SMC.2017.8122925

[5] Philipp Diebold, Thomas Zehler, and Dominik Richter. 2017. How do agile prac-
tices support automotive SPICE compliance?. In Proceedings of the International
Conference on Software and System Process (ICSSP’17). ACM, New York, NY, USA,
80–84. https://doi.org/10.1145/3084100.3084108

[6] Torgeir Dingsøyr, Nils Brede Moe, Tor Erlend Faegri, and Eva Amdahl Seim. 2018.
Exploring software development at the very large-scale: a revelatory case study
and research agenda for agile method adaptation. Empirical Software Engineering
23, 1 (Feb 2018), 490–520. https://doi.org/10.1007/s10664-017-9524-2

[7] Tore Dybå and Torgeir Dingsøyr. 2008. Empirical studies of agile software
development: A systematic review. Information and Software Technology 50, 9-10
(2008), 833–859. https://doi.org/10.1016/j.infsof.2008.01.006

[8] Christof Ebert and John Favaro. 2017. Automotive Software. IEEE Software 34, 3
(may 2017), 33–39. https://doi.org/10.1109/MS.2017.82

[9] Ulf Eliasson, Rogardt Heldal, Patrizio Pelliccione, and Jonn Lantz. 2015. Archi-
tecting in the Automotive Domain: Descriptive vs Prescriptive Architecture. In
Proceedings of the 12th Working IEEE/IFIP Conference on Software Architecture
(WICSA’15). IEEE, 115–118. https://doi.org/10.1109/WICSA.2015.18

[10] Geir K. Hanssen, Aiko Fallas Yamashita, Reidar Conradi, and Leon Moonen. 2009.
Maintenance and agile development: Challenges, opportunities and future direc-
tions. In Proceedings of the 25th IEEE International Conference on Software Mainte-
nance (ICSM’09). IEEE, 487–490. https://doi.org/10.1109/ICSM.2009.5306278

[11] Rogardt Heldal, Patrizio Pelliccione, Ulf Eliasson, Jonn Lantz, Jesper Derehag, and
Jon Whittle. 2016. Descriptive vs Prescriptive Models in Industry. In Proceedings
of the 19th International Conference on Model Driven Engineering Languages and
Systems (MODELS 2016). ACM, New York, NY, USA, 216–226. https://doi.org/10.
1145/2976767.2976808

[12] Alan R. Hevner, Salvatore T. March, Jinsoo Park, and Sudha Ram. 2004. Design
Science in Information Systems Research. MIS Quarterly 28 (2004), 75–105.
https://doi.org/10.2307/25148625

[13] Dan X. Houston. 2014. Agility beyond software development. In Proceedings
of the International Conference on Software and System Process (ICSSP’14). ACM,
New York, NY, USA, 65–69. https://doi.org/10.1145/2600821.2600837

[14] Markus Hummel, Christoph Rosenkranz, and Roland Holten. 2013. The role of
communication in agile systems development: An analysis of the state of the

art. Business and Information Systems Engineering 5, 5 (2013), 343–355. https:
//doi.org/10.1007/s12599-013-0282-4

[15] Tuomo Kähkönen. 2004. Agile Methods for Large Organizations – Building
Communities of Practice. In Proceedings of the Agile Development Conference.
IEEE, 2–10. https://doi.org/10.1109/ADEVC.2004.4

[16] Mira Kajko-Mattsson. 2008. Problems in agile trenches. In Proceedings of the 2nd
International Symposium on Empirical Software Engineering and Measurement
(ESEM’08). ACM, New York, NY, USA, 111. https://doi.org/10.1145/1414004.
1414025

[17] Marco Kuhrmann, Philipp Diebold, Jürgen Münch, Paolo Tell, Kitija Trek-
tere, Fergal McCaffery, Garousi Vahid, Michael Felderer, Oliver Linssen, Eck-
hart Hanser, and Christian Prause. 2018. Hybrid Software Development Ap-
proaches in Practice: A European Perspective. IEEE Software PP, 99 (2018).
https://doi.org/10.1109/MS.2018.110161245

[18] Lina Lagerberg, Tor Skude, Par Emanuelsson, Kristian Sandahl, and Daniel Stahl.
2013. The impact of agile principles and practices on large-scale software develop-
ment projects: A multiple-case study of two projects at Ericsson. In International
Symposium on Empirical Software Engineering and Measurement. IEEE, 348–356.
https://doi.org/10.1109/ESEM.2013.53

[19] Dean Leffingwell. 2007. Scaling Software Agility: Best Practices for Large Enterprises
(The Agile Software Development Series). Addison-Wesley Professional.

[20] Rensis Likert. 1932. A technique for the measurement of attitudes. Archives of
Psychology 22, 140 (1932), 5–55.

[21] Thomas W. Malone and Kevin Crowston. 1994. The Interdisciplinary Study of
Coordination. Comput. Surveys 26, 1, Article 1 (March 1994), 33 pages. https:
//doi.org/10.1145/174666.174668

[22] Joseph Alex Maxwell. 2012. Qualitative Research Design: An Interactive Approach.
SAGE Publications.

[23] Robert L. Nord and James E. Tomayko. 2006. Software architecture-centric
methods and agile development. IEEE Software 23, 2 (March 2006), 47–53. https:
//doi.org/10.1109/MS.2006.54

[24] Wanda J. Orlikowski and JoAnne Yates. 1994. Genre Repertoire: The Structuring
of Communicative Practices in Organizations. Administrative Science Quarterly
39, 4 (1994), 541–574. https://doi.org/10.2307/2393771

[25] Lars Pareto, Peter Eriksson, and Staffan Ehnebom. 2010. Architectural De-
scriptions as Boundary Objects. In Proceedings of the 13th International Con-
ference on Model Driven Engineering Languages and Systems (MODELS 2010).
Springer Berlin Heidelberg, Berlin, Heidelberg, 406–419. https://doi.org/10.1007/
978-3-642-16129-2_29

[26] Kai Petersen and Claes Wohlin. 2010. The effect of moving from a plan-driven to
an incremental software development approachwith agile practices: An industrial
case study. Empirical Software Engineering 15, 6 (2010), 654–693. https://doi.org/
10.1007/s10664-010-9136-6

[27] Christian R. Prause and Zoya Durdik. 2012. Architectural design and docu-
mentation: Waste in agile development?. In Proceedings of the International
Conference on Software and System Process (ICSSP’12). IEEE, 130–134. https:
//doi.org/10.1109/ICSSP.2012.6225956

[28] Alexander Pretschner, Manfred Broy, Ingolf H. Krüger, and Thomas Stauner. 2007.
Software engineering for automotive systems: A roadmap. In Future of Software
Engineering (FoSE’07). IEEE, 55–71. https://doi.org/10.1109/FOSE.2007.22

[29] Per Runeson and Martin Höst. 2009. Guidelines for conducting and reporting
case study research in software engineering. Empirical Software Engineering 14,
2 (19 Dec 2009), 131–164. https://doi.org/10.1007/s10664-008-9102-8

[30] Andreas Rüping. 2003. Agile Documentation: A Pattern Guide to Producing Light-
weight Documents for Software Projects (1 ed.). Wiley Publishing.

[31] Ken Schwaber and Mike Beedle. 2001. Agile Software Development with Scrum (1
ed.). Prentice Hall PTR.

[32] Bran Selic. 2009. Agile documentation, anyone? IEEE Software 26, 6 (2009), 11–12.
https://doi.org/10.1109/MS.2009.167

[33] Susan Leigh Star and James R. Griesemer. 1989. Institutional Ecology, ‘Transla-
tions’ and Boundary Objects: Amateurs and Professionals in Berkeley’s Museum
of Vertebrate Zoology, 1907-39. Social Studies of Science 19, 3 (1989), 387–420.
https://doi.org/10.1177/030631289019003001

[34] Monica Chiarini Tremblay, Alan R. Hevner, and Donald J. Berndt. 2010. The Use
of Focus Groups in Design Science Research. In Integrated Series in Information
Systems. Springer US, 121–143. https://doi.org/10.1007/978-1-4419-5653-8_10

[35] Stefan Voigt, Jörg von Garrel, Julia Müller, and Dominic Wirth. 2016. A Study of
Documentation in Agile Software Projects. In Proceedings of the 10th ACM/IEEE
International Symposium on Empirical Software Engineering and Measurement
(ESEM ’16). ACM, New York, NY, USA, Article 4, 6 pages. https://doi.org/10.
1145/2961111.2962616

40

https://doi.org/10.1016/j.infsof.2016.03.001
https://doi.org/10.1145/2702123.2702366
https://doi.org/10.1109/SMC.2017.8122925
https://doi.org/10.1109/SMC.2017.8122925
https://doi.org/10.1145/3084100.3084108
https://doi.org/10.1007/s10664-017-9524-2
https://doi.org/10.1016/j.infsof.2008.01.006
https://doi.org/10.1109/MS.2017.82
https://doi.org/10.1109/WICSA.2015.18
https://doi.org/10.1109/ICSM.2009.5306278
https://doi.org/10.1145/2976767.2976808
https://doi.org/10.1145/2976767.2976808
https://doi.org/10.2307/25148625
https://doi.org/10.1145/2600821.2600837
https://doi.org/10.1007/s12599-013-0282-4
https://doi.org/10.1007/s12599-013-0282-4
https://doi.org/10.1109/ADEVC.2004.4
https://doi.org/10.1145/1414004.1414025
https://doi.org/10.1145/1414004.1414025
https://doi.org/10.1109/MS.2018.110161245
https://doi.org/10.1109/ESEM.2013.53
https://doi.org/10.1145/174666.174668
https://doi.org/10.1145/174666.174668
https://doi.org/10.1109/MS.2006.54
https://doi.org/10.1109/MS.2006.54
https://doi.org/10.2307/2393771
https://doi.org/10.1007/978-3-642-16129-2_29
https://doi.org/10.1007/978-3-642-16129-2_29
https://doi.org/10.1007/s10664-010-9136-6
https://doi.org/10.1007/s10664-010-9136-6
https://doi.org/10.1109/ICSSP.2012.6225956
https://doi.org/10.1109/ICSSP.2012.6225956
https://doi.org/10.1109/FOSE.2007.22
https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1109/MS.2009.167
https://doi.org/10.1177/030631289019003001
https://doi.org/10.1007/978-1-4419-5653-8_10
https://doi.org/10.1145/2961111.2962616
https://doi.org/10.1145/2961111.2962616

	Abstract
	1 Introduction
	2 Related Work
	3 Involved Companies and Participants
	4 Research Method
	4.1 Understand Environment
	4.2 Develop/Build
	4.3 Justify/Evaluate
	4.4 Threats to Validity

	5 Findings
	5.1 Artifacts and Practices (RQ1)
	5.2 Challenges With Managing Artifacts (RQ2)
	5.3 Guidelines to Manage Artifacts

	6 Conclusions and Future Work
	References

