CHALMERS

UNIVERSITY OF TECHNOLOGY

Industrial Biotechnology

UNCERTAINTY ANALYSIS

A tool to consistently evaluate lignocellulosic bioethanol processes at different system scales

David Benjamin Nickel

Rickard Fornell

Matty Janssen

Carl Johan Franzén

Bioethanol – The current situation

million barrels per day million barrels per day 102 projectio 100 98 96 94 92 90 88 86 Q1 2012 Q1 2016 Q1 2017 Q1 2018 Q1 2013 O1 2014 Q1 2015 Implied stock change and balance (right axis) éia Source: Short-Term Energy Outlook, October 2017 World production (left axis) World consumption (left axis)

World liquid fuels production and consumption balance

CHALMERS

UNIVERSITY OF TECHNOLOGY

Biofuels production worldwide

EIA (2017): Short-Term Energy Outlook, October 2017;

https://www.eia.gov/outlooks/steo/pdf/steo_full.pdf, p.13; retrieved: 13.10.2017

BP (2017): BP Statistical Review of World Energy 2017;

https://www.bp.com/content/dam/bp/en/corporate/pdf/energy-economics/statistical-review-2017/bp-statistical-review-of-world-energy-2017-full-report.pdf; retrieved: 13.10.2017

Challenges in lignocellulosic processes

Measurement challenges

CHALMERS

UNIVERSITY OF TECHNOLOGY

- > Turbidity
- Inhomogeneties
- Lack of sensor equipment for online measurements
- Uncertain measurements

Instable processes

Lack of mechanistic knowldge

Suboptimal process design

Challenges in lignocellulosic processes

CHALMERS

CHALMERS

Multi-scale uncertainty analysis- Methodology

CHALMERS Industrial Biotechnology UNIVERSITY OF TECHNOLOGY System scales in the bioethanol process Raw material Pre-treatment CO2 Enzyme Yeast Propagation Production Techno-economic assessment analysis SS(C)F fermentation Distillation Ethanol Hydrolysis model **Bioprocess model** Flowsheet model Techno-economic analysis Supply chain model Life cycle assessment Macro-molecular Global scale Bioprocess scale Factory scale Global scale scale

The bioprocess model

CHALMERS

UNIVERSITY OF TECHNOLOGY

- **Enzyme adsorption:** second order kinetics
- Hydrolysis inhibited by glucose and ethanol
- Ethanol dependent cell death
- Ethanol formation only yield dependent

Wang, R., Unrean, P., & Franzén, C. J. (2016). Model-based optimization and scale-up of multi-feed simultaneous saccharification and co-fermentation of steam pre-treated lignocellulose enables high gravity ethanol production. *Biotechnology for biofuels*, *9*(1), 88

Enzyme

Inhibitors

Ethanol Yeast cells

00

Inaccessible lignocellulose Released sugar (glucose + xylose)

The bioprocess - Process alternatives

Batch process

CHALMERS

Multi-feed process

The batch process – Asymptotic stability

110 1 1 1 1 cellulose [g/L] glucose [g/L] 0.5 40 90 35 0 0.5 0 0.5 0 0.5 time (h) time (h) time (h) absorbed enzyme [FPU/gWIS] 20 4 ethanol [g/L] cells [g/L] 2 4.2 0.5 0 0.5 1 0 1 0 0.5 1 time (h) time (h) time (h) sugar [g] ×10⁴ 5500 2.8 volume [L] xylan [g/L] 5498 2.6 released 5496 2.4 0.5 0.5 0.5 0 1 0 0 time (h) time (h) time (h)

Simulation of batch process

Histogram of ethanol conc. at each simulation time

CHALMERS

Techno-economic analysis Raw material Pre-treatment CO2 Enzyme Yeast Propagation Production Life cycle Techno-economic assessment analysis SS(C)F fermentation Distillation Ethanol Hydrolysis model **Bioprocess model** Flowsheet model Techno-economic analysis Supply chain model Life cycle assessment Factory scale Global scale

CHALMERS

Flowsheet model and techno-economic analysis

CHALMERS

Flowsheet model and techno-economic analysis

Pinch analysis

2018-05-03

CHALMERS

CHALMERS

UNIVERSITY OF TECHNOLOGY

Flowsheet model and techno-economic analysis

Step 1: Data collection

CHALMERS

UNIVERSITY OF TECHNOLOGY

Step 2: Distribution fit

Generalized extreme value distribution

2018-05-03

Propagation in multifeed process

CHALMERS

Propagation in batch process

Long process, shortage possible. Feeding restricts variability in process time.

Practically impossible due to mixing and control problems!

TEA of multifeed process

CHALMERS

UNIVERSITY OF TECHNOLOGY

Products [MW] and value of product [€/kWh]

How to improve the multifeed?

- Faster additions of solids

 → estimated saving of process time: ca. 24 h
- Improve fermentation yield
 - Simulated to be 0.42 g_{EtOH}/g_{total sugars}
 - Redirect xylose consumption to ethanol production instead of biogas
 - Methods: genetic engineering improved preadaptation

The impact of varibility on process times in a batch process

Introduction of process stop criterion: Stop process if $q_{EtOH} < 0.1$ g/Lh

Resulting differences in process time due to stop criterion

- Stop criterion can be used to execute online control over solid feed in multifeed process
- Possible directions of **batch process development**:
 - Define range of ethanol yields at average (median) process time
 - **Optimize process at average (median) process time**

Flow

Life cycle assessment

 Calculates the potential environmental impact of ethanol production

Inputs: ۲

CHALMERS

UNIVERSITY OF TECHNOLOGY

Database Bioreactor model Flowsheet model

Software: openLCA

Contribution tree: Cellic CTec2. PEG. 30% DM. 7.5 FPU. PSSF

Fefrom shrub land, sclerophyllous - resource/land climate change - GWP 100 V Impact category

Contribution	Process		Amount	Unit
□ 100.00%		ethanol, product, PEG, Cellic CTec2, 30% DM, 7.5 FPU, PSSF	2.56378	kg CO2-Eq
99.43%		ethanol, fermentation, PEG, Cellic CTec2, 30% DM, 7.5 FPU, PSSF	2.54920	kg CO2-Eq
75.59%		enzyme, Cellic CTec2 - DK	1.93798	kg CO2-Eq
⊟ 20.26%	-	straw, pretreated - DK	0.51942	kg CO2-Eq
- 19.43%	-	straw, prepared - DK	0.49810	kg CO2-Eq
± 18.29%	-	wheat IP - CH	0.46904	kg CO2-Eq
± 00.74%		transport, lorry >16t, fleet average - RER	0.01902	kg CO2-Eq
± 00.39%		electricity mix - DK	0.01004	kg CO2-Eq
00.83%		Combustion, dry wood residue, AP-42 (burning lignin) - RNA	0.02132	kg CO2-Eq
± 02.02%	1	Polyethylene glycol	0.05182	kg CO2-Eq
+ 00.86%		sodium hydroxide, 50% in H2O, production mix, at plant - RER	0.02205	kg CO2-Eq
+ 00.70%		whey, to fermentation - CH	0.01792	kg CO2-Eq
00.57%		Combustion, dry wood residue, AP-42 (burning lignin) - RNA	0.01458	kg CO2-Eq

Possible applications of multi-scale uncertainty analysis

Raw material variation

CHALMERS

UNIVERSITY OF TECHNOLOGY

- Location
- Harvest time
 Harvest time
- Composition of biomass
- Storage
- Cultivars
- Ø Pretreatment

Other

- Optimal process
 operation time
- Model validation
- Model-based design of experiments

The multi-scale uncertainty concept:

- Includes variability assessment in early process development
- Allows to determine stable process configurations
- Allows for multi-objective optimization
- Should allow for the determination of optimal experimental conditions to perform model validation experiments

CHALMERS

Ruifei Wang

Chalmers University of Technology Department of Biology and Biological Engineering Division of Industrial Biotechnology

Funded by:

Data flow between scales

CHALMERS

