
Brief announcement: 2D-stack - A scalable lock-free stack design that
continuously relaxes semantics for better performance

Downloaded from: https://research.chalmers.se, 2024-03-13 09:36 UTC

Citation for the original published paper (version of record):
Rakundo, A., Atalar, A., Tsigas, P. (2018). Brief announcement: 2D-stack - A scalable lock-free
stack design that continuously relaxes
semantics for better performance. Proceedings of the Annual ACM Symposium on Principles of
Distributed Computing: 407-409. http://dx.doi.org/10.1145/3212734.3212794

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)

Brief Announcement: 2D-Stack – A Scalable Lock-Free Stack
Design that Continuously Relaxes Semantics for Better

Performance∗

Adones Rukundo
Chalmers University of Technology,

Sweden
adones@chalmers.se

Aras Atalar
Chalmers University of Technology,

Sweden
aaras@chalmers.se

Philippas Tsigas
Chalmers University of Technology,

Sweden
tsigas@chalmers.se

ABSTRACT

We briefly describe an efficient lock-free concurrent stack design
with tunable and tenable relaxed semantics to allow for better per-
formance. The design is tunable and allow for a continuous mono-
tonic trade of weaker semantics for better throughput performance.
Concurrent stacks have an inherent scalability bottleneck due to
their single access point for both their operations. Elimination and
semantics relaxation have been proposed in the literature to address
this problem. Semantics relaxation has the potential to reach mono-
tonically very high throughput by continuously trading relaxation
for throughput. Previous solutions could not fully leverage this po-
tential. We suggest a new two dimensional design that can achieve
this by exploiting disjoint access parallelism in one dimension and
locality in the other within tight accuracy bounds. The behaviour
of the algorithm is tightly bound. We compare experimentally to
previous work, with respect to throughput and relaxed behaviour
observed, on different relaxation and concurrency settings. The
experimental evaluation shows that our algorithm significantly out-
perform all other algorithms in terms of performance, also maintain
better accuracy in contrast to other designs with relaxed semantics.

KEYWORDS

Lock-free, Data-structures, Relaxation, Distributed, Concurrency,
Parallel, NUMA, Shared-Memory

1 INTRODUCTION

To improve performance scalability of concurrent data structures,
recent research has focused on expanding the set of legal behaviours,
including; weakening consistency and semantic relaxation for pro-
viding trade-offs between scalability and linearizability guarantees.
Relaxed semantics definitions including; k-Out-of-Order , k-Lateness
and k-Stuttering have been proposed in the literature [6, 11] as inter-
esting relaxation models to consider. Distributing parts and hence
access of the data-structure [4, 7, 13], has come out as a frequent

∗This work was supported by the Swedish Research Council (Vetenskapsrådet)
project “Models and Techniques for Energy-Efficient Concurrent Data Access Designs“
Under Contract No.: 2016-05360 and SIDA/BRIGHT project 317 under the Makerere-
Sweden bilateral research programme 2015-2020.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
PODC ’18, July 23–27, 2018, Egham, United Kingdom
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5795-1/18/07. . . $15.00
https://doi.org/10.1145/3212734.3212794

technique used to implement relaxation. A given data-structure is
split into multiple sub-structures (horizontal) with independent ac-
cess points to improve on disjoint access parallelism. Operations are
distributed over the sub-structures using different scheduling tech-
niques; thread binding [13], random access [7], load-balancing [4],
round robin and a combination of others. Until now, most proposed
relaxed data-structures are one dimension, horizontal or vertical.
horizontal for disjoint parallelism, vertical for locality.

Concurrent stacks, are fundamental data structures that suffer
from an inherent scalability bottleneck, due to their single access
point for both of their operations. Because of that, semantic re-
laxation is a promising approach to be used for improving their
performance. We propose a lock-free concurrent design for stacks
(2D-Stack) that leverages semantics relaxation through exploiting
both disjoint access parallelism and locality leading to a two dimen-
sional design. To achieve this, we implement a light weight syn-
chronization mechanism that also maintains tight accuracy bounds.
Our design, compared to previous solutions, would not only in-
crease the performance for a given configuration but also give to
the application the capability to monotonically trade accuracy for
better performance, which was not possible before. We compare our
design with known scheduling techniques and other stacks from
the literature. Among the scheduling techniques, we compare with;
random (random), random choice of two (random-c2) [7] and round-
robin (k-robin). From the literature, we compare with segmented
(k-segment), elimination (elimination) and Treiber stack (treiber).
2D-stack significantly outperforms previous stack implementations
as observed in the experimental evaluation Section 4.

2 RELATEDWORK

Concurrent stacks suffer from their inherent single point access
bottleneck. In the quest to improve performance scalability, dis-
joint access strategies have been proposed for designing concurrent
stacks including; elimination trees [1, 9], combining funnels [10]
and elimination back-off [3, 5]. Elimination back-off implements
a collision array in which pop operations try to collide and can-
cel with concurrent push operations. Such operation pairs create
disjoint collisions that are executed in parallel with operations ac-
cessing the main stack implementation. Elimination back-offmostly
benefits symmetric workloads in which the numbers of push and
pop operations are roughly equal, its performance deteriorates
when workloads are asymmetric.

Recently, semantic relaxation has been proposed for data-structures
that provide trade-offs between scalability and linearizability guar-
antees. Relaxation introduce an acceptable error within the legal

Session 3B: Concurrency PODC’18, July 23-27, 2018, Egham, United Kingdom

407

https://doi.org/10.1145/3212734.3212794

strict semantics of a given data-structure, i.e. the pop operation of a
relaxed stack can return any of the k items of the stack. To quantify
this error, relaxed semantic definitions have been introduced [6, 11].
Based on these definitions, a k-Out-of-Order stack has been pro-
posed in [6], referred to as k-segment. It is composed of a linked list
of memory segments whose size is defined by k number of indexes.
The stack items can only be accessed through the topmost segment,
where an operation pushes or pops an item from any k indexes. A
Push operation adds a new segment if top segment is full whereas
a Pop removes a segment if it is empty and not the last segment.

Other relaxed data-structures proposed in the literature include,
priority queues [2, 7, 13] and distributed queues [4].

3 2D-STACK
Our stack is composed of multiple lock-free sub-stacks. An individ-
ual sub-stack is implemented using a linked list whose operations
follow the Treiber stack design [12]. Each sub-stack has a unique
descriptor that keeps track of the sub-stack information including;
pointer to the topmost item and item-counter. A descriptor has a
dedicated memory location accessed through an array (stack-array).
Using a CAE1 instruction we can update the descriptor contents in
one atomic step to maintain correctness.

We introduce and implement an operational region (window) in
which an operation can occur. It is defined by two parameters;width
and depth.width defines the number of sub-stacks whereas depth
defines the maximum number of items acceptable for a single sub-
stack perwindow . We also implement a global counter (Global) that
defines the maximum number of items per sub-stack. Thewindow
and Global together help us to tightly bound both relaxation and
execution time.

To perform an operation, a thread searches for a sub-stack based
on the Global. A thread selects a sub-stack, then, compares the
sub-stack item-count with the Global. The thread can then proceed
on the selected sub-stack only if the comparison evaluates to true.
Otherwise the thread has to search for another sub-stack. For each
operation, the thread starts from the previously known sub-stack on
which it succeeded. First the thread tries a given number of random
hops, then switches to round robin until a valid sub-stack is found,
or the thread updates the Global, after failing on all sub-stacks.
The Global is updated in relation to depth. If the thread detects
contention on a sub-stack, a random hop to another sub-stack is
performed. This is to reduce possible contention on consecutive
sub-stacks that might arise from round robin hops.

During the search, the thread validates each sub-stack item-count
against the Global. The item-count must be less than Global for
Push or greater than the difference between Global and depth for
Pop. If the item-count is zero, then the sub-stack is empty. If no
valid sub-stack is found, the Global is updated atomically. Push adds
whereas Pop subtracts a value (shi f t), shi f t must be less than or
equal to depth. Then the search is restarted with a fresh search
count. If a valid sub-stack is found, the thread tries to operate on the
it, on success the sub-stack descriptor is updated otherwise another
sub-stack is searched for, starting from a random index. A successful
Push increments whereas a Push decrements the item-counter by

1Compare and Exchange (CAE) atomically compares 16 bytes of memory content
and exchanges it with new content on success.

Figure 1: Throughput and observed accuracy as the k bound

for relaxation increases. (k bounded algorithms).

one. Also the topmost item pointer is updated. At this point, a
Push adds an item whereas a Pop returns an item for a non empty
sub-stack or NULL for empty. An empty sub-stack is represented
by a NULL item pointer within the descriptor . As an optimization
strategy, the thread keeps track of the Global for every hop during
the search process, restarting for every Global change detected.

2D-stack is correct with respect to k-Out-of-Order stack seman-
tics. The deterministic bound for the relaxation is tunable, con-
trolled by the parameters of our design, given by Theorem 1. Also,
the step complexity analysis provide a tight bound for the algorithm
[8].

Theorem 1. 2D-stack is linearizable with respect to k-Out-of-
Order stack semantics, where k = (2shi f t + depth)(width − 1).

4 EXPERIMENTAL EVALUATION

We evaluate the performance of our implementation together with
other existing stack designs including; the k-segment relaxed stack
[6], Elimination-Stack (elimination) [5] and Treiber-Stack (treiber)
[12]. All experiments run on an Intel Xeon CPU E5-2687W v2 ma-
chine with two 8-core Intel Xeon processors (2 threads per core).
We pin one thread per core, filling one processor at a time up-to 16
threads before we switch to hyper-threading. Two NUMA settings
are tested; intra-socket (1 to 8 threads) and inter-socket (9 to 16
threads). Threads select operations uniformly at random (i.e. with
probability 1/2) from Pop and Push operations. To simulate high
contention, we put no computational load between operations. For
each experiment, the stack is initialized with 32,768 items, run for
five seconds obtaining an average of five repeats. The stack algo-
rithms are initialized in this way to avoid NULL returns that might
arise from empty sub-stacks. Throughput is measured in terms of
operations per second, whereas accuracy (quality) is measured in
terms of error distance from the LIFO semantics.

To measure the quality, we adopt a similar method used in [2, 7].
A sequential linked list is run alongside the stack, for each Push
or Pop a simultaneous insert or delete is performed on the list
respectively. Items on the stack are duplicated on the list and can
be identified by their unique labels. Insert operations happen at the
head of the list similar to the push whereas the delete operation
searches for the given item deletes it and returns its distance from
the head (error distance). We then calculate the expected error
distance for a given experiment run for 5 seconds with 5 repeats.

Scalability is evaluated on both increasing relaxation and con-
currency, for different NUMA settings. Experiment results are then

Session 3B: Concurrency PODC’18, July 23-27, 2018, Egham, United Kingdom

408

Figure 2: Throughput and observed accuracy as concurrency

increases.

plotted using logarithmic scales, throughput (solid lines) and error
distance (dotted lines) sharing the x-axis. Based on experimental
observations and analysis presented in the full paper [8], we select
4P (P stands for number of threads andwidth = 4P) as the optimal
performance configuration for 2D-stack width. In Figure 1, we eval-
uate the performance of all algorithms, that are linearizable with
respect to k-Out-of-Order stack (k-robin,2D-stack and k-segment),
at different relaxation levels. We observe that 2D-stack consistently
outperforms the other algorithms. On low degree of relaxation, 2D-
stack avoids contention by hopping to another sub-stack on a failed
CAE. This highly improves performance compared to k-robin that
keeps retrying on the same sub-stack. As the relaxation increases,
2D-stack combines contention avoidance with locality exploitation,
a parameter exclusive to the 2D-stack design as explained in [8].
While for the other algorithms the quality reduces almost linearly
with the increase in relaxation, 2D-stack maintains good quality
with width > 4P (k > 200 for P = 8 and k > 600 for P = 16). At
this point, the algorithm switches from horizontal to vertical by
increasing the depth. This change has a smaller negative impact
on the quality, compared to the other algorithms. 2D-stack con-
tinuously trades off quality for throughput by switching between
relaxation dimensions for different relaxation levels. k-segment is
mostly affected by the high cost of maintaining segments coupled
with increased number of hops as relaxation increases.

We now configure the algorithms to obtain high throughput
performance for both intra and inter-socket settings, Figure 2. Two
"non-relaxed" algorithms elimination and treiber are also included
in the experiment to compare the power of relaxation to improve
performance compared to other strict semantics efficiency improve-
ment techniques. We generally observe that, 2D-stack is able to
maintain the increase in throughput also while increasing the num-
ber of threads, even for the NUMA settings. As the number of
threads increases, random, random-c2 and k-segment maintain al-
most constant quality due to the fixed number of sub-stacks. k-robin
and 2D-stack vary the number of sub-stacks as the number of threads
change. k-robin reduces number of sub-stacks with the increase in
number of threads to keep the quality bound, this improves quality
but hurts throughput due to the increased contention. Overall, 2D-
stack shows a full control to leverage the semantics relaxation to

reach very high throughput in a continuous way. A property that
was missing from previous solutions.

5 CONCLUSION AND FUTUREWORK

The aim of this work is to design an efficient lock-free stack algo-
rithmic that can continuously relax k-Out-of-Order semantics to
improve throughput through exploiting disjoint access parallelism
and locality. We have achieved this through our two dimension
relaxation technique that exploits disjoint access parallelism in one
dimension and locality in the other. Our algorithm, 2D-stack, uses
also an efficient widows based synchronization that manages to
keep the relaxation low without receding significantly performance
achieved by disjoint access parallelism and locality. 2D-stack signif-
icantly outperformed all the other stack implementations due to its
capability to monotonically trade accuracy for better performance.
In addition to 2D-stack, we have implemented and tested a set of
other possible relaxed stack designs:random,random-c2 and k-robin.
The full version of this paper further elaborates on a number of
topics treated only briefly here, including complexity analysis, cor-
rectness, optimization but also Lock freedom and other experiments
that due to space constraints have not been treated at all here [8].

As future work, we are working towards generalizing our design
to work for other concurrent data structures.

REFERENCES

[1] Yehuda Afek, Guy Korland, Maria Natanzon, and Nir Shavit. 2010. Scalable
producer-consumer pools based on elimination-diffraction trees. Euro-Par 2010-
Parallel Processing (2010), 151–162.

[2] Dan Alistarh, Justin Kopinsky, Jerry Li, and Nir Shavit. 2015. The SprayList: a
scalable relaxed priority queue. In Proceedings of the 20th ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Programming, PPoPP 2015, San Francisco,
CA, USA, February 7-11, 2015. 11–20.

[3] Gal Bar-Nissan, Danny Hendler, and Adi Suissa. 2011. A Dynamic Elimination-
Combining Stack Algorithm. CoRR abs/1106.6304 (2011). arXiv:1106.6304 http:
//arxiv.org/abs/1106.6304

[4] Andreas Haas, Michael Lippautz, Thomas A. Henzinger, Hannes Payer, Ana
Sokolova, Christoph M. Kirsch, and Ali Sezgin. 2013. Distributed Queues in
Shared Memory: Multicore Performance and Scalability Through Quantitative
Relaxation. In Proceedings of the ACM International Conference on Computing
Frontiers (CF ’13). ACM, New York, NY, USA, Article 17, 9 pages.

[5] Danny Hendler, Nir Shavit, and Lena Yerushalmi. 2010. A scalable lock-free stack
algorithm. J. Parallel Distrib. Comput. 70, 1 (2010), 1–12.

[6] Thomas A. Henzinger, Christoph M. Kirsch, Hannes Payer, Ali Sezgin, and Ana
Sokolova. 2013. Quantitative relaxation of concurrent data structures. In The
40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’13, Rome, Italy - January 23 - 25, 2013. 317–328.

[7] Hamza Rihani, Peter Sanders, and Roman Dementiev. 2015. Brief announcement:
Multiqueues: Simple relaxed concurrent priority queues. In Proceedings of the 27th
ACM symposium on Parallelism in Algorithms and Architectures. ACM, 80–82.

[8] Adones Rukundo, Aras Atalar, and Philippas Tsigas. 2018. 2D-Stack: A scalable
lock-free stack design that continuously relaxes semantics for better performance.
Technical Report 2018:06. Chalmers University of Technology.

[9] Nir Shavit and Dan Touitou. 1995. Elimination trees and the construction of
pools and stacks: preliminary version. In Proceedings of the seventh annual ACM
symposium on Parallel algorithms and architectures. ACM, 54–63.

[10] Nir Shavit and Asaph Zemach. 2000. Combining funnels: a dynamic approach to
software combining. J. Parallel and Distrib. Comput. 60, 11 (2000), 1355–1387.

[11] Edward Talmage and Jennifer L. Welch. 2017. Relaxed Data Types as Consis-
tency Conditions. In Stabilization, Safety, and Security of Distributed Systems -
19th International Symposium, SSS 2017, Boston, MA, USA, November 5-8, 2017,
Proceedings. 142–156.

[12] R.K. Treiber. 1986. Systems Programming: Coping with Parallelism. International
Business Machines Incorporated, Thomas J. Watson Research Center. https:
//books.google.se/books?id=YQg3HAAACAAJ

[13] Martin Wimmer, Jakob Gruber, Jesper Larsson Träff, and Philippas Tsigas. 2015.
The lock-free k-LSM relaxed priority queue. In Proceedings of the 20th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPoPP
2015, San Francisco, CA, USA, February 7-11, 2015. 277–278.

Session 3B: Concurrency PODC’18, July 23-27, 2018, Egham, United Kingdom

409

http://arxiv.org/abs/1106.6304
http://arxiv.org/abs/1106.6304
http://arxiv.org/abs/1106.6304
https://books.google.se/books?id=YQg3HAAACAAJ
https://books.google.se/books?id=YQg3HAAACAAJ

	Abstract
	1 Introduction
	2 Related Work
	3 2D-Stack
	4 Experimental Evaluation
	5 Conclusion and Future Work
	References

