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Abstract—This paper investigates the distribution of delay and
peak age of information in a communication system where packets,
generated according to an independent and identically distributed
Bernoulli process, are placed in a single-server queue with first-
come first-served discipline and transmitted over an additive white
Gaussian noise (AWGN) channel. When a packet is correctly de-
coded, the sender receives an instantaneous error-free positive ac-
knowledgment, upon which it removes the packet from the buffer.
In the case of negative acknowledgment, the packet is retransmit-
ted. By leveraging finite-blocklength results for the AWGN chan-
nel, we characterize the delay violation and the peak-age violation
probability without resorting to approximations based on large
deviation theory as in previous literature. Our analysis reveals that
there exists an optimum blocklength that minimizes the delay vio-
lation and the peak-age violation probabilities. We also show that
one can find two blocklength values that result in very similar av-
erage delay but significantly different delay violation probabilities.
This highlights the importance of focusing on violation probabili-
ties rather than on averages.

Index Terms—Delay, finite blocklength, age of information,
queuing.

I. INTRODUCTION

Emerging wireless applications such as factory automation
and vehicular communication require the availability of mission-
critical links that are able to deliver short information packets
within stringent latency and reliability constraints. As shown
in [1], finite-blocklength information theory provides accurate
tools to describe the tradeoff between latency, reliability, and
rate when transmitting short packets. Leveraging tools from
non-asymptotic information theory, the purpose of this paper
is to analyze the probability that the delay or the peak age [2,
Def. 3] exceeds a predetermined threshold in a point-to-point
communication system with random information-packet arrivals
per channel use. The analysis assumes a single-server queue
operating according to a first-come-first-served (FCFS) policy.

Related Work: Aside from the work by Telatar and Gal-
lager [3], who employed an error-exponent approach, most works

This work was partly funded by the Swedish Research Council under grant
2012-4571. The simulations were performed in part on resources provided by
the Swedish National Infrastructure for Computing (SNIC) at C3SE.

Osvaldo Simeone has received funding from the European Research Council
(ERC) under the European Unions Horizon 2020 Research and Innovation
Programme (Grant Agreement No. 725731).

Elif Uysal-Biyikoglu has received funding from TÜBİTAK (Grant No.
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in queuing analysis of communication links rely on a bit-pipe
abstraction of the physical layer. Accordingly, bits are delivered
reliably at a rate equal to the channel capacity, or in the case
of fading channels, at a rate equal to the outage capacity for a
given outage probability. These works may be classified into
three broad categories: (i) analyses of the steady-state average
delay; (ii) analyses of the delay violation probability using
large deviation theory (see [4], [5] and references therein);
and (iii) analyses of throughput-delay tradeoff under deadline
constraints [6], [7]. However, the bit-pipe abstraction is not
suitable when the latency constraints prevent the use of channel
codes with long blocklength. Indeed, outage and ergodic capacity
are poor performance benchmarks when packets are short [8],
and using them may result in inaccurate delay estimates.

Recognizing these limitations, Hamidi-Sepehr et al. [9] ana-
lyzed the queuing behavior when BCH codes are used. Specif-
ically, they evaluated both the probability distribution of the
steady-state queue size and the average delay. A different ap-
proach, which relies on random coding, is to replace capacity or
outage capacity with the more accurate second-order asymptotic
approximations obtained in [1], [10]. This approach has been
used in [11] to study the throughput achievable over a fading
channel under a constraint on the probability of buffer overflow;
in [12] to analyze the packet delay violation probability in the
presence of perfect channel-state information at the transmit-
ter, which allows for rate adaptation; and in [13] to design
the downlink of an ultra-reliable transmission system under
a constraint on the end-to-end delay. All these works rely on
large-deviation theory through effective capacity [14], stochastic
network calculus [15], and effective bandwidth [16], hence
providing tight delay estimates only in the asymptotic limit of
large delay.

For applications in which packets carry status updates, the
time elapsed since the newest update available at the destination
was generated at the source, commonly referred to as age of
information, is more relevant than delay. Most previous analyses
of the age of information focus on its average or peak value
(see [2] and references therein), and rely on simple physical-
layer models. A recent exception is [17], where the stationary
distribution of the peak age is characterized, and [18], where
generalized age penalty functions are analyzed.



Contributions: We analyze the delay and peak-age violation
probabilities achievable over an additive white Gaussian noise
(AWGN) channel where information packets arrive in each
channel use (CU) according to an independent and identically
distributed (i.i.d.) Bernoulli process and are transmitted using
an FCFS policy with automatic repeat request. Our specific
contributions are as follows:
• We determine in closed form the probability-generating func-

tions (PGFs) of delay and peak age at steady state. Delay and
peak-age violation probabilities can be efficiently obtained
from the derived PGFs through an inverse transform. We also
present an accurate approximation of this inverse transform
based on saddlepoint methods.

• We numerically illustrate the dependence of delay on the block-
length. Specifically, we show that there exist two blocklength
values resulting in the same average delay, but yielding delay
violation probabilities that differ by two orders of magnitude.
This shows that average delay is insufficient in capturing
performance.

• Finally, we discuss the accuracy of delay violation estimates
based on the large-deviation tools used in [12].

Notation: Uppercase boldface letters denote random quan-
tities and lightface letters denote deterministic quantities. The
distribution of a random variable X is denoted by PX. With E[·]
we denote the expectation operator. The indicator function and
the ceil function are denoted by 1{·} and d·e respectively. We
let Bern(p) denote a Bernoulli-distributed random variable with
parameter p,Binom(n, p) denote a Binomial-distributed random
variable with parameters n and p, and Geom(p) a geometrically
distributed random variable with parameter p. The PGF of a non-
negative integer-valued random variable X is GX(s) = E

[
sX
]
.

II. FRAME-SYNCHRONOUS MODEL

We consider a point-to-point discrete-time AWGN channel.
The information-packet arrival process is i.i.d. Bernoulli over the
CUs. Specifically, the probability of a new packet arrival in each
CU is λ. The information packets are stored at the transmitter
in a single-server queue operating according to an FCFS policy.
Each information packet consists of k bits, which are mapped
into a codeword of blocklength n CUs and power P .1 The packet
error probability is denoted by ε > 0. A packet is removed from
the buffer when its reception is acknowledged by the receiver
through an ACK feedback. If the codeword is not correctly
decoded, the receiver sends a NACK message and the code-
word is retransmitted. We assume perfect error detection at the
receiver and instantaneous error-free ACK/NACK transmission,
as commonly done in the literature.

We will first assume that time is organized into time frames of
duration n CUs so that the transmission of a codeword can only
start at the beginning of a time frame. Under this assumption,
if an information packet arrives when the buffer is empty, its
transmission is scheduled for the next available frame. We refer
to this setup as being frame synchronous. In Section IV, we shall

1We assume that the variance of the Gaussian additive noise is one. So P is
also the signal-to-noise ratio.

relax this assumption and allow transmission to start in the next
available CU when the buffer is empty. We refer to this setup
as being frame asynchronous. This model yields a reduction in
latency at the cost of a more involved frame-synchronization
procedure. Under the frame-synchronous assumption, the sys-
tem can be modeled as a Geo/G/1 queue with bulk arrivals,
sometimes denoted Geo[X]/G/1 (see [19, Sec. 4.6.2]).

We group together all packets arriving within a time frame as
a bulk, and study the evolution of the transmitter’s buffer along
the time index t running over the time frames. Let Bt be the
number of packets received in the t-th time frame. It follows
that the process {Bt}∞t=1 is i.i.d. with Binom(n, λ) marginal
distribution. When Bt > 0, we say that a bulk has been received
at time frame t. Furthermore, we denote by Qt the number of
bulks remaining in queue at the start of the (t+1)th time frame.

Let Tm be the frame index corresponding to the arrival time
of the mth bulk, and Nm be the number of packets in the mth
bulk. Note that {Nm}∞m=1 is an i.i.d. process with marginal
distribution equal to the conditional distribution of Bt given
the event {Bt > 0}. We denote by Wm the waiting time of
the mth bulk, i.e., the number of frames the first packet in the
bulk remains in the queue before being served. Moreover, Sm is
the service time of the mth bulk, i.e., the total number of frames
needed to successfully transmit all packets in the mth bulk. The
service process {Sm}∞m=1 is i.i.d. with

Sm ∼
Nm∑
k=1

Hk (1)

where the variables {Hk}Nm

k=1 are i.i.d. Geom(1− ε)-distributed
and independent of Nm. Each variable Hk represents the number
of time frames needed to reliably deliver one packet. Finally,
the delay Dm = Wm + Sm of the mth bulk (measured in
frames) is the sum of waiting time Wm and service time Sm.
For this queuing system, the process {Dm}∞m=1 has a steady-
state distribution as long as λn < 1 − ε. This distribution is
studied in the next section. We will discuss the peak-age metric
in Section V.

III. STEADY-STATE DELAY VIOLATION PROBABILITY

In this section, we focus on the analysis of the steady-state
delay violation probability. This is defined as

Pdv(d0) = lim
m→∞

Pr{Dm ≥ d0/n} = Pr{D ≥ d0/n}, (2)

where D is the steady-state delay and d0 is the desired latency
constraint (measured in CUs). To characterize Pdv(d0), we will
first derive the PGF of D, and then obtain Pdv(d0) implicitly
through an inversion formula. As the PGF of the delay D for
our setup is not directly available in the literature, although its
derivation follows along the steps described in [19, Sec. 4.6.2],
we provide it in the following theorem.

Theorem 1: For every ε > 0 such that λn < 1− ε, the PGF
of the steady-state delay D for the frame-synchronous model is



GD(s) = (1− λn/(1− ε))

· (1− s)((1− λ)
n
(1− εs)n − (1− λ+ (λ− ε)s)n)

(1− (1− λ)n)(s(1− εs)n − (1− λ+ (λ− ε)s)n)
. (3)

Proof: See Appendix A.
The delay violation probability (2) can be obtained from (3)

through the following inversion formula

Pdv(d0) = 1−
(

1

2πi

∮
C

GD(s)

(1− s)sd−1
ds

)
1{d ≥ 2} (4)

where d = dd0/ne and C is a circle centered at the origin of the
complex plane enclosing all poles of GD(s)/(1− s). Since the
contour integral in (4) is not known in closed form, the numerical
evaluations of Pdv(d0) we shall present in Section VI are based
on a recursion-based z-transform inversion [20, Eq. (10)] of
GD(s)/(1− s).

A reduced-complexity approach to compute the delay viola-
tion probability from (3) is through the saddlepoint method [21,
Eq. (2.2.10)], which, under the assumption that dd0/ne >
E[D] = lims↑1G′D(s), results in the following approximation2

Pdv(d0) ≈
B0(θσ(θ))

σ(θ)(1− e−θ)
eκ(θ)−θdd0/ne. (5)

In (5), κ(x) = log(GD(e
x)), θ = arg minx∈R κ(x)−x dd0/ne,

σ(x) =
√
κ′′(x), and B0(x) = xex

2/2Q(x), where Q(x) is the
Gaussian Q-function and the prime notation denotes derivatives.

We present next, for comparison purposes, an upper bound
on (2) obtained through a stochastic-network calculus ap-
proach [15]. The proof of this bound, which is easier to evaluate
than (4) but less tight, involves specializing the general result
reported in [5, Thm. 1] to our setup.

Theorem 2: The delay violation probability Pdv(d0) in (2) is
upper-bounded as

Pdv(d0) ≤ inf
s>1:

GB (s)GH(1/s)<1

GH(1/s)
d−1

1−GB(s)GH(1/s)
, (6)

where d = dd0/ne and the PGFs GB(s) and GH(s) are

GB(s) = (1− λ+ λs)
n
, GH(s) = ε+ (1− ε)s. (7)

Proof: By following the analysis in [12, Sec. 4.4], we have

Pdv(d0) ≤ lim
t→∞

inf
s>1

∑t

u=0
GB(s)

t−u
GH(1/s)

t+d−1−u (8)

≤ inf
s>1

GH(1/s)
d−1∑∞

u=0
GB(s)

u
GH(1/s)

u
. (9)

Here, (8) follows from [12, Eqs. (21)–22)]. We obtain (6) by
computing the geometric series in (9).

IV. ASYNCHRONOUS MODEL AND ANALYSIS

We consider a variation of the setup described in Section II,
in which, if the buffer is empty when a packet arrives, the
corresponding codeword is transmitted starting from the next
available CU. We refer to this model as being frame asyn-
chronous. The rationale for this terminology is that, in this setup,

2See [21, p. 27] for an extension to the case dd0/ne < E[D].
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Fig. 1. Peak age of information for the frame-synchronous model: Tm is the
frame index corresponding to the arrival of bulk m; Tm + Dm is the frame
index corresponding to its departure; the peak age Ap,m is the age of information
just before the mth bulk departs.

frame synchronization between transmitter and receiver needs
to be reacquired whenever the buffer is empty.

Since in the frame-asynchronous case packets are not grouped
into bulks, this setup can be modeled as a Geo/G/1 queue. The
PGF of the steady-state delay D measured in CUs is given in the
following theorem, whose proof follows along the same lines as
the proof of Theorem 1.

Theorem 3: For every ε > 0 such that λn < 1− ε, the PGF
of the steady-state delay for the frame-asynchronous model is

GD(s) =
(s− 1)(1− ε− λn)sn

s− (1− λ)− (λ+ ε(s− 1))sn
. (10)

The delay violation probability and its saddlepoint approxima-
tion can be obtained by proceeding as in Section III. However, dif-
ferently from Section III, we cannot obtain a stochastic-network
calculus upper bound similar to the one in Theorem 2. Indeed, in
the frame-asynchronous setup, the independence assumption
made in [5, Lem. 4], which is needed in proof of the delay
violation probability upper bound [5, Thm. 1], is violated.

V. STEADY-STATE PEAK-AGE VIOLATION PROBABILITY

We next characterize the violation probability of the steady-
state peak age for both the frame-synchronous and frame-
asynchronous models.

The peak-age of information is the value of the age of infor-
mation just before an update is received (see Fig. 1). The peak
age Ap,m can be written as [17, Eq. (9)]

Ap,m = max{Dm−1,Tm − Tm−1}+ Sm. (11)

In words, it is the sum of the service time of the mth bulk Sm
and the maximum between the delay Dm−1 of the (m − 1)th
bulk of packets and the difference Tm − Tm−1 between the
frame indices corresponding to the arrival of the mth and the
(m − 1)th bulks. The PGF of the steady-state peak age Ap =
max(D,T2 − T1) + S1 can be derived similarly as in [17, Thm.
9] and is given in the next theorem.
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Fig. 2. Delay violation probability vs. blocklength.
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Fig. 3. Delay violation probability and its saddlepoint approximation.

Theorem 4: For every ε > 0 such that λn < 1− ε, the PGF
of the peak age of information Ap at steady state for the frame-
synchronous model is

GAp(s) =
(1− λ+ (λ− ε)s)n − (1− εs)n(1− λ)n

(1− εs)n(1− (1− λ)n)

.

(
GD(s)−

(1− s)GD((1− λ)ns)
1− (1− λ)ns

)
(12)

where GD(s) is given in (3). For the frame-asynchronous model
the steady state peak age of information is given as

GAp(s) =
(1− ε)sn

1− εsn

(
GD(s)−

(1− s)GD((1− λ)s)
1− (1− λ)s

)
(13)

where GD(s) is given in (10).
The peak-age violation probability and the corresponding

saddlepoint approximation for both cases can be obtained by
proceeding as in Section III.

VI. NUMERICAL RESULTS

Throughout this section, for a given size k (measured in bits)
of the information packet and for a given blocklength n, we use
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Fig. 4. Maximum throughput vs blocklength for three different SNR values.
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Fig. 5. Maximum throughput versus blocklength for three different values of
the information payload k.

Shannon’s achievability bound [22, Eq. (3)], which is the tightest
achievability bound known for the AWGN channel, to determine
the packet error probability ε(k, n). For the parameter range
considered in this section, using instead the easier-to-compute
normal approximation [1, Eq. (296)] yields very similar results.

In Fig. 2, we illustrate the dependence of the delay violation
probability on the blocklength n. We choose P = 5dB, k =
100 information bits, and arrival rate λ = 10−3 packets/CU.
We observe there exists an optimum blocklength n, and, hence,
an optimum code rate k/n, that minimizes the delay violation
probability for all values of d0 considered in the figure. In fact,
on the one hand, when the blocklength is small, the packet error
probability is large and so is the number of retransmissions,
yielding a large probability that the delay exceeds the threshold.
On the other hand, when the blocklength is large, the packet error
probability is small, but even a small number of retransmissions
is sufficient to generate a large delay. Note that the jumps in
the plot, which occur at submultiples of d0, are caused by the
change in the number of available retransmission rounds.

A comparison between the delay violation probability (4),



computed through a recursion based z-transform inversion, and
the reduced-complexity saddlepoint approximation (5) is drawn
in Fig. 3, where it is possible to appreciate that the saddlepoint
approximation is extremely accurate.

Next, we study the maximum throughput, which we define
as the product kλ∗ between the number of information bits per
packet k and the maximum packet arrival rate λ∗ achievable
under a constraint on the delay violation probability. In Figs. 4
and 5, the maximum throughput is plotted as a function of the
blocklength n for different values of P and k, respectively. In
both figures, we set d0 = 500 CUs and a target delay violation
probability εd = 10−3. As a reference, we also plot throughput
estimates obtained using the upper bound on the delay violation
probability (6), which relies on stochastic network calculus. This
bound is accurate only for low SNR or large k. Indeed, for
the case P = 10dB and k = 100 bits depicted in Fig. 4, the
throughput estimate based on (6) is about 20% off. Although
the bound (6) provides a loose throughput estimate, it predicts
accurately the value of the throughput-maximizing blocklength.

To conclude, we elaborate on the difference between op-
timizing a system for a target average delay and optimizing
it for a target delay violation probability. To this end, we fix
λ = 10−3, P = 5dB, k = 100 bits, and d0 = 500 CUs.
For these parameters, the blocklength values of n = 100 CUs
and n = 140 CUs result in very similar average delays, namely
about 154 CUs and 152 CUs, respectively. However, they yield
significantly different delay violation probabilities, namely about
1.4 × 10−2 and 2 × 10−4, respectively. This highlights the
importance of performing delay violation probability analyses
in latency-critical wireless systems.

APPENDIX A
PROOF OF THEOREM 1

Let us denote by Rm the number of bulks remaining in the
buffer just after the mth bulk leaves the buffer, i.e.,

Rm = QTm+Dm
. (14)

Since the number of bulks arriving in the interval (Tm +
Dm,Tm+1 + Dm+1) is independent of Rm, we conclude that
{Rm}∞m=1, is a Markov chain governed by

Rm+1 = max{Rm − 1, 0}+
Sm+1∑
t=1

1
{
BTm+1+t > 0

}
. (15)

Note that the random variables {1{Bt > 0}}∞t=1 and {Sm}∞m=1

are i.i.d., and independent of {Rm}∞m=1. Hence,

Rm+1 ∼ max{Rm − 1, 0}+ U, (16)

where U is the number of bulks of packets arriving during the
service time of a bulk, which is given by U =

∑S1

t=1 1{Bt > 0}.
The PGF of the steady-state buffer-size R is [23, Eq. (11.3.11)]

GR(s) = (1− E[U])
(s− 1)GU(s)

s−GU(s)
, E[U] < 1. (17)

Since R ∼
∑D
t=1 1{Bt > 0}, thenGD(s) = GR(G

−1
1{B1>0}(s)),

where

G1{B1>0}(s) = (1− λ)n + s(1− (1− λ)n). (18)

Furthermore, from the definition of U and from (1), we obtain
the equality

E[U] = E[1{B1 > 0}]E[H1]E[N1] = λn/(1− ε). (19)

Next, we observe that GU(s) = GS1

(
G1{B1>0}(s)

)
, GH1(s) =

(1− ε)s/(1− εs), and GS1
(s) = GN1

(GH1
(s)) where

GN1
(s) =

(1− λ+ λs)
n − (1− λ)n

1− (1− λ)n
. (20)

Algebraic manipulations yield (3).
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