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ABSTRACT
Smart Grids and Advanced Metering Infrastructures are rapidly
replacing traditional energy grids. The cumulative computational
power of their IT devices, which can be leveraged to continuously
monitor the state of the grid, is nonetheless vastly underused.

This paper provides evidence of the potential of streaming anal-
ysis run at smart grid devices. We propose a structural component,
which we name LoCoVolt (Local Comparison of Voltages), that is
able to detect in a distributed fashion malfunctioning smart me-
ters, which report erroneous information about the power quality.
This is achieved by comparing the voltage readings of meters that,
because of their proximity in the network, are expected to report
readings following similar trends. Having this information can al-
low utilities to react promptly and thus increase timeliness, quality
and safety of their services to society and, implicitly, their business
value. As we show, based on our implementation on Apache Flink
and the evaluation conducted with resource-constrained hardware
(i.e., with capacity similar to that of hardware in smart grids) and
data from a real-world network, the streaming paradigm can deliver
efficient and effective monitoring tools and thus achieve the desired
goals with almost no additional computational cost.

CCS CONCEPTS
• Information systems → Data streams; • Hardware → En-
ergy metering; Smart grid;

KEYWORDS
Data Streaming, Advanced Metering Infrastructure, Smart Meter

1 INTRODUCTION
Smart Grids, in which communication-enabled IT devices can share
information with energy utilities, are replacing traditional energy
grids. At the lower-voltage distribution tiers (i.e., at the level where
energy is distributed to private customers and businesses), this
transformation has been enabled by Advanced Metering Infrastruc-
tures (AMIs).

These consist of Smart Meters (SMs) and a communication in-
frastructure to communicate with the energy utilities’ data center.
A common communication infrastructure consists of Concentrator
Units (CUs) that use either a wireless radio network or power line
communication to communicate with the SMs [20].

In any large system continuous monitoring is needed to detect
faulty components. This is especially important in an AMI because
of safety-related, economic and administrative implications. To our

advantage, AMIs make available the cumulative distributed com-
putational power of their devices, which can be used to efficiently
monitor the state of an AMI in a continuous and distributed fash-
ion. In this context, data streaming fits well thanks to its inherently
distributed, parallel and low-latency analysis properties.

In this paper, we show this for the detection of broken SMs that
report incorrect voltage readings. Incorrect voltage readings can
indicate that the SM is broken and will influence the amount of en-
ergy billed to the customers. Furthermore, early detection of broken
SMs boosts safety, since undetected high voltages can cause damage
to electric equipment or injury to persons. We present LoCoVolt
(Local Comparison of Voltages). With LoCoVolt the differences of
voltage readings between any pair of close-in-space SMs are contin-
uously monitored by each CU. Based on the observed differences
(instantaneous and average) and the correlations between voltage
readings from each SM connected to the same CU, an SM is reported
as broken when its number of suspicious readings exceeds a given
threshold (as we explain in detail in § 4) . LoCoVolt can function in
a manner that is agnostic of the precise topology of the underlying
electricity network and this property makes its approach applicable
in a variety of deployments.

We implemented LoCoVolt on top of Apache Flink [7] and tested
it with real-world electricity network data from a deployed net-
work. Our evaluation, conducted on resource-constrained hard-
ware whose capacity resembles AMI hardware capacity, shows that
the streaming paradigm delivers efficient and effective monitoring
tools.

The rest of the paper is organized as follows. § 2 overviews
preliminary concepts. § 3 describes the problem in more detail, ex-
plaining also the bigger challenges. LoCoVolt’s technique to detect
broken SMs is presented in § 4 and evaluated in § 5. § 6 discusses
related work while § 7 concludes the paper.

2 PRELIMINARIES
In this section we overview introductory and background informa-
tion about data streaming applications, AMIs and voltage monitor-
ing, as well as correlation measures between data streams.

2.1 Data streaming processing applications
Data streaming processing applications are designed as graphs
composed by streams of data and operators.

Each stream carries tuples sharing the schema ⟨ts,A1, . . . ,An⟩,
where ts is the tuple’s creation timestamp and A1, . . . ,An are
application-related attributes. In a DAG, streams specify how tuples



flow from the data sources through the operators and, eventually, to
the data sinks (delivering results to analysts or other applications).

Operators are provided by the Stream Processing Engine (SPE)
being used to run the application. Despite the fact that each SPE
provides its own definition (and implementation) of basic streaming
operators, a common subset of the operators provided by different
SPEs includes Aggregate, Join, Stateless and Merge operators [9].

Aggregate operators apply aggregation functions over sliding
windows of tuples. Windows are defined by their size, their advance
and, optionally, by a group-by parameter referring to one or more of
the input tuples’ attributes when the aggregation function is applied
independently to each group of tuples sharing such attributes. The
Join operator matches tuples from two streams (keeping a sliding
window for each stream) and forwards the pairs for which a given
predicate holds. Stateless operators, as the name suggests, do not
maintain a state evolving with the tuples being processed, and
can produce zero, one or more output tuples for each input tuple,
applying a user-defined function that specifies the input tuples’
attributes to be copied to the output tuples and the functions to be
applied to them. Finally, Merge operators allow to merge multiple
streams into a single one. As we discuss in Section 4, these basic
operators can be composed to implement LoCoVolt’s analysis.

2.2 AMIs and voltage monitoring
Electricity Network: Private customers and businesses, along with
their SMs, are connected to the grid via transformers. Each SM con-
nects to exactly one transformer while a single transformer can
host multiple SMs. Each SM is connected to a transformer by one,
two or three lines as well as a neutral.
Data Network: At the same time, each Smart Meter SM is also con-
nected to the utilities’ servers, often via a Concentrator Unit (CU)
that aggregates data from multiple SMs. Each SM connects to ex-
actly one CU (but can change it over time) while a single CU is
connected to multiple SMs. SMs that are physically close (e.g., de-
ployed in the same building) have high chances of being connected
to the same transformer and CU. In the case of wireless commu-
nication between SMs and CU there is nonetheless no guarantee
about the overlap between the SMs and transformers topology and
the SMs and CUs topology (e.g., two physically close SMs could for
instance be connected to different transformers but the same CU).
This is illustrated in the schematic overview in Figure 1.

The voltage measured by the SMs depends on the input voltage at
the transformer, the length of the connecting cable connecting and
local loads in the distribution network. SMs that are not broken and
are connected to the same transformer are thus expected to display
a high correlation between their voltages time series [17]. Figure 2
illustrates this by showing the voltages measured by two SMs that
are physically close and connected to the same transformer.

Among other things, SMs report the voltage readings for each
of their lines with tuples composed by attributes ⟨ts,CU , SM,L⟩,
where ts denotes the timestamp for the reading, CU and SM indicate
the corresponding device identities and L is a 3-entry vector, con-
taining the root-mean-square voltage readings for the respective
lines, i.e. the equivalent steady (DC) value which gives the same
effect as the sinusoid signal [4].
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Figure 1: A schematic overview of the SMs connected to two
transformers and two CU. Note that the data network over-
laps only partially with the electricity network. SMs are con-
nected to the transformerwith at least one and atmost three
lines. The line order at the SMs can differ, e.g. here the line
order of SM* is reversed compared to the other SMs. Besides,
the set of SMs connected to each CUmay vary with time, e.g.
depending on conditions that affect the signal strength.
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Figure 2: The voltage for two SMs that are physically close
and connected to the same transformer during one week.
The correlation coefficient for the time series is 0.94.

2.3 Streams correlation
In LoCoVolt, we make use of correlation of time series. Given two
time series a and b with n elements, the Pearson correlation coeffi-
cient, r , is suitable to be calculated incrementally [21] as:

ra,b =
P − AB

n√
A2 −

A2
n

√
B2 −

B2
n

,

where A =
∑
i ai , B =

∑
i bi , A2 =

∑
i a

2
i , B2 =

∑
i b

2
i and P =∑

i ai ·bi . For incremental calculation only the sums and the number
of values need to be stored. The range of r is [−1, 1], where -1
indicates maximum negative correlation and 1 maximum positive
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correlation. A correlation coefficient of 0 indicates that there is no
correlation between the time series.

3 PROBLEM DESCRIPTION
In AMIs, SMs are expected to report consumption and quality mea-
surements periodically. Over time, SMs can break and stop reporting
or start reporting measurements that are not correct. An SM is de-
fined to be broken when its measured voltage differs from the actual
voltage. Detection of broken SMs is challenging since variations
in consumption readings cannot be easily distinguished between
customer-dependent variations and variations dependent on bro-
ken SMs. Because of the physical properties of electricity, a broken
SM can be potentially identified by comparing the voltage readings
of its lines with the ones of the lines of a working SM connected to
the same transformer (as explained in Section 2 they are expected
to have readings that follow the same temporal curves) [17].

LoCoVolt aims at detecting broken SMs based on this obser-
vation. It should be noticed that several practical aspects of AMI
deployments can make this a challenging task:

(1) Line ordering: SMs’ lines are not connected to transformers
in a fixed order. That is, the same physical line connecting
two SMs to the same transformer is not necessarily plugged
as line 1 (or 2 or 3) in both SMs.

(2) Asynchronous measurements: The primary task of SMs is to
measure the consumed energy. For this reason SMs don’t
necessarily take voltage readings in a synchronized fashion,
voltage readings can even be measured by the CUs sequen-
tially with a coarse-grained periodicity (e.g. 15 minutes, 1
hour). This implies that we might not have simultaneous
measurements at all SMs and hence the differences might be
inaccurate. Moreover, due to intermittent connectivity and
noise, not all readings made in nearby time-intervals reach
the CU in time (i.e. the continuous analysis must tolerate
missing values).

(3) Symmetric differences: A suspicious difference between the
voltage readings of the lines of two SMs indicates that one
of the two is potentially broken, but does not give any hint
about which one of the two is the broken one.

(4) Electricity network and communication network topology: The
topology of the electricity network (i.e. which SMs are on the
same transformer) might not be known, due to distinctions
between administrative domains of the utility or for security
reasons. Moreover, wireless communication may imply that
the set of SMs connected to the same CU is dynamic. (cf. Fig-
ure 1). I.e. we are looking for a method that is agnostic to the
transformer - SM network, as mentioned in the introduction.

From an implementation perspective, an additional challenge
is to employ methods that are intuitive to communicate with the
utility system experts, as unnecessary complexity introduces risks
of errors due to misunderstandings. For that reason, we propose to
analyze the problem so as to use standard SPE operators, usable by
engineers with common programming skills.

4 LOCOVOLT
LoCoVolt addresses the challenges described in the previous section,
through continuous monitoring of voltage readings of SMs at the

CU level. Following LoCoVolt’s rules, SMs can “accuse" each other
if their voltage readings are suspiciously far. On a CU containing
some broken SMs, this will result in many-to-few accusations (from
the working SMs to the broken ones) and few-to-many accusations
(from the broken SMs to the working ones). Accusations made by
an SM Mi are weighed by the number of accusations it receives,
introducing a reliability measure. The weighted accusations forMi
are then summed and compared with the number of SMs expected
to accuseMi is the latter is broken. In the following, we discuss Lo-
CoVolt’s semantics. We present the stream operators (Figure 3) that
implement them and an example in the following subsections (sub-
sections’ names correspond to the boxes in the figure, the stream
operators are also referenced in the text).

When do SMs accuse each other? The difference measured by
two SMs fluctuates over time due to the reasons mentioned in Sec-
tion 2. Hence, rather than having SMs accuse each other when
their readings are arbitrarily distant, we base accusations on the
difference between their instantaneous (∆V ) and average (∆V ) dif-
ference. Furthermore, we weigh such accusations by the correlation
(c) observed between them, so that accusations from SMs observ-
ing similar differences over time count more than those from SMs
observing fluctuating differences. Two SMs accuse each other when:

|∆V − ∆V | · ca,b > θ

where (i) θ is a parameter related to themeasurement resolution, the
accuracy and local load changes occurring between the readings
of a pair of SMs; and (ii) ca,b = (ra,b + 1)/2, i.e. a mapping of
the correlation of formula 2.3. This mapping of the correlation
preserves the monotonic relation between the correlation and ∆V .
The mapping also allows uncorrelated and inversely correlated SMs
to accuse each other if |∆V − ∆V | grows large enough. Systems
experts maintaining the smart grid used in our evaluation identified
a suitable value for θ from a set of working SMs. Since SMs can have
up to three lines, ∆V ,∆V as well as c are 3x3 matrices. Therefore,
the number of accusations between two SMs, Mi and Mj , is an
integer in the range [0,9]. Notice that accusations are symmetric,
i.e. ifMi accusesMj , thenMj accusesMi too.

How to prevent accusations by SMs from different transformers
from affecting broken SMs detection? WhenMi andMj are not con-
nected to the same transformer, their voltage reading difference can
fluctuate more than if they share the same transformer (indepen-
dently of whether any of the two is broken). When two big-enough
groups of SMs are connected to the same CU but different trans-
formers, this can result in many-to-many accusations (because of
the legit different voltage readings across groups). To mitigate this,
we normalize accusations weighting them by:

wi =
1∑

Sj acc(j, i)

where wi is the weight for Mi , Sj is the set of SMs accusing Mi ,
and acc(j, i) is the number of accusations betweenMj andMi . The
value ofwi is small for SMs that receive a large number of accusa-
tions, indicating that it is less trustworthy. The weighted accusation
received byMi fromMj is then defined as:

wacc(i, j) = w j · acc(i, j).
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Each wacc() is a real number in the range [0,1]. Mi weighted ac-
cusation fromMj is 1 whenMi is the only SM accusingMj . Note
that while the accusations are symmetric betweenMi andMj , this
does not necessarily hold for the weighted accusations. The total
amount of weighted accusations can now be calculated for all SMs
by:

Ji =
∑
S

wacc(i, j)

where S is the set of SMs whose readings are compared withMi .

If an SM breaks, how many other SMs at its CU will accuse it?
Value Ji depends not only on how muchMi ’s readings deviate from
the other SMs, but also on the number of SMs that the reading is
compared with, as well as how correlated these SMs are withMi
(i.e., how likely they will trigger an accusation). WhenMi breaks
and starts reporting inaccurate values, the probability of receiving
an accusation fromMj will be related to the correlation betweenMi
andMj , with an increasing probability for increasing correlations.

We estimate Ei , the expected number of SMs accusing Mi , by
the likelihood of receiving at least one accusation from another SM,
which we approximate through the correlation matrix entries ci, j .
More concretely, Ei is defined as:

Ei =
∑
S

max(ci, j )

Notice that each SMs in S contributes to the sum with value 1 if its
correlation withMi is 1. A weight θ ′ is introduced to specify which
portion of Ei is sufficient for an accused SM to be reported as broken.
The value of the weight influences the number of simultaneous
broken SMs that can be detected since a larger number of broken
SMs will cause wacc to decrease. The weight is set by a system
expert to match the expected maximum number of simultaneous
broken SMs. An alert is eventually triggered forMi if Ji > θ ′Ei .

The resulting graph of streams and operators implementing the
method is presented in detail in Figure 3 as well as in the following
sections. The names of the sections correspond to the boxes in the
figure and the stream operators in the figure are referenced in the
text with (OperatorID). A running example in the text is used to
illustrate the query. The example consists of three SMs, A, B and C
on CU X, where C is accused by A and B. For simplicity, all SMs
have a single line.

4.1 Input
As described in Section 2.2, the highest correlation between voltage
time series will be between SMs that are close in the distribution
network. Therefore LoCoVolt compares SM readings that are within
a certain time-window and connect to the same CU. This can be
implemented by joining the stream of measurements onto itself
in a window. The size of the window (ws ), and advance (wa ), is a
trade off between the number of pairs that can be compared and
the correlation between the readings. Here it is set to 10 minutes
with the help of a system expert and the window is evaluated for
every incoming tuple.

Since an SM can report values for 1, 2 or 3 lines, the readings
are stored in an array of size 3. If there are fewer than three values
the corresponding place in the array will be set to a predefined null
value.

The example starts with the following three readings:

< tsA,X ,A, 230 >, < tsB ,X ,B, 231 >, < tsC ,X ,C, 219 >,

where tsA < tsB < tsC . When all timestamps are within the win-
dow for the Join operator, the following tuples will be produced:

< tsB ,X ,A,B, 230, 231 >, < tsC ,X ,A,C, 230, 219 >,
< tsC ,X ,B,C, 231, 219 > .

4.2 Statistics
The statistics required for LoCoVolt are the correlation (c) and the
average difference (∆V ) between all line pairs of all SMs. This can
be implemented with an aggregation operator that incrementally
calculates the average for the difference as well as the correlation
in a window. The window size should be large so that ∆V and c are
stable values. The window size for LoCoVolt is set to 28 days with
a window advance of 14 days.

Since the readings are arrays with length three, the average
difference, as well as the correlation between all possible line pairs
are stored in two 3x3 matrices. (A1)

For the example we assume that the correlation between SMs
A and B is 0.91 while the average difference is 1.2. Values for the
other pairs can be found below.

< ts,X ,A,B, 0.91, 1.2 >, < ts,X ,A,C, 0.87, 2.3 >,
< ts,X ,B,C, 0.89, 2.8 > .

4.3 Accusations
The calculation of the accusations is accomplished by an operator
that calculates ∆V for all line pairs (S1). This stream is then joined
with the statistics stream with a window size and advance that
equals the window advance for the statistics operator. The join
function can now calculate the value of |∆V − ∆V | · c . (J2)

< tsB ,X ,A,B, 0.182 >, < tsC ,X ,A,C, 7.569 >,
< tsC ,X ,B,C, 8.188 > .

The threshold θ can now be applied by a stateless operator. (S2)
θ is set to 3, which for the example results in the following tuples:

< tsB ,X ,A,B, 0 >, < tsC ,X ,A,C, 1 >, < tsC ,X ,B,C, 1 > .

The number of accusations between any pair of SMs is symmetric
and can be processed in a single tuple containing the IDs for both
SMs as well as the number of accusations. This is a number between
0 and 9, depending on the number of lines for the SMs and the
result from the previous equation. In order to get the sum of the
accusations per SM, two tuples with the number of accusations are
created, one for each SM (S3).

< tsB ,X ,A, 0 >, < tsB ,X ,B, 0 >,
< tsC ,X ,A, 1 >, < tsC ,X ,C, 1 >,
< tsC ,X ,B, 1 >, < tsC ,X ,C, 1 > .

These tuples are aggregated in a tumbling window and counted
(A2). The window size is chosen to match the frequency of the
readings which in our case are hourly.

< tsC ,X ,A, 1 >, < tsC ,X ,B, 1 >, < tsC ,X ,C, 2 > .
4



Figure 3: The graph for LoCoVolt. The letter in the operator name refers to the type of operator: J for Join, A for Aggregate, S
for Stateless andU for Union.
The operators are arranged in dashed logical blocks. The function and details of the logical blocks are described under the equally named

headings in Section 4. Details for the individual operators can be found in Table 1.

Operator Description Tuple schema

J1

Match any pair of tuples from two different SMs that share the same CU over a
sliding window of 10 minutes, outputting the SMs’ IDs and their voltage readings
per line (3X1 matrices L1 and L2).

⟨ts,CU ,m1,m2,L1[3],L2[3]⟩

S1
Produce a 3X3 matrix (∆V ) with the difference between each pair of lines between
two SMs joined by J1.

⟨ts,CU ,M1,M2,∆V [3X3]⟩

A1

Produce a 3X3 matrix (c) with the scaled correlation (Pearson coefficient) as well
as a 3X3 matrix (∆V ) with the average difference observed for each pair of lines
between two SMs joined by J1 over a sliding window of 28 days with an advance
of 14 days.

⟨ts,CU ,M1,M2, c[3X3],∆V [3X3]⟩

J2
Match tuples referring to the same pair of SMs and produce a 3X3 matrix (D)
carrying the value c ◦ |∆V − ∆V |, where ◦ denotes the entrywise product. ⟨ts,CU ,M1,M2,D[3X3]⟩

S2
Applies a threshold to the elements in D, setting the element to 1 if the value
exceeds the threshold and 0 otherwise. ⟨ts,CU ,m1,m2,D[3X3]⟩

S3
Produce the sum of the elements in D that equal 1 (accusations, acc) and output
this in two tuples, one for each SM in the input tuple. ⟨ts,CU ,M,acc⟩

A2 Produce the sum of acc for all SMs on all CUs in a 1 hour tumbling window. ⟨ts,CU ,M,
∑
acc⟩

J3
Match tuples where M from A2 equals M1 from S2. Produces a tuple for M2 con-
taining weighted accusationswacc . ⟨ts,CU ,M2,wacc⟩

J4 Similar to J3 but matches tuples whereM equalsM2. Produces a tuple forM1. < ts,CU ,M1,wacc >
U1 Union of the outputs from J3 and J4. ⟨ts,CU ,M,wacc⟩

A4 Produce the sum ofwacc, (J ) for all SMs in a 1 hour tumbling window. ⟨ts,CU ,M, J ⟩

J5
Matches tuples referring to the same pair of SMs in a sliding window of 14 days,
removes ∆V from the tuple.. ⟨ts,CU ,M1,M2, c[3X3]⟩

S4
Splits the input tuple into two, one for each SM and keeps containing the maximum
element in c . ⟨ts,CU ,M,max(c)⟩

A5 Produces the expected number of accusations (E), in a 1 hour tumbling window. ⟨ts,CU ,M,E⟩

J6 Join A4 and A5 for each SM. ⟨ts,CU ,M, J ,E⟩

S5 Report suspicious SMs for which the number of J exceeds θ ′E. ⟨ts,CU ,M⟩

Table 1: Detailed description of the Join, Aggregate, Stateless and Union operators used in LoCoVolt’s query.

4.4 Weighted accusations
The weighted accusations are obtained by combining the accusa-
tions between the SMs with the sum of the accusations per SM.
Two join operators are required to accomplish this since the accu-
sations between the SMs is stored in a single tuple for every pair of
SMs, while the total number of accusations received has one tuple
per SM. (J3,J4) The window size and advance of the join operators

match the frequency of the readings. The union of these streams
results in a single stream with allwacc values. (U1)

The tuples at this point in the query containwacc as shown in
the example:

< tsB ,X ,A, 0/1 >, < tsB ,X ,B, 0/1 >,
< tsC ,X ,A, 1/2 >, < tsC ,X ,C, 1/1 >,
< tsC ,X ,B, 1/2 >, < tsC ,X ,C, 1/1 > .
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The tuples now need to be aggregated in a window and counted
in order to obtain J (A4). The window size and advance match the
values chosen for the join operators in this block.

< tsC ,X ,A, 1/2 >, < tsC ,X ,B, 1/2 >, < tsC ,X ,C, 2 > .

4.5 Expectations
The expected amount of accusations (E) for a broken SM is estimated
in the query by joining the tuples containing the readings that
are being compared with the statistics. (J5). The window size and
advance equal the window advance for the statistics aggregator. A
stateless operator selects the maximum correlation value for every
pair of SMs and outputs a tuple containing this value for each SM
in the pair (S4). These tuples can then be aggregated in order to
obtain the sum per SM, ie. the value of E (A5).

The expected number of accusations for the SMs in our example
is given by:

< tsC ,X ,A, 1.78 >, < tsC ,X ,B, 1.80 >, < tsC ,X ,C, 1.76 > .

4.6 Output
The final step in the query is then to combine the expected number
of accusations with the total number of weighted accusations (J6)
and output an alert if the number of weighted accusations exceeds
the expected number weighted by θ ′. (S5) The window size and
advance for the join operator match the frequency of the readings.

θ ′ is set to 0.5 (majority voting) which renders the following
final output in the example:

< tsC ,X ,C >

5 EVALUATION
In this section, we present LoCoVolt’s evaluation. We first intro-
duce the evaluation criteria followed by the evaluation setup. Sub-
sequently, we discuss how we simulated broken SMs based on real
cases observed at the energy company. Finally, we evaluate LoCo-
Volt effectiveness in detecting such broken SMs and LoCoVolt’s
performance.

Evaluation criteria
In order to evaluate LoCoVolt’s detection capabilities, the metrics
we take into account are (1) the detected percentage of manipulated
readings; (2) the number of true positive (TP) and false positive (FP)
alarms; (3) the detection time for the different voltage manipulation
rates. TP alarms are alarms that are generated for the manipulated
SM after the manipulation has started, while FP alarms are alarms
for SMs that have not been manipulated. We also evaluate(4) the
precision, recall and accuracy which are common measures in clas-
sification problems [22]. These metrics are defined with TP and
FP as well as true negative (TN) and false negative (FN) alarms.
FN is the number of manipulated readings that did not trigger an
alarm, while TN are the readings that neither were manipulated
nor triggered an alarm. Precision is now defined as the quotient of
TP by TP+FP, recall as the quotient of TP by TP+FN and accuracy
is defined as the quotient of TP+TN by TP+TN+FP+FN.

In the case where there are multiple broken SMs simultaneously,
we investigate (5) the percentage of detected broken SMs.

Finally (6) the performance in terms of processing throughput
and latency is evaluated, in order to assess the possibility to run
LoCoVolt on the hardware available in the AMI.

The detection time is especially important in order to minimize
the duration and impact of the problems described in Section 3. The
number of FP alarms should be as low as possible to minimize the
manpower needed to investigate the alarms, while a high number
of TP alarms generated by a large percentage detected readings
helps to ascertain that a TP alarm truly is TP.

The results are comparedwith a baseline consisting of the current
situation at the utility where SMs are investigated manually by
system experts when the SM readings are outside of a predefined
interval.

Evaluation setup
We evaluated LoCoVolt with data collected from 939 SMs during
a period of 9 months. Each SM reports the voltage observed for
each of its lines every hour, for a total of 4 million readings (about
1.5 million readings are missing). SMs connect to 26 Concentrator
Units (CUs). The average number of SMs per CU is 36 while the
CU with the largest set of SMs connects 152 and the CU with the
smallest set connects 7 SMs. The SMs are connected to the grid by
30 different transformers. 26 CUs contain SMs that are connected
to a single transformer. Two CUs contain SMs connected to two
transformers while a single CU has SMs that are connected to three
different transformers. Three kinds of SMs exist in the dataset, types
1 and 2 are three line SMs while type 3 is a single line SM. 366 SMs
are of type 1 with a voltage resolution of 1 volt, 361 of type 2 with a
resolution of 0.1 volts and finally 212 SMs of type 3 with a 0.1 volts
resolution. The data is sanitized by removing values that would
have been ignored based on existing validation rules.

We implemented LoCoVolt on top of Apache Flink [7] version
1.4.0. In order to test LoCoVolt’s performance when potentially de-
ployed at CUs, we run the performance evaluation experiments us-
ing a single-board device called Odroid-XU4 [14] (or simply Odroid
in the remainder), equipped with a Samsung Exynos5422 Cortex-
A15 2Ghz and Cortex-A7 Octa core CPUs and with 2 GB of memory.
All other experiments were run on a standard off-the-shelf laptop
computer.

Simulation of a broken smart meter
To the best of our knowledge, the SMs selected to conduct the
evaluation are not broken during the period of time covered by the
data. In order to check LoCoVolt’s effectiveness in detecting broken
SMs, we simulate the latter by manipulating their data, in ways
that comply with the experts’ description of experienced failures
that are studied in a post-mortem fashion, i.e. after an SM is known
to be broken through e.g. the damage caused by it. More concretely,
we simulate two ways for which broken SMs have been observed
in the AMI. In case I (all-line), we pick a random SM and, starting
from a certain reading, we decrease its reported voltage every day
with a constant rate. The rates we simulate are 0.005, 0.01, 0.015,
0.02 and 0.025. In case II (single-line), once a random SM is picked,
we only alter one of its lines decreasing it every day with a constant
rate. Also in this case, we simulate different decrease rates: 0.005,
0.01, 0.015, 0.02.
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Figure 4: The detected percentage of manipulated readings
for different voltage manipulation rates when all lines are
manipulated. The largest outliers are typically between 20
and 30%.

For both cases, we run 1000 experiments for each voltage ma-
nipulation rate, picking a random SM and a random starting date
each time. The experiments start 28 days before the starting date
of the manipulation, to ensure that the window for the statistics
operator is filled, and ends after 14 days of manipulation.

Simulation of multiple bad SMs per CU
We also evaluate LoCoVolt when more than one SMs break simulta-
neously for two different cases. In case III (multi-SM) we simulate
multiple SMs breaking independently from each other by selecting
the correct number of SMs randomly. In case IV (multi-correlated-
SM) we instead simulate the case where multiple SMs connected
to the same transformer break, for instance due to lightning. For
this case one SM is selected randomly while the other broken SMs
are selected randomly from the set of SMs connected to the same
transformer as - and physically close to - the first SM. We try dif-
ferent numbers of broken SMs: 2, 4, 6, 8 and 10 for both case III
and IV.. 100 experiments are run for every number of broken SMs
on a subset of the data described earlier. For these experiments we
use the data from a single CU with 64 SMs that connect to two
transformers (45 SMs to first transformer and 19 to the second one).
For every experiment we decrease the readings for all lines on all
selected SMs with a rate of 0.001 for every following day.

LoCoVolt detection capabilities
The detection capabilities of LoCoVolt are evaluated with the crite-
ria described earlier in this section.

Figures 4, 5 and 6 present the results for the broken SMs in
the all-line case. As presented in figure 4, the median percentage
of detected manipulated readings grows from approximately 75%
(voltage manipulation rate 0.005) to 90% (manipulation rate 0.025).
This trend is reflected in Figure 5 showing the mean total number of
TP and FP alarms that are detected as well as the standard deviation.
This can also be observed in Figure 7, which shows that the accuracy
in this case is very close to one independent of themanipulation rate.
Both the recall and the precision increase for larger manipulation
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Figure 5: Themean and standard deviation of the number of
TP and FP alarms respectively for different voltage manipu-
lation rates when all lines are manipulated. The number of
FP alarms is 2 orders of magnitude smaller than the number
of TP alarms.
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Figure 6: The detection time for different voltage manipula-
tion rates when all lines are manipulated. The largest out-
liers can be found between 250 and 320 hours for all manip-
ulation rates.

rates, consistent with the larger percentage of detected manipulated
readings for larger voltage manipulation rates. The mean number
of SMs reporting FP alarms is approximately 2.4 with a standard
deviation of 5. The average number of FP alarms per SM reporting
such alarms is around 3, but the actual number has quite some
variation with a standard deviation of 15. The number of TP alarms
is about 250 (voltage manipulation rate 0.005) and increases to 290
(manipulation rate 0.025). This shows that the number of TP alarms
detected greatly outnumber the number of FP alarms for every
manipulation rate. The detection time of the manipulation depends
on the time it takes for the manipulation to become greater than
the threshold θ . For a voltage manipulation rate of 0.005 and a
normal voltage of 230, this will take approximately 62 hours. Figure
6 shows that the mean detection time at this manipulation rate is
some hours faster, and similarly for the larger rates.
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Figure 7: The precision, recall and average for different volt-
age manipulation rates when all lines are manipulated.
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Figure 8: The detected percentage of manipulated readings
for different voltage manipulation rates when a single line
ismanipulated. The largest outliers are typically between 20
and 30%.
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Figure 9: The mean and standard deviation for the number
of TP and FP alarms respectively for different voltage ma-
nipulation rates when a single line is manipulated.
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Figure 10: The detection time for different voltage manipu-
lation rates when a single line is manipulated. The largest
outliers can be found between 250 and 320 hours for all ma-
nipulation rates.
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Figure 11: The precision, recall and average for different
voltage manipulation rates when a single line is manipu-
lated.

Figures 8, 9, 10 and 11 present the result for the single-line case.
The figures show similar trends with the percentage of detected
manipulated readings, as well as the number of alarms increasing
with the voltage manipulation rate as can be seen in Figures 8
and 9. The absolute amount of alarms is however about 7% lower,
with matching results for the percentage of detected readings. This
is reflected by the detection time in Figure 10 which is increased
by a similar amount. The amount of SMs reporting FP alarms is
similar as in the all-line case, but a difference is that the amount
of alarms per SM is increased to 7 on average and the standard
deviation is increased to 40 as can be seen in Figure 9. The number
of TP alarms still greatly outnumber the FP alarms. The recall and
precision values follow this trend as can be observed in Figure 11.
The accuracy however remains very close to one.

Alarms are triggered both by manipulated SMs as well as SMs
that have not been manipulated. However the number of alarms
triggered by manipulated SMs is at least one order of magnitude
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Figure 12: The mean and standard deviation for the number
of TP alarms per manipulated SM and FP alarms per SM re-
porting such alarms respectively for different numbers of
manipulated SMs.
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Figure 13: The detection time for the detected manipulated
SMs for different numbers of manipulated SMs.
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Figure 14: LoCoVolt’s detection rate for different numbers
of simultaneous manipulated SMs.
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Figure 15: The detected percentage of manipulated readings
for different numbers of simultaneous manipulated SMs.
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Figure 16: The precision, recall and average for different
numbers of simultaneous manipulated SMs.
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Figure 17: The mean and standard deviation for the number
of TP alarms per manipulated SM and FP alarms per SM re-
porting such alarms respectively for different numbers of
manipulated correlated SMs.
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Figure 18: The detection time for the detected manipulated
SMs for different numbers of manipulated correlated SMs.
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Figure 19: LoCoVolt’s detection rate for different numbers
of simultaneous manipulated correlated SMs.
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Figure 20: The detected percentage of manipulated readings
for different numbers of simultaneous manipulated corre-
lated SMs.
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Figure 21: The precision, recall and average for different
numbers of simultaneous manipulated correlated SMs.

larger than the number triggered by non manipulated SMs, as
shown in Figures 5 and 9. This is also the case when multiple
SMs are manipulated simultaneously, as shown in Figure 12. As
currently done by system experts, all reported SMs need to be
inspected. System experts usually start inspecting the SMs with
the higher amount of alarms and stops when a false positive is
encountered. If we define the detection rate as the percentage of
broken meters that are indeed inspected, we can see in Figure 14
that the range of broken meters that are correctly detected goes
from 100% (for 2 simultaneously broken meters) to approximately
65% for 10 simultaneously broken meters.. LoCoVolt’s detection
capability declines with increasing numbers of broken SMs with
a rate for two bad SMs above 99% but then starts to decrease to
reach 70% for ten bad SMs. Figure 12 shows that the number of
TP alarms per SM decreases rapidly from a mean of 250 for two
broken SMs to just 13 when the number of broken SMs is increased
to 10. The average number of FP alarms however is independent
of the number of bad SMs and smaller than two in all cases. The
number of detected manipulated readings shows a similar trend
as observed in Figure 15. The mean detection times for the broken
SMs increases from 20 to 40 hours as can be seen in Figure 13.
These trends are reflected in Figure 16 showing the precision, recall
and accuracy. Both the precision and accuracy are close to one
independent of the number of manipulated SMs, while the recall
drops from 0.75 for two manipulated SMs to 0.05 when the number
of manipulated SMs is increased 10. Even though the recall is only
0.05, the average number of alarms for a manipulated SM is still an
order of magnitude larger than for a non-manipulated SM.

The results for the multi-correlated-SMs show similar trends.
Figure 17 shows that the number alarms reported per TP or FP SM
hardly changes, however the number of manipulated SMs that is
detected declines faster as seen in Figure 19. This is also reflected
in the number of manipulated readings that are identified which
can be seen in Figure 20 as well as in Figure 21 which shows that
the recall decreases faster in this case. The detection time increases
faster when the broken SMs are highly correlated, as shown in
Figure 18, with the mean detection time when for 10 broken SMs
growing slightly over 60 hours.
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Figure 22: The mean and standard deviation of the
throughput on the Odroid for different input rates.
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Figure 23: The mean and standard deviation of the
latency on the Odroid for different input rates.

LoCoVolt performance
In order to study LoCoVolt performance, we also evaluate its through-
put and latency when running on the Odroid. The throughput, mea-
sured in tuples/second, represents the rate with which an CU can
process input tuples. The latency, measured in ms, represents the
average time elapsed between the production of an output tuple
and the receiving of the latest input tuple contributing to it. Note
however that since LoCoVolt produces a reduced number of output
tuples (only for alerts about broken SMs), the latency is measured
at the input of operator S5 in figure 3.

Figure 22 and 23 show the mean and standard deviation of the
measured throughput and latency over three runs for every tested
input rate. As shown, the Odroid can maintain a stable input rate
of 600 tuples per second which is enough to sustain a reading
interval of 1 second with a big margin. This throughput is more
than sufficient for future applications, considering that the current
reading interval is 1 hour. The latency is approximately 2 seconds
at an input rate of 600 tuples/second, which is very small compared
to LoCoVolt’s detection time which is in the range of hours.

Evaluation summary
Broken SMs are currently usually detected when their readings
exceed the allowed voltage range which in the case of this data set
is 230V ± 10%. A broken SM with a voltage manipulation rate of
0.005 would be detected after 20 days at the earliest. We show that
the detection time using LoCoVolt is significantly smaller with a
mean of 48 hours. The number of FP alarms generated by LoCoVolt
is very small and greatly outnumbered by the number of TP alarms,
enabling utilities to act on alarms swiftly since the possibility that
the work required for an investigation is wasted due to a false alarm
is very small. LoCoVolt can also detect situations in which there
multiple broken SMs simultaneously, regardless of the correlation
between these SMs. The detection rate decreases with increasing
numbers of broken SMs, which is expected since a larger number
of broken SMs will decrease the value of the weighted accusations.
The detection rate is largest and the detection time smallest for
the case where all broken SMs are picked randomly, but LoCoVolt
outperforms the current detection method with a large margin even
when the broken SMs are highly correlated.

We also show that it is possible to run the analysis on the next
generation CUs. Carrying out processing in the deployed infrastruc-
ture would minimize the amount of data that needs to be uploaded
to the utilities’ central servers.

6 RELATEDWORK
There is rising interest in the benefits from processing data in
digitalized systems and especially so in the context of improving
sustainable development in cities, where electricity networks is a
key component in the infrastructure (c.f. e.g., [1, 12] and references
therein). Especially in the latter it is highlighted that as data flows
continuously in the systems, it is useful to process in a streaming
fashion, before the data (or summaries of it [13]) is stored in big
data-bases where it becomes infeasible to extract useful information
in timely fashion. The latter is also one of the focal points of this
paper.

The reliability of data and the robustness of the digitalized sys-
tems themselves are key issues. As examples, it is possible to men-
tion that in [11] the authors have shown how to deal with data
validation through continuous data-stream processing of the elec-
tricity consumption measurements so as to have trustworthy data
for billing and for further processing to e.g. use in planning opera-
tions. In [6, 10] the authors study the problem of detecting potential
intrusions in AMI, since these are highly motivated.

Besides protecting the robustness and the reliability of the in-
frastructures, it has been shown that general data processing and
stream processing can generate valuable information, for e.g. de-
tecting fraud, non-technical losses, power outages [3, 5, 8], thus
protecting both safety/societal and economic aspects.

Our work combines stream processing of AMI voltage data with
correlations of time series in order to detect broken SMs.

Correlation of consumption value time series has been used in a
streaming fashion in order to clusters of similar customers [21].

Voltage data has seen increasing use in Smart Grids recently. E.g.
voltage time series correlations have been used in order to verify
the documented grid topology, either by correlating smart meter
data with transformers [17, 18], or by correlating only smart meter
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data [16]. To the best of our knowledge, voltage data has never been
used to identify broken smart meters nor have voltage correlations
been done in a streaming and distributed fashion. Other uses of
voltage data include power quality estimation in the grid [2].

Identification of bad individuals by peer to peer accusations has
also been explored in wireless [15] and vehicular networks [19],
where the notion of a group has a physical interpretation. Here we
need to induce this information through the temporal dimension
of the measurements of SMs, among the dynamic set reporting to
the CU that locally processes the data.

7 CONCLUSIONS AND FUTUREWORK
The digitalization of electrical grids and in particular AMIs can pro-
vide the means to not only take and report measurements, but also
to process the data in the deployed IT infrastructure and generate
valuable information at the edge of the network, without relying
on big cloud infrastructures and data centers. We strengthen this
statement by addressing the problem of continuous distributed
monitoring of voltage measurement streams, for detecting broken
smart meters. Having this information is important for reliable
billing, for prompt reaction for safety reasons, and, consequently,
for the business value of the utility. We show that it is possible to
have high accuracy and timely detection, even when the processing
is done through resource-constrained devices such as the ones that
are common in AMIs. The latter implies that this is achievable at a
negligible cost for the utility.

Continuous stream-based monitoring can be beneficial for a
series of other purposes, including facilitating planning operations,
use of renewables and identifying other types of anomalies and
unwanted situations.
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