

Industrial Biotechnology

UNCERTAINTY ANALYSIS

A tool to consistently evaluate lignocellulosic bioethanol processes at different system scales

David Benjamin Nickel

Rickard Fornell

Matty Janssen

Carl Johan Franzén

Bioethanol – The current situation

World liquid fuels production and consumption balance

EIA (2017): Short-Term Energy Outlook, October 2017; https://www.eia.gov/outlooks/steo/pdf/steo_full.pdf, p.13; retrieved: 13.10.2017

Biofuels production worldwide

BP (2017): BP Statistical Review of World Energy 2017;

https://www.bp.com/content/dam/bp/en/corporate/pdf/energy-economics/statistical-review-2017/bp-statistical-review-of-world-energy-2017-full-report.pdf; retrieved: 13.10.2017

Challenges in lignocellulosic processes

Measurement challenges

- Turbidity
- Inhomogeneties
- Lack of sensor equipment for online measurements
- Uncertain measurements

Instable processes

Lack of mechanistic knowldge

Suboptimal process design

Challenges in lignocellulosic processes

Multi-scale uncertainty analysis- Methodology

System scales in the bioethanol process

Macro-molecular	Bioprocess scale	Factory scale	Global scale	Global scale
scale				

The bioprocess model

- **Enzyme adsorption:** second order kinetics
- Hydrolysis inhibited by glucose and ethanol
- Ethanol dependent cell death
- Ethanol formation only yield dependent

Enzyme
Inaccessible lignocellulose
Released sugar (glucose + xylose)
Inhibitors
Ethanol

Yeast cells

Wang, R., Unrean, P., & Franzén, C. J. (2016). Model-based optimization and scale-up of multi-feed simultaneous saccharification and co-fermentation of steam pre-treated lignocellulose enables high gravity ethanol production. *Biotechnology for biofuels*, *9*(1), 88

The bioprocess - Process alternatives

Batch process

Multi-feed process

The batch process – Asymptotic stability

Simulation of batch process

Histogram of ethanol conc. at each simulation time

Techno-economic analysis

Factory scale Global scale

Flowsheet model and techno-economic analysis

Flowsheet model and techno-economic analysis

Flowsheet model and techno-economic analysis

Step 1: Data collection

Method

Ghose, T. (1987). "Measurement of cellulase activities." <u>Pure and applied Chemistry 59(2): 257-268.</u>

Step 2: Distribution fit

Generalized extreme value distribution

Propagation in multifeed process

Long process, shortage possible. Feeding restricts variability in process time.

Propagation in batch process

Practically impossible due to mixing and control problems!

TEA of multifeed process

Products [MW] and value of product [€/kWh]

How to improve the multifeed?

- Faster additions of solids
 - → estimated saving of process time: ca. 24 h
- Improve fermentation yield
 - Simulated to be 0.42 g_{EtOH}/g_{total sugars}
 - Redirect xylose consumption to ethanol production instead of biogas
 - Methods: genetic engineering improved preadaptation

The impact of varibility on process times in a batch process

Introduction of process stop criterion: Stop process if $q_{EtOH} < 0.1$ g/Lh

Resulting differences in process time due to stop criterion

- Stop criterion can be used to execute online control over solid feed in multifeed process
- Possible directions of **batch process development**:
 - ☐ Define range of ethanol yields at average (median) process time
 - ☐ Optimize process at average (median) process time

Life cycle assessment

Life cycle assessment

Global scale

Life cycle assessment

Calculates the potential environmental impact of ethanol production

Inputs:

Database

Bioreactor model

Flowsheet model

Software: openLCA

Possible applications of multi-scale uncertainty analysis

Raw material variation

- Location
- Harvest time
- Composition of biomass
- Storage
- Cultivars
- Pretreatment

Other

- Optimal process operation time
- Model validation
- Model-based design of experiments

The multi-scale uncertainty concept:

Includes variability assessment in early process development

- Allows to determine stable process configurations
- Allows for multi-objective optimization

 Should allow for the determination of optimal experimental conditions to perform model validation experiments

CHALMERS UNIVERSITY OF TECHNOLOGY

Ruifei Wang
Chalmers University of Technology
Department of Biology and Biological Engineering
Division of Industrial Biotechnology

Funded by:

Data flow between scales

