
Search-Based Scheduling of Experiments in Continuous Deployment

Downloaded from: https://research.chalmers.se, 2025-07-03 03:24 UTC

Citation for the original published paper (version of record):
Schermann, G., Leitner, P. (2018). Search-Based Scheduling of Experiments in Continuous
Deployment. 2018 IEEE International Conference on Software Maintenance and Evolution
(ICSME): 485-495. http://dx.doi.org/10.1109/ICSME.2018.00059

N.B. When citing this work, cite the original published paper.

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained
for all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, or reuse of any copyrighted component of this work in other
works.

(article starts on next page)



Search-Based Scheduling of Experiments in
Continuous Deployment

Gerald Schermann
University of Zurich
Zurich, Switzerland

schermann@ifi.uzh.ch

Philipp Leitner
Chalmers | University of Gothenburg

Gothenburg, Sweden
philipp.leitner@chalmers.se

Abstract—Continuous experimentation involves practices for
testing new functionality on a small fraction of the user base
in production environments. Running multiple experiments in
parallel requires handling user assignments (i.e., which users
are part of which experiments) carefully as experiments might
overlap and influence each other. Furthermore, experiments are
prone to change, get canceled, or are adjusted and restarted,
and new ones are added regularly. We formulate this as an
optimization problem, fostering the parallel execution of exper-
iments and making sure that enough data is collected for every
experiment avoiding overlapping experiments. We propose a ge-
netic algorithm that is capable of (re-)scheduling experiments and
compare with other search-based approaches (random sampling,
local search, and simulated annealing). Our evaluation shows that
our genetic implementation outperforms the other approaches by
up to 19% regarding the fitness of the solutions identified and up
to a factor three in execution time in our evaluation scenarios.

I. INTRODUCTION

A high degree of automation (e.g., building, testing, and
deploying software artifacts) enables companies, and espe-
cially Web-based companies, to release new functionality more
frequently and faster. Companies such as Microsoft [1], Face-
book [2], Google [3], or Netflix [4] are characterized by having
hundreds of deployments a day throughout their software
ecosystem. Sophisticated monitoring and telemetry solutions
keep track of releases and the captured live production data
has become the basis for data-driven decision making [5].
Instead of shipping new features or functionality to all users,
continuous experimentation practices such as A/B testing [6]
or canary releases [7] enable companies to test new features
on a small fraction of the user base first. Fast insights from
live data are paired with manageable risks, if things go wrong
“just” a fraction of the users is affected.

However, setting up such an experimentation infrastructure
is not a straightforward task, as demonstrated by experience
reports of, e.g., Kevic et al. [1], Xu et al. [8], and Fabijan
et al. [9]. An essential requirement for successful experi-
mentation is to collect enough data to draw valid statistical
conclusions (cf. Kohavi et al. [10]). Having multiple experi-
ments running at the same time requires careful user assign-
ments (i.e., which users are part of which experiments) as
experiments might overlap and influence each other. To avoid
these situations, some experiments might require to await the
termination of previous experiments, or to run in parallel but
on different fractions of the user base. The former is simple,

yet not feasible as development work continues and delayed
releases should be avoided. The latter requires scheduling a
potentially scarce resource (i.e., users interacting with the
application) in a domain prone to change. Experiments fail
frequently, captured feedback gets integrated, and experiments
are reiterated, i.e., re-executed after these adjustments. For
example, at Microsoft Bing [1], 33.4% of experiments are
ultimately deployed to all users, and experiments are iterated
1.8 times on average. Hence, scheduling experiments is not a
self-contained task. Experiment restarts, reschedulings (e.g.,
different user group, or day), and cancellations (i.e., pre-
scheduled resources become available for other experiments)
need to be dealt with. Furthermore, the search space of how
users can be assigned to experiments is massive.

In this paper, we define the problem of experiment schedul-
ing as an optimization problem. Experiments should start
as soon as the coding part of a feature is done, avoiding
delays of multiple days or even weeks. Moreover, enough
data has to be collected throughout the experiments, but at the
same time we need to guarantee that the scheduled resources
are distributed fairly to foster parallel experiment execution.
For this, we propose a genetic algorithm that is capable
of (re-)scheduling (running) experiments. We envision our
approach to become an active part of a release or deployment
pipeline [7], periodically (e.g., daily or even multiple times
a day) updating the experiment schedule, accounting for
experiment cancellations or restarts. The resulting schedule is
then used to instrument the system for experiment execution,
i.e., administering the states of dynamic feature toggles [11] or
traffic routing mechanisms [12]. We compare the capability of
our genetic algorithm with the capability of other search-based
approaches (random sampling, local search, and simulated
annealing). To summarize, our main contributions are:

• The definition of experiment scheduling as an optimiza-
tion problem.

• Implementations of a genetic algorithm (including custom
definitions of crossover and mutation), random sampling,
local search, and simulated annealing for this domain.

• An extensive evaluation showing that the genetic algo-
rithm outperforms the other search-based approaches by
up to 19% regarding the fitness score of the solutions
identified and up to a factor of three in execution time.



Our tooling, source code, and evaluation data (i.e., example
experiments and scripts) are available online [13] fostering
experiment replication and extension.

II. BACKGROUND

In the following, we provide background information on
the different types of experimentation, typical considerations
before launching an experiment, and what problem arise in the
context of scheduling continuous experiments.

A. Types of Experimentation

Experimentation practices such as A/B testing [6], canary
releases [7], or dark launches [2] give companies fast insights
into how new features perform while keeping the risks man-
ageable at the same time. Using the terminology of Schermann
et al. [14], [15], these experiments are categorized into two
flavors: regression-driven and business-driven experiments.

Regression-driven experiments are used to mitigate tech-
nical problems (e.g., performance regressions) when testing
new features, to conduct (system) health checks, and to test
the scalability of the application’s landscape on production
workload. These experiments typically run from minutes to
multiple days and mainly involve the practices of canary
releases and dark launches.

Business-driven experiments guide different implementa-
tion decisions or variants of features from a business per-
spective (e.g., do customers appreciate this feature). These
experiments typically involve A/B testing and run for multiple
weeks or even months.

A common practice for both types of experimentation are
gradual rollouts [7] in which the number of users assigned to
an experiment is increased in a stepwise manner (e.g., increase
from 2% of the Canadian users to 5%, then 10% and so on).

B. Ingredients of Experimentation

The core ingredients for all these types of experiments are
the same. Once the responsible developer or analyst decides
to launch an experiment, they need to have an understanding
of (1) what to measure, i.e., the overall evaluation criterion
(OEC) [16], [9], (2) how many data points to collect for
being able to statistically reason about the OEC and thus
the experiment’s outcome (i.e., sample size), (3) which users
to conduct the experiment on (e.g., different user groups,
regions), and (4) when to run the experiment.

An OEC is highly domain dependent (e.g., units sold,
number of users streaming videos) and represents a quantita-
tive measure of the experiment’s objective [16]. An essential
decision is which users or user groups to consider for an
experiment, thus who to assign to control and treatment
groups. Users in treatment groups test new functionality, while
control group users continue using the previous (stable) ver-
sion and serve as reference points for (statistically) evaluating
the experiment’s outcome. Further factors involve that user
groups might interact differently with a system (e.g., usage
behavior of users paying for the service vs. users using it
for free), that these groups are of different sizes, and that

the time when an experiment runs may matter (e.g., time
of the day, day of the week). Consequently, the duration of
an experiment highly depends on these factors, plus all the
other experiments that run at the same time on the same
or overlapping user groups, i.e., there might be less traffic
available for a single experiment in such a setting requiring
longer experiment duration to collect a sufficient number of
data points.

C. Uncertainty of Experimentation

Continuous experiments test new ideas. However, it is
quite natural that not every idea ends up being successful.
Experiments fail, failures are analyzed, and if there is a way
to improve, experiments are repeated. The consequence is
that scheduling experiments is not a one-time task. Resources
budgeted for canceled experiments can be reused by other
experiments, potentially reducing their overall execution time
as the required sample size is reached faster (though still
keeping in mind that there often exists a minimum duration
to measure a certain effect).

Furthermore, dealing with traffic profiles in the context of
experimentation is trying to estimate how the future might be
while looking into the past. However, we cannot foresee how a
new feature changes the users interactions’ with a system. For
instance, a particularly well-received new feature may cause
traffic to explode. Consequently, experiment schedules need to
be periodically re-evaluated, and experiments may need to be
extended, shortened, or postponed.

In our research, we take this “uncertainty” into account and
provide an approach that is able to deal with rescheduling of
experiments, frequently adjusting to changed (user) behavior,
and results in experimentation schedules that support a “valid”
(i.e., avoid overlapping experiments) execution of multiple
experiments at the same time.

III. RELATED WORK

We distinguish between related work on continuous ex-
perimentation in general, involving experience reports on
how companies conduct experiments, and how search-based
software engineering techniques have been used in similar
domains and in the context of scheduling.

Continuous Experimentation. Research on continuous ex-
perimentation has gained traction recently. There have been
experience reports specifically investigating the process, chal-
lenges, and characteristics of conducting experiments in an
enterprise company setting. These reports involve for example
work by Kevic et al. [1] and Fabijan et al. [9] looking at the
process of Microsoft. Moreover, the work of Xu et al. [8] and
Tang et al. [3] specifically covers how LinkedIn and Google
approach handling multiple experiments in parallel. Different
to our own and Google’s approach, at LinkedIn experiments
are fully overlapping by default as in most cases their tests
are restricted to the UI level and run on different (sub-)parts
of the system. Google uses a system of layers and domains
to divide up the user space in order to avoid overlapping and
conflicting experiments. However, the underlying assumption



is that there is always enough user interaction available to
collect enough data across all layers and subdomains, which
may be true for Google, but less so for other companies with
different patterns of user interaction and a smaller user base.
Beside research focusing on single companies, there exist also
multiple empirical studies, e.g., Lindgren and Münch [17] and
Schermann et al. [14]. Still within the context of continuous
experimentation, but more from a data science angle is the
work of Kohavi et al. [16], [6], [10] and Crook et al. [18].

Search-based Software Engineering. Over the last years
search techniques, and especially genetic algorithms, have
become popular to tackle problems in multiple areas of
software engineering, ranging from test data generation [19],
software patches and bug fixes [20], refactoring [21], effort
estimation [22], defect prediction [23], [24], to cloud de-
ployment [25]. In the context of continuous experimentation,
Tamburrelli and Margara [26] formulate automated A/B testing
as an optimization problem. They propose a framework that
supports the generation of different software variants using
aspect-oriented programming, the runtime evaluation of these
variants, and the continuous evolution of the system by
mapping A/B testing to a search-based SE problem. While
they focus on the generation of the variants, our focus is on
the actual execution of continuous experiments taking into
account various constraints such as a limited number of users
and avoiding overlapping experiments. Heuristics including
genetic algorithms and simulated annealing have also been
used in the context of scheduling resources. Wall [27] provides
a general overview of resource-constrained scheduling and
describes scheduling as a dynamic problem, i.e., scheduling
algorithms must be capable of reacting to changing require-
ments (e.g., when the availability of resources changes, or
interruptions occur).

To the best of our knowledge, the problem of scheduling
continuous experiments (i.e., a domain that is prone to change)
has not yet been tackled.

IV. PROBLEM REPRESENTATION

We formulate the problem of finding valid experimentation
schedules as an optimization problem. We use weighted-sum
as the parametric scalarizing approach [28] to convert multiple
objectives into a single-objective optimization problem. Given
a set of n experiments E = {E1, E2, . . . , En}, the goal is
to identify a valid schedule S with maximal fitness, thus,
maximizing the values of the problem’s objectives. In this
paper, we focus on scheduling experiments targeting a single
service. First, we discuss how experiments and schedules are
represented. Next, we discuss how the fitness of a schedule is
defined and what defines a valid schedule.

A. Experiments

Scheduling experiments requires some basic information
for every experiment Ei (summarized in Table I). Besides
a unique identifier, this involves the type of the experiment
(i.e., business- or regression-driven experiment), the minimum
experiment duration that is needed for measuring a certain

TABLE I
INPUT DATA FOR EXPERIMENTS

Property Type Description Example

ID Integer Unique experiment ID 1
Type Enum Business- or regression-driven experiment? Regression
Min Duration Integer Minimum experiment duration in hours 240
Sample Size Integer Minimum required exp. sample size (RESS) 10,000,000
Priority Integer Experiment priority (≥ 0) 6
Preferred UGs [String] List of preferred user groups to test with [3, 4]
Gradual Boolean Stepwise increase of assigned users? True
Start Traffic Integer In case of gradual, # of users to start with 10,000

effect, the sample size, thus how many data points to collect for
an experiment, the priority of an experiment, and the preferred
user group to test with.

When it comes to how experiments accumulate the required
sample size in the course of their execution we distinguish
between gradual and constant traffic consumption.

Constant consumption: Throughout its execution an ex-
periment “consumes” a constant amount of traffic, i.e., the
number of data points to collect at every hour x is defined as
cx = samplesize

duration .
Gradual consumption: Starting with a sample size t, the

number of data points accumulated at every hour throughout
an experiment with duration d increases in a stepwise manner.
In our case, we rely on a simple linear function with a
positive slope, i.e., the consumption cx at hour x corresponds
to cx = kx+ t. The factor k for the increase is obtained
from the integral

∫ d
1
kx+ t dx = samplesize, i.e., the total

consumption throughout the experiment (i.e., the area of the
linear function for the interval 1 to d) has to sum up to the
minimum sample size.

B. Schedules

A schedule S for n experiments E = {E1, . . . , En} con-
sists of a set S = {S1, S2, . . . Sn}, in which every sched-
ule Si corresponds to an experiment Ei. Every schedule
Si is a tuple 〈τ,A〉, consisting of a start slot τ (i.e.,
the hour to launch the experiment) and a tuple of as-
signments A = 〈A1, A2, . . . , Ad〉, where d corresponds to
the duration of the experiment in hours. Every individ-
ual assignment Ai specifies how many users (in percent)
of which user groups are part of the experiment at hour
i. This is defined as a matrix {group : consumption},
e.g., A4 = {group1 : 0.05, group2 : 0.0, group3 : 0.01}. In
this example, 5% of the users of user group 1 and 1% of
the users of user group 3 are part of the experiment at hour 4
of its execution.

C. Fitness

The fitness function applied on a schedule S represents
a trade-off between three conflicting objectives: experiment
duration, start, and user group. All three are assigned separate
scores.

Duration score: An experiment Ei should not take longer
than required, i.e., the length of its schedule Si should – in
the best case – equal the experiment’s minimum duration. For
example, results for an experiment on the system’s scaling



capabilities should be available after 3 days instead of 2
weeks. The duration score dsi of experiment Ei corresponds
to dsi =

minDuration
d , where d denotes the duration of the

schedule Si. Thus, the maximum score equals 1.0 if and
only if the experiment does not take longer than its specified
minimum duration.

Start score: Experiments should start as soon as possible.
The start score ssi of experiment Ei with schedule Si cor-
responds to ssi = 1

τ . Thus, the maximum score equals 1.0 if
and only if the experiment starts at hour τ = 1.

User group score: An experiment Ei should (mainly)
involve its preferred user groups during its execution. The
user group score usi of experiment Ei corresponds to
usi =

∑d
1 coverage(Ai)

d , in which coverage(Ai) is a function
returning 1.0 if and only if at least one of the experiment’s
preferred user groups captures the majority of the sample
data at hour i, otherwise 0. The sum is then divided by the
experiment’s duration d, resulting in the average user group
coverage. Consequently, if the coverage criterion is fulfilled
for every hour of the experiment’s execution, the maximum
score equals 1.0.

Combined fitness score: The combined fitness score f of
schedule S consisting of n experiments E = {E1, . . . , En} is
obtained by summing up the individual scores for every experi-
ment Ei, taking into account the different experiment priorities
〈p1, . . . , pn〉 and weighting of the scores 〈wds, wss, wus〉.
Therefore, we transform our three objectives into a single
scalar objective using the weighted-sum strategy, thus leading
to a single-objective optimization problem. The weights sum
up to 1, thus, the fitness score of a schedule S is in the range
0 to 1. Prioritization allows favoring some experiments over
others.

f = wds ∗
∑n

1 dsi ∗ pi∑n
1 pi

+ ∗wss ∗
∑n

1 ssi ∗ pi∑n
1 pi

+ wus ∗
n∑
1

usi ∗ pi

D. Constraints

For a schedule S to be considered valid, four constraints
have to be fulfilled. We distinguish between experiment con-
straints and overarching constraints. The former checks on
experiment level (i.e., checking Si of Ei), the latter requires
checking the entire schedule S. Experiment constraints involve
checking for valid business-driven experiments, checking that
experiments collect sufficient data, and that they are not in-
terrupted, the overarching constraint ensures that we schedule
not more resources than available.

Valid business experiments: A schedule Si of a business-
driven experiment Ei (i.e., experiment type = business)
is valid if and only if it involves the same user groups
during all hours of its execution, i.e., the user groups with
consumption ≥ 0 in every Aj ∈ A of the schedule Si’s
assignment A are the same. The reason for this constraint is
that business experiments measure a certain effect for partic-
ular user groups, often for a long period, therefore switching
user groups during the execution would skew results. However,
for a regression-driven experiment testing, for example, the

scaling capability of a new service, it generally does not matter
whether user groups change within the experiment.

Sufficient data points: This constraint validates that
consumedTraffic(Ax) ≥ cx for every hour x = 〈1, . . . , d〉 of
the experiment Ei with schedule Si, duration d, and assign-
ments A = 〈A1, . . . , Ad〉. The function consumedTraffic(Ax)
returns the total number of users that are assigned to the
experiment at hour x taking into account the traffic that is
expected according to the underlying traffic profile (e.g., see
an example profile for a user group in Figure 3). Thus, it is
checked whether the minimum required sample size cx (either
constant or gradual) is met for every hour.

Non-interrupted experiments: This constraint ensures that
experiments continuously collect data throughout their execu-
tion. Thus, there does not exist an assignment Ai consuming
zero traffic and there has to be an assignment Ai ∈ A for
every i = 〈1, . . . , d〉.

Sufficient traffic available: This overarching constraint
ensures that at a time slot x there is no user group across
all schedules S = {S1, . . . , Sn} such that the total traffic
consumption within a user group is more than 100%. For every
schedule Si we consider the user groups of assignment Aj with
τ + j − 1 = x.

V. APPROACH

In this section we look at approaches to generate valid ex-
periment schedules as solutions for the presented optimization
problem. First, we start with a genetic algorithm, followed
by random sampling, local search, and we conclude with
simulated annealing as a slight modification of local search.

A. Genetic Algorithm

Genetic algorithms (GA) [29] group candidates, typically
called individuals, in populations. The basic idea of genetic
algorithms is to mimic an evolutionary process in which the
best-suited candidates in each generation are selected and used
as basis for the next generation of solutions. Starting with an
initial population of multiple individuals (i.e., different valid
solutions of the optimization problem), these selected candi-
dates evolve through multiple generations in which mutation
and crossover operations are applied and after several genera-
tions of reproduction those individuals that inherited superior
properties become dominant. The reproduction within each
generation consists of the following basic steps for genetic
algorithms as presented, for example, by Harman [30]. In our
case an additional repair step is added (see Section V-A5).

1) Parent selection
2) Crossover
3) Offspring mutation
4) Repair
5) Fitness and validity evaluation
6) Next generation selection
The initial population is created using random sampling

(see Section V-B for details). Individuals are represented as
chromosomes (see Section V-A1) and a fitness function serves
as basis for their assessment (see Section IV-C). Individuals



for the next generation are primarily created using crossover
and mutation operations, but a small set of the best individuals
(ELITISM SIZE parameter) of the previous generation is also
passed on to the next generation unchanged (step 6). The
GA stops after a specified number of generations, or if one
individual solution reaches the desired level of fitness.

All of the presented approaches (i.e., genetic algorithm,
local search, simulated annealing) use random sampling as
starting point and the chromosome structure described in the
following to represent solutions for the optimization problem.

1) Chromosome Representation: A chromosome, i.e., a
solution of the optimization problem, is represented as shown
in Figure 1. We rely on value encoding and a chromosome
corresponds to a schedule S defined in Section V, i.e., a
chromosome consists of multiple schedule genes Si ∈ S
corresponding to their experiments Ei ∈ E (top layer in
Figure 1). Every schedule gene Si further contains assignment
genes Aj ∈ A and a gene encoding the start hour of the
schedule Si (middle layer in Figure 1).

Chromosome

Tra!c Assignment for Hour 2 of Experiment 4

Schedule for Experiment 4

Start 
Slot A 1 A 2 A 3 A N

24

4 % 2 % 0 %

UG 1 UG 2 UG 3

0 %

UG N

…

…

Schedule 
Exp 1

Schedule 
Exp 2

Schedule 
Exp 3

Schedule 
Exp 4

Schedule 
Exp N-1

Schedule 
Exp N…

Fig. 1. Chromosome representation using value encoding

Every assignment gene further contains a gene for every
single user group (UG). This is used to encode how many
users of a certain user group are assigned to the experiment
Ei at the respective hour. In Figure 1, bottom layer, at hour
25 (start time slot (τ ) 24 + 2− 1), 4% of the users of user
group 1 are assigned to experiment 4.

2) Parent Selection: The selection of individuals (i.e.,
parents) for reproduction within each generation plays an
important role. Selecting only the highest-score individuals
could result in reduced genetic diversity and lead to premature
convergence, thus there is the chance that the entire population
gets “stuck” at a lower quality solution. Hence, we use fitness
proportionate selection [31], as it is simple to implement and
has been proven to produce acceptable solutions [32]. The
fitness of every individual is obtained, those individuals with
higher fitness have a higher probability to get selected for
reproduction (i.e., crossover and mutation steps).

3) Crossover: Crossover is the process of creating an
offspring of two selected parent individuals by applying a
crossover operation with a certain probability Pc. In our im-
plementation, when performing a crossover of two individuals
A and B, we compare the fitness on experiment level. Thus,
for each experiment Ei ∈ E, we compare the fitness of A’s

schedule SiA with the fitness of B’s schedule SiB . The single
schedule with the higher fitness is added to the offspring
as visualized in Figure 2. Consequently, in our approach a
single offspring is created during crossover and moved to the
subsequent mutation step. In case that no crossover happens
(regulated by Pc), both parents are passed on unchanged to
the mutation step.

0.701.00 0.050.81 0.22 0.90

Schedule 
Exp 1

Schedule 
Exp 2

Schedule 
Exp 3

Schedule 
Exp 4

Schedule 
Exp 5

Schedule 
Exp 6

0.43

Schedule 
Exp 4

Schedule 
Exp 7

0.18

0.710.95 0.380.20 0.67 0.880.55 0.23

Parent A

Parent B

O!spring 1.000.81 0.710.38 0.670.55 0.90 0.23

Fitness

Fig. 2. Crossover example

4) Mutation: Once the offspring is created by applying the
crossover operation, the offspring is mutated by performing
NUM OPS mutation operations on randomly selected exper-
iments Ei and their respective schedule Si with a mutation
probability Pm. Mutation is important to ensure genetic di-
versity within the evolving population and helps to avoid
convergence to a local optimum. In our implementation, six
mutation operations exist that are described in the following.

Move schedule: Pre- or postpones the execution of a certain
experiment Ei by MOVE hours by mutating the start slot τ
in the respective schedule Si. In case of a reevaluation of
the entire experiment schedule, i.e., experiments are already
running, some get canceled, and new ones are added to
the schedule, those experiments that are already running are
omitted for move operations as this would violate the non-
interruption constraint.

Shorten/Extend schedule: Shortens (extends) the selected
schedule Si of experiment Ei by SHORTEN (EXT) hours. In
case of shortening, SHORTEN assignment genes are removed
from Si’s assignment. In case of extension, EXT assignment
genes are added to Si’s assignment by duplicating the last
assignment gene.

Flip user group: Changes which user groups are assigned
to the selected experiment Ei, either for the entire schedule
Si (i.e., all Ai ∈ A), or for a certain range (u, v) within the
schedule (i.e., Ak ∈ A, 1 ≤ u ≤ k ≤ v ≤ d). Takes randomly
a used user group ugx of the experiment’s schedule Si (or from
within the range) and replaces it with another randomly re-
trieved user group ugy . If the new user group ugy was already
used within Si, the traffic of ugx is added to ugy’s traffic. In
case of schedule reevaluation, already running business-driven
experiments are excluded from the flip operation. In addition,
the flip range operation is not applied on business experiments
as this would lead to a constraint violation.

Add/Remove user group: Similar to flip user group, in-
stead of replacing a user group for the entire schedule Si (or
for a certain range within the schedule), an unused user group
is added, or a used user group is removed as long as there



is at least one user group left. The same conditions apply for
schedule reevaluation involving running business experiments
and range operations on business experiments.

5) Repair: Mutating a schedule Si of an experiment Ei has
a direct effect on the number of data points collected during
its execution. In order to ensure that enough data points are
collected to fulfill the validity constraints (e.g., after a user
group is removed from the experiment), a repair action is
executed after the mutation step. The repair action adjusts for
every mutated schedule Si every single assignment Aj ∈ A
in such a way that consumedTraffic(Aj) ≥ cj is fulfilled.
The repair action distributes the required data points for every
cj across the user groups used by Aj . This is achieved by
considering the estimated traffic within the user groups at a
specific time slot x from the underlying traffic profile and
the required sample size for this specific hour cx which itself
depends on the experiment’s sample size and its schedule’s
duration. To deal with the uncertainty regarding the estimated
traffic profile, we introduce a buffer (BUFFER parameter)
such that slightly more (e.g., 0.5%) traffic is consumed than
required.

B. Random Sampling

Random sampling (RS) [33] tries to find valid solutions
by creating individuals purely by chance. Our RS approach
makes use of the fitness function for assessing the individuals
and the constraints for checking their validity as presented in
Section IV. A set of POP SIZE individuals for n experiments
E = {E1, . . . , En} to be scheduled is created as follows. For
an individual solution, randomly take an experiment Ei to be
scheduled. Create a schedule Si with a random start time, a
random selection of one or two user groups out of the pool of
existing user groups, and a random duration d that is larger or
equal than the experiment’s minimum duration. Then create
d assignment genes such that the minimum required sample
size of Ei is reached during the course of the experiment
on the selected user groups on the estimated traffic profile.
If the created schedule Si is valid, then it is added to the
overall schedule S and the next experiment Ej is picked for
scheduling. The random schedule creation is repeated until a
valid schedule for every picked experiment is found. After
POP SIZE valid individuals are created, the one individual
with the highest fitness score is chosen as the result of RS.
Strictly speaking, as we pick one experiment after the other
and only proceed when a valid schedule is found, our approach
is not “pure” random sampling but rather categorized as
systematic random sampling [33].

C. Local Search

The local search (LS) algorithm starts with the best in-
dividual generated by random sampling and iteratively tries
to optimize it by applying the same mutation operations as
with the genetic algorithm, followed by the same repair step
after each iteration. Again NUM OPS mutation operations are
performed on randomly selected experiments Ei and their re-
spective schedule Si. If the newly generated neighbor resulting

from the mutation is an invalid solution, the mutation is reset
and the process is repeated until a valid solution is found.
After this step, the resulting valid neighbor is compared to the
current solution, if the neighbor’s fitness score is higher, then
the neighbor becomes the current solution. This process is then
repeated NUM ITERATIONS times and the final “current”
solution returned.

D. Simulated Annealing

The main issue of local search algorithms is that — by
design — they get stuck in a local optimum from which no fur-
ther improvements are possible. Simulated annealing (SA) [33]
as a variant of local search algorithms tries to overcome this
issue by applying a technique simulating the physical process
of annealing in metallurgy. Transferred to our optimization
problem and in contrast to our local search implementation,
neighbor solutions with worse fitness than the current solution
have a certain probability to get accepted, thus the likelihood to
run into a local optimum is reduced. The likelihood to accept
worse solutions is tied to the current temperature. Initially
the temperature is high, thus the algorithm is more likely to
accept neighbor solutions with a lower fitness score than the
current solution. After every iteration the temperature slowly
decreases by a cooling factor, thus the acceptance of worse
solutions is less likely. The process of finding valid neighbors
and optimizing them using the mutation operators is exactly
the same as in our local search implementation, just with the
slight addition that the acceptance criterion is added.

VI. EVALUATION

For the evaluation of the capabilities of the previously
discussed approaches, we implemented them in Java and we
assessed them in three aspects: (1) maximum fitness scored for
a specific set of experiments, (2) comparison when running an
increasing amount of experiments at the same time, and finally,
(3) dealing with the reevaluation of an existing schedule.
Before we dive into the evaluation, we briefly describe the
setup we used as basis for the evaluation.

A. Setup

The setup involves the description of the used traffic profile,
the experiments created (in different sizes), how the various
algorithms were calibrated, and finally, on which hardware we
executed the evaluation runs.

1) Traffic Profile: For our evaluation we mimicked a real
traffic profile. We used GitLab’s public monitoring tooling1

and extracted the hourly interaction of users based on the
number of returned HTTP status codes for the months January
and February 2018. This total traffic per hour served as our
baseline and we reserved 10% traffic to serve as the control
group being not involved in any experiment. For our evaluation
scenario, we divided the remaining traffic into five user groups:
group 1 (40% traffic, simulating logged off users), group 2
(10%, paying single license users), user group 3 (20%, free
single users), user group 4 (15%, paying company license

1https://monitor.gitlab.net/dashboard/db/fleet-overview



users), and group 5 (15%, free company users). To simulate
longer running experiments we replicated the two month
period to get a twelve month profile.

2) Experiments: We created a baseline of 10 experiments.
This involved six regression-driven experiments (two with
gradual, four with constant consumption) and four business-
driven experiments (constant consumption). Their minimum
duration ranged from a single day up to 18 days. As basis for
our experiments we used the durations reported by Kevic et
al. [1] for Microsoft Bing. To evaluate the algorithms under
different scenarios, we created three variations of our baseline:
with low, medium, and high required experiment sample sizes
(RESS), i.e., how many data points does an experiment need
to collect to reason about a certain effect. The baseline with
low RESS requires 15 million data points in total (i.e., the sum
of the RESS of the 10 experiments), with medium RESS 30
million, and with high RESS 55 million.

To evaluate the algorithms on different numbers of ex-
periments running in parallel, we used the baseline of 10
experiments and duplicated them with a step size of 5 exper-
iments to create sets with up to 70 experiments. This resulted
in sets of 10, 15, 20, 25, . . . , 70 experiments, each set in 3
variations with low, medium, and high RESS. For example, 70
experiments with high RESS require to collect 55 ∗ 7 = 385
million data points in total.

Figure 3 demonstrates the effect of the different RESS
variants when scheduling 30 experiments. The high number of
required data points leads to a longer schedule in case of the
high RESS variant. There is simply not enough traffic available
within user group 3 to host all experiments in parallel at the
same time. Further, Figure 3 depicts the effect of the gradual
experiments and how the numbers of users assigned to these
experiments increase during their execution.

3) Calibration: To calibrate the algorithms we followed an
iterative exploratory parameter optimization procedure with 25
experiments with low RESS. We increased the population size
and the number of generations for the GA starting from 10
in steps of 10 until we reached 100. The number of iterations
for LS and SA was evaluated for 1,000 to 10,000 iterations
(step 1,000). Crossover probability was increased from 70% to
100% (step 5%), and mutation probability from 10% to 100%
(step 10%). The number of the executed mutation operations
NUM OPS is defined as being dependent on the number of
experiments to schedule (e.g., 10 experiments and NUM OPS
of 20% leads to 2 mutation operations). We tested NUM OPS
from 5% to 30% (step 5%).

Based on this procedure, we decided for a population size of
40, 90 generations, a crossover probability of 90%, a mutation
probability of 50%, NUM OPS of 15%, ELITISM SIZE of
5, and 3000 iterations (LS and SA). For the sample with
25 experiments, SA achieved the best results with a starting
temperature of 0.007 and temperature decrease of 1% per
iteration. We further set MOVE to 48 hours, SHORTEN and
EXT to 6 hours. For obtaining a scalar fitness value we used
the weightings 〈wds = 0.4, wss = 0.4, wus = 0.2〉.

4) Hardware: We conducted the evaluation on the Google
Compute Engine public cloud service. We used custom Intel
Skylake instances with 4 vCPUs and 4.75 GB memory running
Debian 9 and OpenJDK 8.

B. Maximum Fitness

Given a set of 15 experiments with medium RESS, the
goal of this aspect of evaluation is to identify the maximum
fitness score we can obtain for any of the discussed algorithms.
Further, we want to identify how stable the results are, i.e., we
repeat the execution of each algorithm 20 times. In contrast to
the other aspects of the evaluation (i.e., stepwise increase and
reevaluation) that exactly use the findings of the calibration, we
use 150 generations for the genetic algorithm (GA) and 5000
iterations for local search (LS) and simulated annealing (SA).
The reason is to give the algorithms more time to optimize
their results, while the calibration results (90 generations, 3000
iterations) were a trade-off between fitness score and execution
time, especially taking effect for the stepwise evaluation.

To have a fair comparison of the algorithms, for every of the
20 repetitions, we create an initial population using RS that
is then also used for the respective runs of the GA, LS, and
SA. We measure the execution time for every run, including
the time it takes to generate the initial population.

TABLE II
STATISTICS FOR SCHEDULING 15 EXPERIMENTS WITH MEDIUM RESS

Statistic RS GA LS SA

Mean exec. time (min) 0.96 19.88 26.64 26.04
Mean fitness 0.41 0.88 0.86 0.86
Max fitness 0.45 0.96 0.92 0.93
SD fitness 0.02 0.04 0.04 0.05

Mean ds 0.67 0.97 0.84 0.85
Mean ss 0.02 0.74 0.82 0.81
Mean us 0.70 1.00 0.99 0.99

Figure 4 visualizes the resulting fitness scores in form of
violin plots. Table II provides additional statistics. The GA,
LS, and SA implementations optimize the fitness score of RS
by a factor ≥ 2. GA achieves slightly better fitness scores
than LS and SA in less execution time (20 vs. 26 minutes).
The achieved fitness scores are relatively stable with a SD
of about 4%. Breaking down the combined fitness score into
the individual scores (duration score ds, start score ss, and
user group score us) reveals that the GA reaches almost the
absolute minimum duration (ds 97%), while LS and SA are
better when it comes to letting the experiments start as early as
possible (ss ∼80%). When analyzing how the scores for the
best run (i.e., max fitness) evolve, we notice that in case of GA,
no further optimizations are performed after 140 generations,
in case of LS, the scores are stable after 4800 iterations, and
only in case of SA, the scores keep changing even at iteration
5000.

C. Dealing with Multiple Experiments

The goal of this aspect of our evaluation is to identify how
the algorithms deal with an increasing amount of experiments
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Fig. 4. Comparison of fitness scores for 15 experiments to schedule (GA: 150
generations, LS & SA: 5000 iterations), 20 repetitions in total

to schedule. We conduct evaluation runs in a stepwise manner.
Starting with 10 experiments, we increase the number of
experiments to schedule by 5 experiments per step, until we
reach 70 experiments. Similar to the previous aspect, we are
primarily interested in the fitness scores achieved, the overall
execution time, and how the single objectives evolve. For every
step, we conduct 5 runs with low, medium, and high RESS
each, i.e., 15 runs per algorithm per step. Again, the GA, local
search (LS), and SA implementations use the initial population
generated by RS for the respective runs. We use the parameters
determined by the calibration runs.
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Fig. 5. Fitness scores obtained for different algorithms when number of
experiments to schedule is increased. Error bars represent ± one standard
deviation.

Figure 5 visualizes the fitness scores achieved and the error
bars (± one standard deviation) combining the results of the
runs with low, medium, and high RESS. In addition, Table III

TABLE III
COMPARISON OF EXEC. TIMES IN MINUTES FOR INCREASING NUMBER

OF EXPERIMENTS TO SCHEDULE WITH LOW AND HIGH RESS

Number of Experiments

Stat. 10 15 20 25 30 35 40 45

RS low Mean 0.1 0.7 1.6 3.7 6.6 16.4 18.1 42.5
low SD 0.0 0.0 0.1 0.4 0.6 3.4 0.9 14.4

high Mean 0.2 1.1 2.3 5.0 9.4 14.5 25.7 43.9
high SD 0.0 0.1 0.1 0.3 0.4 1.0 3.4 14.3

GA low Mean 2.9 9.5 14.2 26.4 36.9 69.7 74.4 129.1
low SD 0.2 1.2 0.5 1.4 2.3 10.6 5.0 23.9

high Mean 5.5 14.5 24.3 45.4 60.6 86.1 110.5 178.5
high SD 0.7 0.9 1.6 1.6 4.8 6.6 6.8 21.0

LS low Mean 3.9 14.9 32.0 54.9 93.9 168.4 204.3 517.2
low SD 0.7 1.7 3.4 5.0 6.7 18.0 13.1 321.6

high Mean 6.6 20.9 47.6 103.2 153.0 194.3 280.2 416.5
high SD 1.3 3.4 8.2 10.6 28.2 28.2 38.3 46.7

SA low Mean 3.9 13.8 32.4 57.6 92.6 169.9 204.7 586.2
low SD 0.6 1.4 1.2 2.8 4.3 7.9 22.4 355.6

high Mean 7.7 21.1 49.9 104.2 159.2 200.0 273.7 453.8
high SD 2.5 3.0 9.7 16.2 34.0 31.3 27.1 126.3

outlines execution behavior, i.e., how long it took to generate
the schedules. For space reasons, we omit the results on
medium RESS. As a single run for LS and SA took up to
10 hours for 45 experiments (with high standard deviations),
we decided to cut the evaluation at this point.

The GA outperforms the other approaches for 20 and more
experiments to schedule. This does not only apply for the
achieved fitness scores (e.g., 40 experiments with high RESS:
GA reaches 62%, SA 42%, and LS 43%), but also when
it comes to execution behavior. While it takes the GA on
average 110 minutes to schedule 40 experiments with high
RESS, LS and SA take almost three times as long on average
(280 and 274 minutes). The GA implementation was able to
finish scheduling 70 experiments (with low RESS) within 8
hours. Similar to the previous evaluation, the achieved fitness
scores are quite stable. The error bars in Figure 5 are mainly
driven by the slightly different results (± 5 – 6%) of the
runs with low, medium, and high RESS. Runs with low RESS
achieve better results. Inspecting only runs within a certain
stepsize and within the same RESS, the standard deviation of
the achieved fitness scores is rarely larger than 3%.

Breaking down the fitness score into individual scores, we
notice that the user group score (i.e., scheduling on preferred
user groups) is in almost all cases ≥ 98% (except random
sampling in which no optimization happens). The GA is strong



when it comes to keeping the experiment’s execution duration
short, the duration score ds is on a high level throughout the
various step sizes and decreases only from 98% when schedul-
ing 10 experiments to 83% when scheduling 45 experiments
with high RESS. In contrast, SA and LS reach a ds of 82%
when scheduling 15 experiments and the score drops below
50% when scheduling 40 and more experiments (for all RESS
variants). Similar to our previous observation, LS and SA
begin with higher start scores (i.e., running more experiments
right at the schedule’s launch), but with an increasing number
of experiments to schedule the scores drop below 25% with
25 experiments or more. The start scores of the GA are worse
in the beginning (e.g., 10 and 15 experiments), but the decline
throughout the various stepsizes is smaller.

D. Reevaluating an Existing Schedule

One essential requirement for our approach is that the
implementations are able to deal with the reevaluation of a
schedule, i.e., taking into account experiments that (1) finished
within the already executed period, (2) got canceled, and
(3) are added to be scheduled as well. Further, reevaluation
means that the required sample sizes of running experiments
(i.e., RESS) are adjusted according to the actual data points
that were captured until the moment of the reevaluation.
Thus, depending on the real traffic situation, an experiment’s
duration might need to be adapted.

To test this behavior of our implementations, we select the
best resulting schedule of the GA from the previous evaluation
step with 30 experiments and medium RESS. The schedule’s
fitness value is 74% (duration score 88%, user group score
100%, start score 47%). The reevaluation is conducted after
72 hours. Out of the initial 30 experiments, 3 are canceled,
3 finished within the 72 hours, and 5 new experiments with
medium RESS are added.

We conduct 10 evaluation runs in total. Again, the resulting
population of every run of RS is used by the respective GA,
LS, and SA runs. Random sampling in the context of a reevalu-
ation is special as one individual within the population is based
on the existing schedule, taking into account already existing
optimizations. For the newly added experiments within this
individual the usual sampling process applies.
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Fig. 6. Fitness scores after reevaluation (10 runs): (re-)scheduling 29
experiments in total (3 discarded, 3 finished, and 5 new experiments)

Figure 6 again shows the achieved fitness scores using violin
plots. The fitness scores of the resulting schedules are slightly

below (1% in case of GA) the values of the original schedule,
but still in a similar range as the evaluation runs of the previous
aspect. The gap between the individual approaches (i.e., GA
73% fitness on average, LS 69%, and SA 67%) is much
smaller than in the previous evaluation runs with a similar
number of experiments to schedule (e.g., 30 experiments,
medium RESS: GA 68% on average, LS 50%, SA 51%).
The reason is that both LS and SA benefit from an already
optimized schedule with an especially high duration score ds.
The execution time is on a similar level than for scheduling
30 experiments: 29 minutes on average for the GA, and 52
minutes on average for both LS and SA.

VII. DISCUSSION

We now briefly reflect on and discuss the implications of
our results.

Scheduling as Part of a Release Pipeline. As observed
during our evaluation, for a smaller number of experiments
(i.e., 10 and 15) the achieved fitness scores of the GA, LS,
and SA implementations are on a similar level. However,
when it comes to a larger number of experiments, the GA
implementation not only outperforms the other approaches
in the fitness scores, but also drastically in execution time.
This is especially of interest when we envision scheduling
and (re-)scheduling of already running experiments (which
achieves stable results as demonstrated in the final aspect
of our evaluation) to become an active part in a release
pipeline, e.g., the scheduling is triggered as soon as source
code changes pass the quality assurance phases. Clearly, the
maximum acceptable execution time for scheduling to become
part of a release pipeline depends on the release frequency of
a company, but for example an execution time of 40 minutes
to schedule a set of 30 experiments on cheap public cloud
instances is a promising result. Further, due to the nature of
the genetic algorithm (i.e., offspring for the next generation
is created independently) a higher level of parallelization is
possible compared to the LS and SA implementations. Thus,
we expect that stronger computing machinery could even
decrease the time needed to find suitable solutions.

Importance of Calibration. It is not a straightforward task
to tune multiple parameters to achieve acceptable results in
various execution scenarios. This can be especially observed
for our results of SA. Even though there are “only” two pa-
rameters to tune, in most of our evaluation runs SA performed
slightly worse than its counterpart local search. The reason
is that the starting temperature and the cooling factor were
calibrated for a set of 25 experiments. Consequently, we would
need to fine-tune these parameters for different numbers of
experiments to achieve better results. Another factor, not only
influencing the results of SA, is the weighting of the three
fitness scores (i.e., objectives). We have observed that the user
group score achieves very high values (rarely below 98%)
across our evaluation runs. This could be an indicator that the
weighting could be decreased to better optimize for the other
two objectives. In cases for which scheduling the preferred



user group is of absolute importance this could be ensured by
choosing a higher experiment priority.

Crossover and the Destruction of Valid Schedules. One
of the important steps that help genetic algorithms avoiding
the traps of a local minimum or maximum is its crossover
operation. In our implementation, crossover returns a single
offspring and this offspring is created in a “greedy” way.
An potential effect of this setup on the GA’s results is that
the duration scores are consistently higher compared to LS
and SA implementations. The downside of this approach
is that during the process of reproduction the validity of
the schedule and thus the overarching constraints are not
taken into account. Consequently, many created children are
invalid and thus thrown away. We experimented with multiple
different strategies, conservative ones such as coin flips on
whether to include a schedule for an experiment from the
first or second parent, and “smarter” ones such as trying to
preserve how user groups are distributed. However, all of
these alternative strategies were outperformed by the “greedy”
variant. However, we still believe that there is space to improve
how offspring is created during the crossover process by better
taking validity constraints into account.

VIII. THREATS TO VALIDITY

We now the discuss issues that form a threat to the validity
of our results.

Construct Validity. The main threat regarding construct
validity is that our definition of scheduling continuous ex-
periments as an optimization problem is not an adequate
representation of the domain. This is especially the case for
the definition of constraints (i.e., the validity of a schedule)
and how we determine the fitness of a schedule (e.g., fitness
function and the used weighted-sum approach). We mitigated
this threat by strongly relying on reported empirical work (e.g.,
Kevic et al. [1], Schermann et al. [14], and Lindgren and
Münch [17]). Another threat regarding the representation is
that we limited our approach to scheduling experiments for a
single service. This is acceptable as long as experiments do
not involve or target more than one component or service. Oth-
erwise, this would require additional overarching constraints
that we plan to address in future work. Further, the choice
and the implementation of the algorithms to identify solutions
for the presented optimization problems have influence on the
results. There could exist other heuristics that provide better
results than the implemented algorithms. Further, there might
be better ways to tailor local search and simulated annealing
implementations rather than reusing the genetic algorithm’s
mutation operations.

Internal Validity. Threats to internal validity involve poten-
tially missed confounding factors during result interpretation
(e.g., when breaking down achieved fitness scores into the
individual scores) and that the calibration of the algorithms
affects the results. We mitigated this threat by performing
various calibration runs with different parameter settings on
5 user groups and 25 experiments to schedule. However, as
discussed earlier, calibration was a trade-off between fitness

scores and execution time. Different and more fine-tuned
parameters on different numbers of experiments to schedule
or user groups might result in better results for the various
algorithm implementations. In addition, prior work (e.g., Ar-
curi and Fraser [34]) raise concerns that (hyper-)parameters
of search-based techniques have strong impact on results and
conclusions of studies.

External Validity. Threats to the external validity concern
the generalization of our findings. Even though we used a real
world traffic profile, we mimicked the distribution of users
into multiple user groups which could influence our results.
Further, using traffic profiles with different user interaction
patterns could also lead to different results among the various
algorithms. Our evaluation only relied on self-generated ex-
periments, even though we created them based on knowledge
(e.g., duration of experiments) gathered from various reports
in literature (e.g., Kevic et al. [1], or Fabijan [9]). To mitigate
this threat we created multiple scenarios (i.e., experiments
with low, medium, and high required sample sizes) and
evaluated the implemented algorithms on different numbers
of experiments to schedule. We conducted our evaluation in
a virtualized environment, i.e., Google Compute Engine. It
is possible that the performance variations inherent to public
clouds [35] have influenced the results. To mitigate this risk,
we repeated every evaluation run at least five times.

IX. CONCLUSION

We formulated the problem of scheduling continuous ex-
periments (i.e., which users participate in which experiments
and when to run experiments) as an optimization problem
involving three objectives. (1) experiments should not take
longer than necessary to collect the required data points; (2)
experiments should start as soon as possible to avoid any delay
of ongoing development work; and (3), experiments should be
executed on the preferred user groups to measure a certain
effect. Using a weighted-sum approach we transformed these
objectives into a single-objective optimization problem and
we implemented a genetic algorithm, random sampling, local
search, and simulated annealing to generate solutions.

Our evaluation on multiple aspects has shown that start-
ing from 15 or more experiments to schedule, the genetic
algorithm not only outperforms the other approaches when
it comes to the fitness scores of the identified solutions (e.g.,
up to 19% for 40 experiments with high required experiment
sample sizes), but also in terms of the execution time needed
to find these solutions (e.g., almost a factor three for 40
experiments with high required experiment sample sizes).
Currently, our approach is limited to experiments targeting
a single service or component and the crossover operation
does not take the validity constraints into account during
reproduction. We plan to address both aspects in future work.
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