MULTI-SCALE UNCERTAINTY ANALYSIS

A tool to systematically consider variability in lignocellulosic bioethanol processes
Bioethanol in a circular economy

Usage of **fossil fuels** steadily increasing

ca. 50% is used for transportation

Bioethanol sustainable alternative to fossil fuels
Variability in the bioethanol process

Raw materials

- Location
- Harvest time
- Composition of biomass
- Storage

Measurement and control

- High turbidity
- Local viscosity differences
- Solid compounds in liquid mixture
- Complex chemical reaction system
Effect of variability on process

Integrate variability in process development at different scales!
Multi-scale uncertainty analysis – results & objectives

Process definition + Variability/uncertainty definition → Models at different system scales

Quantify effect on process outcomes:
- process yield
- process time (productivity)
- process synthesis and design
- process economics
- environmental impact

Consequences:
- Improve models (sensitivity analysis)
- Suggest feasible supply chain/process configurations
- Suggest new experimental procedures
System scales in the bioethanol process
The bioprocess

- Fermentation
- Saccharification (enzymatic hydrolysis)

- enzyme
- non-accessible lignocellulose parts
- sugars
- inhibitors
- ethanol
- yeast cells
The bioprocess/ hydrolysis model

- Macro-kinetic model consisting of
 - 8 differential equations
 - 4 explicit algebraic equations

- Numerical solution in MATLAB using ode15s solver for stiff problems

Simulation results for selected state variables for a batch process at demo plant (10m³) scale
System scales in the bioethanol process

<table>
<thead>
<tr>
<th>Macro-molecular scale</th>
<th>Bioprocess scale</th>
<th>Factory scale</th>
<th>Global scale</th>
<th>Global scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>describe enzyme action</td>
<td>describe bioprocess</td>
<td>describe process integration</td>
<td>describe cost and profits</td>
<td>describe environmental impact</td>
</tr>
<tr>
<td>maximize hydrolysis yield</td>
<td>develop bioprocess</td>
<td>develop process synthesis and design</td>
<td>develop supply chain</td>
<td>develop process based on environmental impact</td>
</tr>
<tr>
<td>develop enzyme cocktail</td>
<td>perform optimal experimental designs</td>
<td>perform optimal control</td>
<td>select economically best process alternative(s)</td>
<td></td>
</tr>
</tbody>
</table>
Flowsheet model and techno-economic analysis

Bioprocess model

OLE server

VBA

Process yields

SuperPro Designer
Flowsheet model and techno-economic analysis

Bioprocess model

OLE server

Process yields

VBA

Yield definitions, mass balances

Experiments

• Process design
• Reactions
• Scheduling

Analyses

• Utility systems
• Up/downstream units

External sources

SuperPro Designer

Bioreactor chain modelling
Flowsheet model and techno-economic analysis

Bioprocess model

- Process design
- Reactions
- Scheduling
- Utility systems
- Up/downstream units

Experiments

- Process design
- Reactions
- Scheduling

Analyses

External sources

Pinch analysis
Flowsheet model– the outputs

mass/energy balances to:

- Techno-Economic Estimates
- Supply chain analysis
- Life cycle analysis
System scales in the bioethanol process
Life cycle assessment

- Calculates the potential environmental impact of ethanol production

- Inputs:
 - Database
 - Bioreactor model
 - Flowsheet model

- Software: openLCA
Data flow between scales

- **Excel/VBA**: Data node
- **Superpro Designer**: Process simulation
- **OpenLCA**: Life Cycle Assessment
- **Matlab**: Kinetic modelling
 - Yields
 - Reactions
 - Design parameters
- **Process mass balance**
- **Process energy balance**
- **Techno-economic estimate**
- **Environmental assessment**
Variability in enzymatic activities – a case study

Step 1: Data collection

Step 2: Distribution fit

- Generalized extreme value distribution
Variability in enzymatic activities – a case study

Step 3: Propagation in bioprocess model

Step 4: Techno-economic assessment

Lower heating value [MW]

- Power
- Biogas
- Ethanol

<table>
<thead>
<tr>
<th></th>
<th>Minimum</th>
<th>Maximum</th>
<th>Mean</th>
<th>5% Percentile</th>
<th>95% Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biogas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethanol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The multi-scale concept:

- includes variability assessment in early process development

- allows to determine stable process configurations

- allows for multi-objective optimization

- shall allow to determine optimal experimental conditions to perform model validation experiments

- Ongoing: Include life cycle assessment in calculations
Rickard Fornell
Research Institutes of Sweden
Built environment/Energy and Circular Economy

Matty Janssen
Chalmers University of Technology
Department of Technology Management and Economics
Division of Environmental Systems Analysis

Carl Johan Franzén
Chalmers University of Technology
Department of Biology and Biological Engineering
Division of Industrial Biotechnology

Ruifei Wang
Chalmers University of Technology
Department of Biology and Biological Engineering
Division of Industrial Biotechnology

Funded by: Swedish Energy Agency