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∗Department of Electrical Engineering, Chalmers University of Technology, Sweden
†Department of Electrical Engineering and Automation, Aalto University, Finland

Email: {mohammad.nazari, jonas.sjoberg, henkw}@chalmers.se, themistoklis.charalambous@aalto.fi

Abstract—We consider the problem of controlling a vehicle
moving towards an intersection by means of a remote controller
over an unreliable channel. This channel affects both uplink com-
munication (when the vehicle sends its state information to the
controller) and downlink information (when the vehicle receives
control actions from the controller). We propose a probabilistic
framework to compute control actions at the controller in the
presence of such unreliable communications. The controller is
evaluated under different channel conditions and compared to
two nominal controllers, one that assumes perfect communication
and one that assumes no communication. We find that for low
packet loss rates, the proposed controller leads to less aggressive
control actions than the former and generally lower cost than
the latter. We additionally consider the mismatch between the
perceived knowledge of the channel at the controller, and the
actual channel conditions. We evaluate the performance of our
controller under this mismatch, which is of interest when the
controller is designed.

I. INTRODUCTION

Urban traffic infrastructures have several hotspots that are
main causes of congestion and traffic accidents. In particular,
road intersections are among the most critical traffic zones
where the vehicles are more likely to collide while sharing the
same transport resource [1]–[3]. This fact highlights the impor-
tance of coordination algorithms for avoiding collisions, which
mostly occur due to human error. Taking advantage of recent
advances in information technology such as communications,
sensing and perception, localization, and signal processing
paves the way for design and implementation of possible cost-
effective intersection management algorithms [1], [2].

Several works on automated and assisted driving in intersec-
tions have been reported in the literature, as described in the re-
cent survey [1]. For example, in [2] an optimal control problem
for autonomous vehicles, optimizing a performance criterion
while guaranteeing safety, is formally described, while [3]
considers a model-based heuristic for obtaining a decision
order for vehicles, based on which each vehicle solves two
optimal control problems to find the trajectories of crossing
either before any or after all vehicles with higher decision
order. A practical approach to solve such problems is model
predictive control (MPC), which was also applied in [4] to
obtain optimized trajectories for vehicles in the surroundings
of an intersection, based on a centralized approach. A robust
MPC problem was studied in [5] in order to control an ego
vehicle in an intersection, avoiding collision with a target
vehicle driven by unknown, bounded control actions. Finally,

[6] takes into account a time-slot assignment approach for
collision avoidance, relying on wireless communication. What
is common in the above works is that communication is
assumed to be perfect (i.e., without packet losses or delays).

Communication imperfections have been considered in
other contexts, such as optimal estimation and control in a
scenario where the observations and control actions may be
lost while being transmitted through an unreliable communica-
tion network [7]. As communication imperfections are mostly
random, one can resort to techniques from stochastic opti-
mization to account for them when deciding control actions.
In particular, chance-constrained framework, where constraints
may be violated with a preset probability, is a useful approach
to deal with uncertainties, and has been applied in [8] to
consider uncertainties in both the system and the environment.
Solution approaches include analytical methods (e.g., based on
Gaussian approximation) and sampling methods. The sampling
approach was also adopted in [9] to deal with a stochastic MPC
problem with bounds on expected time-average of constraint
violations, where the state of the system can be measured
at each time step. Finally, [10] and [11] use an analytical
Gaussian approach to reformulate the chance constraints as
deterministic ones, based on the evolution of the covariances.

In this paper, we consider the problem of remotely con-
trolling a vehicle in the vicinity of an intersection over an
unreliable channel, modeled through a packet loss probability.
The channel impacts both uplink and downlink communica-
tion, leading to loss of vehicle state information and loss of
control actions, respectively. The control problem is modeled
as a chance-constrained MPC problem, which is solved with
a Gaussian approximation approach [11]. We propose an
approach to model the evolution of the covariance matrix,
accounting for uncertainties in the model. The evolution
of the covariance is determined for three cases: open-loop
control (where the controller is designed for the worst-case
channel condition), closed-loop control (where the controller is
designed for the best-case channel condition), and a proposed
controller, designed for arbitrary packet loss probability.

II. PROBLEM STATEMENT

The problem of remote controlling vehicles in the vicinity
of an intersection can be decomposed into a high-level control
assigning time slots for crossing the intersection for each
vehicle and then issuing low-level control commands to ensure



crossing during the assigned time slots [3]. We abstract this
problem to a simple setting, controlling a single vehicle to
cross an intersection by a fixed deadline texit, visualized in
Fig. 1.

A. Communication Model

Using vehicle-to-infrastructure (V2I) communications, the
vehicle sends its state information to the controller, which
in turn sends control commands back to the vehicle. Both
the downlink channel (from controller to vehicle) and the
uplink channel (from vehicle to controller) are unreliable,
with packet loss probability p ∈ [0, 1]. There is no feedback
channel to know if the downlink or uplink communication
has been successful. Thus the controller is not aware if the
issued control actions are applied in the vehicle and the vehicle
is not aware if the controller has received the most recent
observation.

B. Vehicle Model

The vehicle is modeled as a point mass and assumed to
follow constant acceleration motion model at time slots of
length δt, described with the following discrete-time dynamics

xi = Axi−1 + Bui−1 + wi−1, (1)

where xi is a two dimensional vector representing the state of
the vehicle at time i, which consists of the position xi and the
speed vi (i.e., xi = [xi vi]

T), A and B are given by

A =

[
1 δt
0 1

]
, B =

[
1
2δt

2

δt

]
,

coming from the classic kinematics, and ui−1 is the accelera-
tion applied in time interval [(i− 1)δt, iδt), received from the
controller. Furthermore, wi−1 ∈ R2×1 is zero-mean Gaussian
disturbance, also known as process noise, with covariance
matrix Q.

At each time i, the vehicle sends a noisy observation of its
state, modeled as

zi = xi + vi, (2)

to the controller, where vi is the observation noise, which is
normally distributed with mean zero and covariance matrix R.

C. Controller Model

The vehicle is moving towards the intersection (in the x-
axis direction) and applies the control commands provided by
the controller in order to cross the intersection not later than a
fixed time texit. Every time a state observation is provided to
the controller, the control commands are updated. Similarly,
every time new control commands are received by the vehicle,
the old control commands are overwritten by the newest.

Due to the uncertainties in the system (from process noise,
observation noise, and packet losses), however, crossing the
intersection by the time texit cannot be guaranteed when
disturbances have unbounded support. For this reason, the
controller uses the following chance constraint:

P (x (texit) ≥ xexit) ≥ 1− ε, (3)

xexit

x-axis

uplink channel

downlink channel controller

Fig. 1. Model of the scenario, where a vehicle is remotely controlled to cross
an intersection (shown as xexit) by time texit.

where x (texit) is the position of the vehicle at time texit,
xexit is the exit point of the intersection (see Fig. 1), and
ε is the allowed level of constraint violation. We interpret
the probability in (3) as being with respect to the process
and observation noises as well as the packet loss random
processes. The controller must thus have knowledge of the
vehicle dynamics, noise statistics, and packet loss probability
p. To allow for mismatch of the latter, we design the controller
for value p̂ of the packet loss probability.

III. COMMUNICATION-AWARE CONTROLLER

A. Chance-Constrained MPC Formulation

The controller computes control commands corresponding
to the optimal acceleration sequence obtained by optimizing
over a performance criterion, while accounting for the deadline
constraint. In our setting, the controller minimizes the squared
norm of the control actions, which corresponds to maximizing
both the efficiency of the vehicle (in terms of the consumed
energy) and the passengers’ comfort (by moving as smoothly
as possible). For simplicity of the explanation, we assume that
the prediction horizon N corresponds to the exit time (i.e.,
texit = N × δt), δt being the sampling time of the controller.
At every time i, 0 ≤ i ≤ N − 1, the vehicle sends its state
information to the controller. If this uplink communication is
successful, the following chance-constrained MPC problem is
solved:

minimize
ui

N−1∑
k=0

u2
i,k (4a)

subject to x̂i,k+1 = A x̂i,k + B ui,k, k < N, (4b)
x̂i,0 = x̂i|i, (4c)
P (xN ≥ xexit) ≥ 1− ε, (4d)

where x̂i,k is the estimate of the state of vehicle at time
i for k steps later (i.e., at time i + k), x̂i,0 is the initial
state for every time the problem is to be solved, and x̂i|i
represents the estimate of the state at time i given provided
observations up to time i. Solving (4) leads to a control
sequence ui , [ui,0, . . . , ui,N−1]T, which is sent to the
vehicle. The vehicle applies this control sequence as long as
no new control sequence is received. Hence, when uplink or
downlink communication is unsuccessful, the vehicle follows
the old control sequence. Additionally, before any successful
uplink or downlink communication, the vehicle applies zero
control (i.e., moves with constant speed).

It remains to describe how x̂i|i is determined and how the
chance constraint (4d) is evaluated. The latter will be described



in Section III-B, while for the former, we follow the Kalman
filtering approach from [7], leading to

x̂i|i = x̂i|i−1 + δiKi(zi − x̂i|i−1), (5)

where δi is a Bernoulli random variable with mean 1 − p,
showing the realization of the uplink packet arrivals, with δi =
0 if the uplink packet at time i has not arrived at the controller,
δi = 1 otherwise, and x̂i|i−1 represents the predicted state
at time i given the information up to time i − 1, based on
the dynamics of the system, x̂i−1|i−1, and the control actions
sequence. Denoting by prev(i) the time before time i when
the last downlink packet was received, then

x̂i|i−1 = Ax̂i−1|i−1 + Buprev(i),i−prev(i)−1. (6)

Finally, Ki in (5) represents the Kalman gain

Ki = Σi|i−1(R + Σi|i−1)−1, (7)

where Σi|i−1 is the predicted error covariance matrix for time
i given the information until i− 1, given by

Σi|i−1 = AΣi−1|i−1A
T + Q. (8)

The equation (5) is initialized by x̂first(i)|first(i) = zfirst(i),
where first(i) denotes the first time an observation is received.

B. Converting the Chance Constraint to a Deterministic Con-
straint

The distribution of the target state xN is generally hard to
compute, since even if the distribution at the current state were
known, the control action would be revised, and the future
revision of the control actions affects the distribution at time
N . Therefore, at time i, when (4) is solved, the probabilis-
tic constraint (4d) cannot be easily characterized. However,
we approximate xN as having a Gaussian distribution with
mean µ̂i,N−i and standard deviation σ̂i,N−i, which we later
elaborate on. Then, the constraint (4d) can be expressed as

P (xN ≥ xexit) = 1− Φ

(
xexit − µ̂i,N−i

σ̂i,N−i

)
, (9)

where
Φ(y) =

1√
2π

∫ y

−∞
e(−t2/2)dt (10)

is the cumulative distribution function of a zero-mean unit-
variance Gaussian random variable. This then leads to the
deterministic formulation

x̂i,N−i ≥ xexit − σ̂i,N−iΦ−1(ε). (11)

Replacing (4d) by (11) in (4) gives rise to a convex
optimization problem, which turns out to have the compact
closed-form solution

ui,k = max [0, ûi,k] , (12a)

ûi,k ,

(
xexit − σ̂i,N−iΦ−1(ε)− x̂i|i − v̂i|i(N − i)δt

)
×

N − i− 1/2− k
δt2
∑N−i−1

j=0 (N − i− 1/2− j)2
. (12b)

Proof. See Appendix.

Remark 1. It is worth mentioning the interpretation of the
above closed-form solution. One can reason that the mini-
mum cost is achieved when the inequality constraint (11) is
active, i.e., it holds with equality, meaning that the vehicle
should cross the intersection exactly at time texit. However,
since the deceleration is as costly as the acceleration in our
scenario, the (12a) is justified. In other words, if the solution
is negative, zero control action is applied instead, because we
want the vehicle to cross the intersection by the deadline, not
necessarily at the texit.

Hence, all that remains is to determine µ̂i,N−i and σ̂i,N−i,
which will be treated next.

C. Parameters of Deterministic Constraint and Accounting
For Packet Losses

The mean µ̂i,N−i depends on future control actions, which
in turn depend on future observations, and also the downlink
packet arrivals. As a standard approximation [10], [11], we
set µ̂i,N−i to the maximum likelihood estimate, i.e, µ̂i,N−i =
x̂i,N−i, which is a function of the current control action ui.

To determine the standard deviation σ̂i,N−i, we note that
it only depends on the uplink packet losses, as the control
commands do not affect the uncertainty. We recall that the
controller is designed according to a packet loss probability
p̂. We can thus introduce δ̂ , [δ̂i+1, . . . , δ̂N−1]T as the
random sequence representing the uplink packet losses. Given
δ̂, we first find the covariance Σi,N−i|δ̂, and then, we average
Σi,N−i|δ̂ over δ̂.

1) We know already that Σi|i−1, the predicted covariance
matrix for time i given the information until i−1 is given
by Σi|i−1 = AΣi−1|i−1A

T + Q. Then, the covariance
matrix may be updated based on the reception of infor-
mation at time i and the associated following recursion
Σi|i = (I− δiKi)Σi|i−1, depending on whether or not
an uplink packet was received. Hence, Σi,0 = Σi|i, is
considered as the estimated error covariance matrix of
the state at time i, initialized by Σfirst(i),0 = R, where
first(i), as we previously mentioned, is the first time that
an observation is provided for the controller.

2) Next, we determine the evolution of the controller’s
predicted covariance matrix at time i for future steps;
i.e., Σi,k+1, for k = 0, . . . , N − i− 1, given δ̂:

Σi,k+1 = (13){
AΣi,kAT+Q if δ̂i+k+1 = 0

Σi,k+(I−K̂i+k+1)(AΣi,kAT+Q) if δ̂i+k+1 = 1

where

K̂i+k+1 = Σi,k(R + Σi,k)−1 (14)

is the Kalman gain for k+1 steps after time i. Equation
(13) is justified as follows: when δ̂i+k+1 = 0, the
controller does not expect to receive an observation and
the covariance increases according to the dynamics of



TABLE I
SYSTEM PARAMETERS

N δt x0 v0 xexit ε
20 0.5 (sec) 0 10 (m/ sec) 100 (m) 0.01

the system (through A) and the process noise statistics
(through Q). On the other hand, when δ̂i+k+1 = 1,
the controller expects to see an observation, so that the
covariance will reduce to (I−K̂i+k+1)(AΣi,kAT+Q).
However, this observation cannot reduce the uncertainty
Σi,k regarding the state at time i + k, so that this
covariance must be added. In the extreme example where
R = 0, we thus retain the uncertainty Σi,k.

3) Third, we compute the expectation of Σi,k+1 with
respect to δ̂. In general, this can be done by Monte Carlo
integration. In the special case that the observations are
noiseless, then there is a recursive closed-form solution
for the predicted uncertainty:

Σ̂i,k+1 = E [Σi,k+1] (15a)
= E [E [Σi,k+1|Σi,k]] (15b)

= (1− p̂)Σ̂i,k + p̂
(
AΣ̂i,kAT + Q

)
, (15c)

Σ̂i,0 = Σi|i = 0. (15d)

initialized by Σ̂i,0, where Σi|i is zero if the observations
are noiseless. Finally, the expected standard deviation
σ̂i,N−i is the square root of the first component of the
expected covariance matrix Σ̂i,N−i, which shows the
expected uncertainty of position, at N − i steps later
(time N ).

IV. NUMERICAL RESULTS

A. System Parameters

In order to numerically evaluate the proposed MPC ap-
proach, we consider a scenario with parameters as listed in
Table I. The process noise covariance matrix is set to

Q =

[
0.0104 0.0313
0.0313 0.1250

]
,

obtained by discretization of the continuous-time process
noise covariance matrix Qc = diag

[
0 (m)2, 0.25 (m/ sec)2

]
.

Without loss of generality, the observation noise is set to zero,
allowing us to use the closed-form evolution of the predicted
error covariance matrix. Numerical results have been obtained
using MATLAB for different realizations of the process noise,
and several values of the packet loss probability p and the
design parameter p̂.

B. Results and Discussions

As we previously explained, due to our approximations,
the proposed controller does not account for downlink packet
losses, but adapts (11) based on the value of p̂. We compare
this communication-aware controller with two nominal con-
trollers: (i) the one designed for the worst channel condition,
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Fig. 2. Average control actions as a function of time, for the packet loss
probability p = 0.1 and different values of the design parameter p̂.
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Fig. 3. Cumulative distribution function (CDF) of total cost for the packet
loss probability p = 0.1 and different values of the design parameter p̂.

which assumes no communication (p̂ = 1), leading to a con-
servative control; and (ii) the one designed for the best channel
condition, which assumes perfect communication (p̂ = 0),
leading to an optimistic control. In terms of the actual channel
conditions, we consider two cases: the asymmetric case, where
only the uplink is imperfect, and the symmetric case, where
both uplink and downlink are imperfect.

Fig. 2 shows the average control action, over a large number
of realizations, versus the time step i, for p = 0.1 and different
values of p̂ (for which the controller is designed). We note
that early control actions have an accumulated impact in the
future, leading to more cost-effective intersection crossing. In
other words, if the control actions are not considerable in the
beginning, the cost of late compensation is very high. This is
confirmed by the results: when p̂ = 1, the mean control action
is high in the beginning, and decreases as time goes on, since
the effect of early control action together with the disturbance,
causes the vehicle to be beyond the expected state in most
realizations. When p̂ = 0, however, small control actions are
applied in the beginning, which need to be compensated for
later on, because the design is overly optimistic in terms of
receiving future information. When the controller is designed
based on the exact knowledge of the communication channel
statistics, i.e., when p̂ = p, the mean control lies between
the two extreme cases. The larger the value of p̂ = p is, the



0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

Design parameter p̂

A
ve

ra
ge

co
st

p =0.05, symmetric
p =0.05, asymmetric
p =0.1, symmetric
p =0.1, asymmetric
p =0.2, symmetric
p =0.2, asymmetric
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more conservative control from early time slots and the less
aggressive revision is required. For low values of p, symmetric
and asymmetric channels lead to similar performance, as the
vehicle can rely on the actions it received at previous times.

To obtain insights into outlier behavior, Fig. 3 illustrates
the cumulative distribution function (CDF) of the cost. When
p̂ = 0, the controller has less conservative behavior initially,
but more aggressive behavior later, in case the vehicle is too far
from the intersection. This translates to a CDF curve with very
low cost for around 50% of the realizations, and a significant
fraction of high-cost realizations. In contrast, when p̂ = 1, the
controller always uses a considerable control initially, so that
the cost is never very low. However, there are no high-cost
outliers. The proposed communication-aware control strategy,
with p̂ = p, can strike a balance between cost and outliers:
we generally achieve lower cost than p̂ = 1 and have fewer
outliers than p̂ = 0. Hence, the apt choice for the design
parameter p̂ can play an important role in the trade-off between
the cost and outliers.

Fig. 4 depicts the mean cost of a large number of real-
izations vs. the design parameter p̂, for three different values
of the packet loss probability p ∈ {0.05, 0.1, 0.2}. When p̂
is low, the mean cost is higher compared to the cases with
relatively larger p̂ values, while for very high p̂, the mean
cost is again higher, irrespective of the value of p. However,
it is better for the controller to decide conservatively than too
optimistically. Another point to be mentioned is that the lowest
cost is not achieved for p̂ = p, as our proposed controller
relies on several assumptions, making it sub-optimal. This
behavior is due to our approximations. In fact, we consider
the mean of the distribution at time texit to be equal to the
Maximum Likelihood estimate, while in reality, it is also
uncertain, since future control actions are not yet known.
The uncertainty of the mean at texit implies a larger overall
uncertainty regarding x(texit), while our proposed controller
performs smaller control actions than needed. This explains
the reason for a better performance with a higher p̂. It is also
seen that for higher values of p, the symmetric case will lead
to higher average control actions than the asymmetric case,
since the vehicle may not receive updated control actions.

0 0.2 0.4 0.6 0.8 1
0

2

4

6
·10−2

Design parameter p̂

C
on

st
ra

in
t

vi
ol

at
io

n
pr

ob
ab

ili
ty p =0.05, symmetric

p =0.05, asymmetric
p =0.1, symmetric
p =0.1, asymmetric
p =0.2, symmetric
p =0.2, asymmetric

ε = 0.01

Fig. 5. Constraint violation probability vs. design parameter p̂ for different
values of packet loss probability p.

Finally, in Fig. 5, the constraint violation probability is
shown vs. p̂ for p ∈ {0.05, 0.1, 0.2}. It may be higher than
ε, due to the approximations, especially when p̂ < p. In the
symmetric case, the violation of constraint is more frequent,
especially for larger values of the packet error rate p. An
interesting observation, according to Figs. 4–5, is that choosing
p̂ ≈ 0.5 satisfies the probabilistic constraint in the MPC
problem, and leads to smallest mean cost.

V. CONCLUSIONS

We presented a probabilistic framework for remote con-
trol of a vehicle in the vicinity of an intersection over an
unreliable communication link. We derived a closed-form
solution for the control actions so that crossing the intersec-
tion before a deadline is ensured with a desired confidence
level. Our simulation results demonstrate that the proposed
controller, which takes into account the randomness of the
communication link, performs less aggressive compared to the
case of being designed for the best-case channel condition
(i.e., overly optimistic about the transmission success), and
less costly compared to the case of being designed for the
worst-case channel condition (i.e., overly pessimistic about
the transmission success). Due to the approximations in our
mathematical modeling, however, the optimal behavior can
be achieved when the controller decides more conservatively
when considering the communication channel conditions.

While our focus was on a simple scenario with one vehicle,
the approach can be extended to a multi-vehicle scenario,
where the state of each vehicle may affect the control actions
for the others, forming an interactive network of vehicles.
Additionally, alternative strategies can be considered (e.g.,
sending the last issued control sequence every time slot), to
tighten the gap between the symmetric and asymmetric cases.
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APPENDIX
PROOF OF THE CLOSED-FORM SOLUTION

To prove (12), let us write the x̂i,N−i according to (4b) as

x̂i,N−i = A x̂i,N−i−1 + B ui,N−i−1

= AN−ix̂i,0 +

N−i−1∑
k=0

AN−i−1−kBui,k, (16)

where

AN−i =

[
1 (N − i)δt
0 1

]
, AN−i−1−kB =

[
k′δt2

δt

]
,

and k′ , (N − i− 1/2−k). Therefore, x̂i,N−i can be written
as

x̂i,N−i = x̂i|i + v̂i|i(N − i)δt+ δt2
N−i−1∑
k=0

k′ui,k, (17)

by which, problem (4) is simplified to a single-constraint
convex optimization problem as follows:

minimize
ui

N−1∑
k=0

u2
i,k (18a)

subject to x̂i|i + v̂i|i(N − i)δt (18b)

+ δt2
N−i−1∑
k=0

k′ui,k ≥ xexit − σ̂i,N−iΦ−1(ε).

The Lagrangian function for the optimization problem (18)
is

L(ui, λ) =

N−1∑
k=0

u2
i,k − λ

(
x̂i|i + v̂i|i(N − i)δt

+δt2
N−i−1∑
k=0

k′ui,k − xexit + σ̂i,N−iΦ
−1(ε)

)
, (19)

where λ is the Lagrange multiplier corresponding to the
inequality constraint (18b). The KKT optimality conditions
[12] to find the optimal solution are given by

∇L(ui, λ) = 0, (20a)

x̃− δt2
N−i−1∑
k=0

k′ui,k ≤ 0, (20b)

λ ≥ 0, (20c)

λ

(
x̃− δt2

N−i−1∑
k=0

k′ui,k

)
= 0, (20d)

where x̃ , xexit − σ̂i,N−iΦ−1(ε) − x̂i|i − v̂i|i(N − i)δt, and
(20a) imposes that 2ui,k−λδt2k′ = 0. By solving the above set
of equations, the closed-form solution as in (12) is obtained.
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