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Abstract

To improve the assembly quality during production, expert systems are often used. These experts typically use a system model as a basis for
identifying improvements. However, since a model uses approximate dynamics or imperfect parameters, the expert advice is bound to be biased.
This paper presents a reinforcement learning agent that can identify and limit systematic errors of an expert systems used for geometry assurance.
By observing the resulting assembly quality over time, and understanding how different decisions affect the quality, the agent learns when and

how to override the biased advice from the expert software.
© 2018 The Authors. Published by Elsevier B.V.
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1. Introduction

Geometrical variations of parts or products is a common root
cause for product quality problems. For that reason, software
tools and techniques aimed at minimising the effects of geomet-
rical variations has been developed within the field of geometry
assurance and are used throughout the product realisation cycle
[1].

In addition to increased computational capacity, advances in
simulation and optimisation algorithms have lowered the com-
putation time of geometry assurance tasks from weeks to hours
and minutes in recent years. In [2], an online geometry assur-
ance algorithm used during production is therefore proposed.
This algorithm will improve the production processes and part
matching for each individual assembly task. This algorithm is
referred to as the expert system, or the expert in this paper.

The online geometry assurance expert must be able to adjust
various processes, for example fixture locator positions or task
sequences, as well as decide what parts should be assembled to-
gether. However, since the expert is based on an approximated
and simplified model of the real system or inaccurate input pa-
rameters, the control signal from the expert may not always be
correct. To reduce unnecessary residual geometrical variation
due to modelling errors or approximate dynamics in the expert,
some form of feedback loop from the real system is required.

Within Adaptive Control, one approach suiting these re-
quirements is Reinforcement Learning (RL). RL is a quickly
growing research area, which deals with optimal decision mak-

2212-8271 © 2018 The Authors. Published by Elsevier B.V.

ing in uncertain environments, e.g. for autonomous driving, or
for playing games such as Backgammon [3], Go [4], and even
computer games [5]. It has been shown that RL can be ap-
plied also in manufacturing for scheduling [6—8], maintenance
[9], and ramp-up optimisation [10]. Typically, an agent (deci-
sion maker) learns to act independently through exploration of
an environment and through exploitation of previously acquired
knowledge [11]. In this way, RL allows for high-dimensional
data — like the data present in geometry assurance tasks — and
its algorithms can be model-free. Therefore, RL is considered
to be well-suited for the problem at hand.

This paper presents the first steps towards an RL agent that
can utilise the knowledge from the geometry assurance expert
and the feedback from the real system, to improve the assem-
bly quality of the products. More specifically, an RL agent is
designed that acts in a continuous action space, to emulate the
tuning of an adjustable fixture. Important architectural consid-
erations are discussed, and using a simple low dimensional ex-
ample, the characteristics of our agent architecture is explored.

The remainder of this paper is structured as follows. Sec-
tion 2 provides an introductory background on RL and Sec-
tion 3 describes our the architecture of our RL agent. A compu-
tational example is detailed in Section 4, and finally the paper
is concluded in Section 5.

Peer-review under responsibility of the scientific committee of the 51st CIRP Conference on Manufacturing Systems.
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2. Reinforcement learning

Reinforcement learning has been around for a long time but
recent high-profile papers [4,5,12] have brought it back into the
public eye. In RL, an agent acts in an environment, from which
it observes both its current state and the outcome (so called re-
ward) of its actions. Based on these observations, the goal is to
learn better actions in the future such that the reward (which in
the context of this paper refers to production quality) is maxi-
mized.

More formally this can be defined as following. Let S be a
set of states that define an Markov Decision Process where each
s € § contains a set of permitted actions A(s). Given a state s
the agent is tasked with selecting an action a, which transitions
s to s” and yields the reward R(s, @). In many settings the agent
not only needs to take into account the immediate reward but
also the possible rewards in the new state s’, although in this pa-
per the example focuses on the case where s’ is always the final
state in which no future rewards can be observed. The RL agent
iteratively learns a policy for selecting actions by observing the
rewards for the state and actions pairs. In other words, the agent
learns by iteratively improving estimates of the expected value
(i.e. rewards) of its actions and which actions yield the best
value. If the actions are selected according to the agent’s policy
during learning, it is known as on-policy learning. If the actions
partly (or totally) deviate from the policy, it is known as an off-
policy algorithm. The learning process in many RL algorithms
require that the learning is performed on-policy, restricting how
negative rewards —i.e. losses, occurred during training — can be
limited by restricting the agents action until its performance is
satisfactory.

In the case considered in this paper, an expert is already in
place and ought to be utilised. Within RL, work on behavioural
cloning [13,14] and imitation learning [15,16] attempt to repli-
cate an expert, teacher, or behaviour. Also the concept of in-
verse reinforcement learning could be used to learn and draw
conclusions about the expert’s behaviour [17-19].

However, the objective is to find an agent which does not
only mimic the expert, but actually surpasses the expert’s abil-
ity. An example with the same aim can be found in [20], where
the authors improve the solution to structured prediction prob-
lems by occasionally following a given reference policy. In that
particular case, bounds on the regret (i.e., the deviation from an
optimal policy) can be guaranteed even if the reference policy
of the expert is sub-optimal. Our interest though, lies more in
the practical aspect of quickly improving upon the expert. The
expert’s actions are thus regarded as additional information that
should be used by the RL agent.

Another motivation for many RL approaches are often to re-
place the expert, since it is expensive or impractical to use. An
example of this is [21] where they use previous examples from
an expert to as a method for demonstration and pre-training to
speed up the agents learning process but do not allow the agent
to further interact with the expert during training. The goal of
this paper, however, is to combine the two methods to obtain
improved performance, instead of replacing the expert. Rather
than teaching the agent to mimic the expert, before attempting
to improve upon it, we propose that the agent instead incre-
ments the expert’s control action. This should result in a sim-
pler representation, since the information comprising the expert

does not need to be modelled by the agent.

Further information on RL can be found in [11]. A descrip-
tion of the algorithm for achieving learning in this paper can be
found in Subsection 3.3.

3. The design of the RL agent

In this paper, a simplified use case is used for evaluating the
suggested approach. The expert has a possibility to adjust a
fixture that influenced the final product geometry.

The control actions from a geometry assurance expert could
be both discrete (task order and part matching) and continuous
(fixture adjustment and positioning). But since this paper fo-
cuses on the specific case of an adjustable fixture, the RL agent
will only have a continuous action space.

3.1. Continuous action space

RL is often used for tasks with action spaces that are small
and discrete or for problems that have been approximated
through discretisation [22,23]. Although most algorithms are
created for discrete actions, there are also a few that handle
continuous action spaces. One of those is Deep Determinis-
tic Policy Gradient (DDPG) [12], which is used in this paper.
DDPG has successfully been applied to a variety of continuous
control problems and falls within the family of actor-critic al-
gorithms [11]. Actor-critic algorithms are characterized by the
agent consisting of two parts; the actor learns to take actions
and the critic learns to evaluate how good an action is, such
that it can give feedback to the actor. Additionally DDPG is
an off-policy algorithm [12], which allows for sampling actions
according to any distribution (such as one that depends heavily
on the expert), without affecting the learning of the agent.

3.2. Sample efficiency

Another important consideration is sample efficiency. In
certain settings, many RL algorithms use several millions of
samples for training [24]. From the geometry assurance per-
spective, it is not enough just to perform well after learning
for many iterations, the agent also must not incur unreasonable
quality defects, since the agent is changing the actual results of
the production process. This problem is difficult to address, but
one mechanism that improves this aspect, is experience replay
that has been used to improve stability of learning [5,12]. Ex-
perience replay allows the agent to keep a replay memory of
previous experiences to learn from. Each time the agent takes
an action, the tuple (state, action, resulting reward) is stored in
a database. The training of the agent is then purely done by
sampling tuples from this memory and training with them. This
replay memory can have a maximum size, removing the old-
est examples as new data is observed. In [25,26] they improve
the sample efficiency for tasks with discrete actions by allowing
the agent to remember previous performance of the different ac-
tions in state similar to its current state and using this to guide
exploration.

Additionally, a mechanism which restricts the agents deci-
sion space is required, since the RL agent does not learn to
mimic the expert. The incorporation of such pretraining is dis-
cussed in the next subsection.
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3.3. The agent implementation

Based on the above discussion, the RL agent is based on the
DDPG algorithm, which is an actor-critic algorithm. One of the
benefits of DDPG is that it allows for off-policy learning, which
is important for ensuring good performance during the training
phase.

The RL-agent is divided into an actor part and one critic part.
The actor part will learn to take actions to adjust the fixture
based on the proposed action from the expert as well as the
measured result from the real process.

The actor

Given a measurement p and a proposed action (expert ad-
vice) ag (which together become the agent’s observation of
the state), the agent may either use the advice (case 1), or im-
prove upon it based on the information in p (case 2). A time-
varying parameter p,, will determine the probability for the RL
agent to override the expert advice, using case 2 instead of case
1. pa increases from O to 1 over an interval [k, k;] based on
% (1 — cos (%n)), where Kk is the current iteration, and is con-
stant 0, or 1 respectively, outside the interval.

The agent’s action a is sampled from

W ~ Lognormal(y, o), ! (1)

where y depends on whether the expert’s advice is used (Eq. 2)
or overridden (Eq. 3) The extent to which the agent explores the
action space is determined by the parameter o. Note that some
exploration is needed for training stability, even when using the
expert advice.

Case 1: - Use Expert Advice

The action a is sampled from W according to (1), with

2
1t = log(ag) — "7 ®)

in order to fulfil E{W] = ag.

Case 2: - Override Expert Advice

In this case, a deviation is added to u:

2
o
u =log(ag) — 5 A(p, ag; 04), (3

where A is a neural network parameterized by 65, and will
be referred to as the actor.

The lognormal distribution is selected because only positive actions are
considered in this paper. An alternative distribution could be used instead in
other applications.

The critic

The actor is complemented by a critic, which given the ob-
servation p, expert advice ag and an action a, estimates the ac-
tion value function using a neural network Q(p, ag, a; 6y), pa-
rameterized by 6.

For defining the loss functions, it will be helpful to first de-
rive the expected value of W, conditioned on overriding the ex-
pert advice (case 2):

2
my = T = apet Py 4)

Consequently, A can be interpreted® as a relative correction of
ag.

The architecture is the same for A and Q (but with separate
weights), with three fully connected layers. The two hidden
layers (32/64 units respectively) are followed by the activation
max(0, x), which is commonly known as the rectified linear unit
(ReLU), while the output layers have a linear activation func-
tion.

Agent training

The actor and critic each compute the difference between
network output and desired output based on their own loss func-
tion, according to DDPG [12]:

1 = N N
Ly =L+ > =00 dimy(p.d:02):00)  (5)
i=1
13 S N2
Lo= Zl 5 (0. a2 60) - R (©)

where N is the batch size and Lp is an extra term used for pre-
training, explained below. The loss functions are needed for
training the neural networks. For the critic loss Ly, Q is evalu-
ated at the actual action a which is fed to the environment, and
for which a corresponding reward R is received. Note, however,
that the actor loss L evaluates Q at my instead, which enables
back-propagation of gradients®.

Adam algorithm [27] is then applied on L, and Lo, with the
corresponding gradients Vg, Ly and Vg,Lg. The gradients are
then clipped, limiting the Euclidian norm, before being applied
to tune the network parameters. The actor and critic have their
own respective learning rates described in Table 1 together with
the threshold for the gradient clipping. Note that although the
critic network Q is present in La as well as Lo, its parameters
¢ are fixed when updating 64.

Pretraining
As mentioned previously, the actor loss L, incorporates a
pretraining loss Lp, which we will now explain further. This

21t can even be shown that sampling from W with y given by (3), is equiv-
alent to sampling from W with y given by (2) followed by multiplication with
eb.

3Back-propagation could not have been carried out through a, since it is
randomly sampled, and thus not differentiable w.r.t. 64.
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pretraining loss is to be applied in the beginning of training,
and thus decaying exponentially according to:

o 2
1 O 1 (ag — mw(p',al;6s)

_ () ckiH 1 E

Lp =0.5 N igl 2( . ) , @)

punishing the agent for deviating too much from the expert dur-
ing the initial phase of training (k is the current iteration, and
the half-life H is a parameter).

4. Experimental results

The proposed agent has been evaluated using a low dimen-
sional computational example with the following setup. The
process is modelled by a function y = f(a, p), where a € R
is a scalar action, p € R" is a vector of material parameters
and y € R is a scalar representing the resulting part geometry.
The objective is to apply an action to achieve a nominal part
geometry y,, i.e. minimize (y — y,)>. However, neither our ex-
pert nor agent observe the true parameters p, but rather biased
parameters p = p + b. Additionally, the expert has a small
model error such that its model f(a,p) ~ f(a, p). Given bi-
ased parameters and its imperfect model, the expert computes
an action ag = argmin,, | f(a, P) =yl

As for f(a, p), in this paper, a simple cantilever beam bend-
ing equation has been used

3
ap
flap) =3 =,
D2p3
and with a model error
3.05
N ap
fla,p) =3 —,
P2P3

where a is the force applied to the beam, p; the length, p; the
modulo of elasticity, p3 the area moment of inertia and the re-
sulting output is the beam deflection. This can be seen as a sim-
plified example of an actuated fixture that flexes non-nominal
parts into position by applying a force.

A beam instance is generated synthetically from one in four
classes of beams. All classes are equally probable, and each
is characterised by a multivariate normal distribution of length
and elasticity. The bias b also has a class specific value.

From an RL perspective, the case example can be regarded
as a continuum armed contextual bandit [28,29]. We select the
reward as R = —(y — y,)?, since the agent is set to maximize R.

The experiments are performed on variations of the default
agent described in Subsection 3.3. The different variations are:

o Default
e No experience replay*

“Here the batch size is not used, the sample observed by the agent is used

Table 1. Default parameters for the experiments

Parameter Value
Repeated runs for each setting 5
Iterations 30000
Actor learning rate 104
Critic learning rate 1073
Gradient clipping threshold 10°
Batch size for experience replay 8
Exploration parameter o 0.1
Replay memory buffer 00
Pretraining half-life H 2000
[k1, k>] for increasing pa [100, 2000]
—— Default Always override expert
---------- Expert ----- No experience replay
0 --—-- No expert - - - No pretraining H

—0.05 |

Cumulative average reward

—-0.1

0 10,000

20,000

30,000

Iterations

Fig. 1. The normalized cumulative reward for each agent variation. Each vari-
ation is run 5 times, after which the data is averaged over the runs.

e No pretraining (deviating from the expert is not punished)

o Always override expert (instead of slowly increasing the
probability that the agent overrides the expert)

e No expert’

4.1. Maximizing cumulative reward

In addition to the final performance of the model, the cost of
getting there is interesting in a manufacturing setting. A mea-
sure of this is the cumulative reward, normalized by the amount
of samples. Figure 1 depicts the averaged results of the experi-
ments for each variation of the agent.

It can be observed, that the proposed RL agent outperforms
the expert for two variations. Table 2 clarifies where the agent
variations cross the reference line (the expert by itself). Al-
though the “No experience replay” variation performs well ini-
tially, it seems that removing this feature leads to temporal in-
stability and worse long-term results (i.e. the “nose-dive” after
approximately 15000 iterations). Furthermore, without the ini-

immediately to update the loss function rather than being stored in the replay
memory.

SEssentially this is a combination of “No pretraining” and “Always override
expert”. More specifically, p4 = 1 and “Case 2. - Override Expert Advice” is
always used. Also, the actor/critic networks A and Q will no longer be fed with
ag. However, we set ag = 1 in eq. (3). The actor network A can then no longer
be interpreted as a correction of the expert advice, since eq. (4) will be changed
from my = age® to my = €. In addition, no pretraining is applied.
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Table 2. Average number of iterations until the agent outperforms the expert.
Agent variation Iterations
Default 1178
No experience replay Did not outperform expert
No pretraining Did not outperform expert
Always override expert 1188
No expert Did not outperform expert

tial guidance of the expert (“No pretraining” and ‘“No expert”)
large initial negative rewards incur that require many iterations
to average out. For the remaining two variations (“Default” and
“Always override expert”), however, a significant improvement
can be observed.

Whether the actions are sampled according to Equation 2 or
3 appears (at least for our configuration in this reasonably sim-
ple case) to make little difference. For the “Always override
expert” variation, the agent always samples the actions accord-
ing to Equation 3 and, therefore, learns in an almost on-policy
fashion. In contrast to that, the “Default” agent learns initially
in an off-policy fashion, which sometimes has been found to be
slower [11]. In both variations, the agent will quickly learn to

Relative action deviation for class 1

0.6 :
.......... Expert
_ Agent
- - - Optimal action
o
2
get
&
s
[}
<
z
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5]
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| |
0 10,000 20,000 30,000
Iterations
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0.6 :
.......... Expert
—_— Agent
- - - Optimal action
- 04f R
9
B
8
s
[}
o
[}
2
B
5]
o)
~
! !

Iterations

behave similarly to the expert, due to pretraining. The faster
learning from closer-to-policy sampling in the “Always over-
ride expert” variation, however, could perhaps offset a few bad
negative rewards in the beginning®.

Nevertheless, it can be seen that utilizing the expert advice
in all possible ways (i.e. the “Default”) yields in the best short-
and long-term performance.

4.1.1. Improving the actions

Figure 2 shows the result for the default agent in greater de-
tail. The relative deviation of the expert’s and the agent’s action
from the optimal action is displayed here for each beam class.
It has to be noted that the agent has no way of distinguishing
between beam classes other than identifying their different and
disjoint distributions. Furthermore, beam class and instance are
randomly sampled in each iteration.

In all four cases the agent learns to perform about as well

This also seems reasonable since the critic will have more samples near the
policy to help it learn how to guide the actor.

Relative action deviation for class 2
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Fig. 2. The deviation of the action for the expert and the agent normalized by the optimal action for the four classes respectively. The plots are smoothed using a

moving average.
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as the expert in a very short time. For class 3 and 4, we see
that the agent learns quicker to take good actions compared to
class 1 and 2. This is most likely due to a better expert being
of better aid to the agent — both in terms of guiding the action,
but also in terms of generating more relevant data, before the
agent comes into action. However, these comparisons between
the agent and the expert are not entirely fair. The agent’s ac-
tions include noise to keep the agent exploring, which would
eventually be turned off in an actual production setting, when a
satisfactory performance has been reached.

In the case of class 3, the agent does not outperform the ex-
pert (at least as long the agent keeps exploring), since the expert
is near-optimal for this class. This obviously implies, the worse
the expert is, the more it can be improved by adding an rein-
forcement learning agent.

5. Conclusion and future work

This paper has presented a first step towards a reinforcement
learning agent for improving the results of a real system for
online geometry assurance. The performances of different vari-
ations of the agent architecture have been compared and the
importance of using an expert to aid the agent on a benchmark
example has been shown. In conclusion, it is possible to close
the reality gap between an expert system and the reality through
reinforcement learning. Additionally, the overall performance
is improved, if expert and agent are utilized jointly.

In upcoming work, the proposed agent architecture will be
applied to complex geometry assurance simulations, which will
require the agent to handle high dimensional input data. The
sample efficiency also needs to be further improved, as well
as finding better ways of choosing actions, e.g. to maximise
cumulative reward in an exploration/exploitation trade-off.
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