
Embracing Technical Debt, from a Startup Company Perspective

Downloaded from: https://research.chalmers.se, 2024-03-13 10:40 UTC

Citation for the original published paper (version of record):
Besker, T., Martinia, A., Lokuge, R. et al (2018). Embracing Technical Debt, from a Startup
Company Perspective. PROCEEDINGS 2018 IEEE INTERNATIONAL CONFERENCE ON
SOFTWARE MAINTENANCE AND EVOLUTION (ICSME): 415-425.
http://dx.doi.org/10.1109/ICSME.2018.00051

N.B. When citing this work, cite the original published paper.

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained
for all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, or reuse of any copyrighted component of this work in other
works.

This document was downloaded from http://research.chalmers.se, where it is available in accordance with the IEEE PSPB
Operations Manual, amended 19 Nov. 2010, Sec, 8.1.9. (http://www.ieee.org/documents/opsmanual.pdf).

(article starts on next page)

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Embracing Technical Debt,

from a Startup Company Perspective

Terese Besker1, Antonio Martini2a,b, Rumesh Edirisooriya Lokuge3, Kelly Blincoe3, Jan Bosch1

1Computer Science and Engineering,

Software Engineering,

Chalmers University of Technology

Göteborg, Sweden

besker@chalmers.se,

jan.bosch@chalmers.se

2aCA Technologies Strategic Research Team,

Barcelona, Spain
2bProgramming and Software Engineering,

University of Oslo

Oslo, Norway

antonima@ifi.uio.no

3Dept. of Electrical and

Computer Engineering,

The University of Auckland

Auckland, New Zealand

kblincoe@acm.org,

redi099@aucklanduni.ac.nz

Abstract— Software startups are typically under extreme

pressure to get to market quickly with limited resources and high

uncertainty. This pressure and uncertainty is likely to cause

startups to accumulate technical debt as they make decisions that

are more focused on the short-term than the long-term health of

the codebase. However, most research on technical debt has been

focused on more mature software teams, who may have less

pressure and, therefore, reason about technical debt very

differently than software startups. In this study, we seek to

understand the organizational factors that lead to and the

benefits and challenges associated with the intentional

accumulation of technical debt in software startups. We

interviewed 16 professionals involved in seven different software

startups. We find that the startup phase, the experience of the

developers, software knowledge of the founders, and level of

employee growth are some of the organizational factors that

influence the intentional accumulation of technical debt. In

addition, we find the software startups are typically driven to

achieve a “good enough level,” and this guides the amount of

technical debt that they intentionally accumulate to balance the

benefits of speed to market and reduced resources with the

challenges of later addressing technical debt.

Keywords— Technical Debt, Startup, Software development

I. INTRODUCTION

Software startups are freshly created companies with no
operating history and mainly oriented towards developing
high-tech and innovative products, aiming to grow their
business in highly scalable markets [18], [10]. Startups often
operate with limited resources and under extreme time pressure
as they strive to produce their product and avoid being beaten
to market by a competitor or running out of capital [19]. Thus,
startups typically develop early software versions to test and
validate emerging ideas to avoid wasteful implementation of
complicated software which may be unsuccessful in the
markets [26]. Under these conditions, often the extra effort
required to design and implement software with an optimal
design is considered an unaffordable luxury and a potential
waste of time and effort.

Software companies often make sub-optimal design
decisions to allow them to get to market quickly [19]. For
instance, the product might be built with an inflexible

architecture that cannot be easily changed to speed up time-to-
market and let the startup put their product in users’ hands
earlier, get feedback, and evolve it [3]. If and when the
developed software becomes successful on the market, then the
pressure turns modifying the software to meet the user needs
(i.e., adding new features). This can cause startups to build
upon the original inflexible architecture that was not designed
to last for the long term and is not easily extendable.

The result of this situation is the accrual of what is
described as Technical Debt (TD). The TD metaphor was first
coined at OOPSLA ‘92 by Ward Cunningham [8], to describe
the need to recognize the potential long-term negative effects
of immature code that is made during the software
development lifecycle. A recent definition was provided by
Avgeriou et al. [4] who define TD as “In software-intensive
systems, technical debt is a collection of design or
implementation constructs that are expedient in the short term,
but set up a technical context that can make future changes
more costly or impossible. Technical debt presents an actual or
contingent liability whose impact is limited to internal system
qualities, primarily maintainability and evolvability”.

TD has been the focus of much recent research, but this
research has been mostly focused on mature software
companies, where large amount of TD is considered to be
detrimental to the long-term success of software development
[24]. However, deliberately accumulating TD could be much
more beneficial since it can considerably speed up time-to-
market, allowing them to release their product to end-users
faster, get feedback, evolve the software, and preserve capital
[14]. However, TD must be managed to ensure it is addressed
at an appropriate time; unmanaged TD can have negative
consequences, such as the death of the startup itself [7].

There is a current paucity of empirical research focusing
specifically on TD and startups [25]. This paper reports on a
qualitative study that examines the organizational factors that
influence the introduction of TD and the benefits and
challenges of deliberate taking on TD. Through interviews with
16 professionals at seven different startups, we identified six
organization factors that lead to TD. In addition, we present a
list of benefits and challenges of TD in startups, which can be
considered by practitioners to aid them in the TD decisions.

mailto:besker@chalmers.se
mailto:antonima@ifi.uio.no
mailto:kblincoe@acm.org

The remainder of this paper is structured as follows: In
Section II we describe the background and related work. Our
research methods are described in Section III. We describe the
cases in Section IV. The results are presented in Section V.
Finally, we discuss the implications and limitations of our
work in Section VI, and offer a brief conclusion in Section VII.

II. BACKGROUND AND RELATED WORK

In this section, we provide a complete description of a
software startup, provide some background on the startup
lifecycle, and review related work on TD in startups.

A. Software Startups: A Definition

Giardino et al. [10] define software startups as those
“organizations focused on the creation of high-tech and
innovative products, with little or no operating history, aiming
to aggressively grow their business in highly scalable
markets”. Sutton [23] presents different characteristics that
reflect both engineering and business concerns, which software
startup companies must operate within. Software startups are
relatively young and inexperienced compared to more
established and mature development organizations, and they
commonly have very little accumulated experience or history.
Typically, their resources are limited, and they primarily focus
on getting the product out, promoting the product, and building
up strategic alliances. Their business is dependent on
influences from various sources, such as investors, customers,
partners, and competitors. The software these startup
companies are developing are commonly technologically
innovative products, and their developing often involves
cutting-edge development tools and techniques [23].

B. Software Startups Life Cycle

Crowne [9] identified four distinct stages for a software
startup: startup, stabilization, growth, and maturity. Each stage
has different types of critical product development issues that
potentially can lead to company failure. The first “Startup”
phase refers to the period between product idea and the first
sale. This stage is characterized by a product where the product
doesn’t meet the customer’s requirements and is unreliable and
fails frequently. Rectifying defects takes longer than expected
and often creates additional defects [9]. The second
“stabilization” phase begins when the first customer takes
delivery of the product and ends when the product is stable
enough to be commissioned without any overhead on product
development. During this stage, a divide between developers
can be spotted, where the developers who join the company
early, and those who are recruited later differ in terms of that
the early developers mount significant resistance to
organizational change. During this stage, the non-functional
requirements such as security, reliability, scalability, and
performance gain additional attention, and the result of the
previously introduced sub-optimal solutions becomes evident
[9]. The third “growth” phase takes place when the product can
be commissioned for new customers without creating any
overhead on the development team. This phase ends when
market size, share, and growth rate have been established, and
all business processes necessary to support product
development and sales are in place. In this stage, new features

implementation requires a coordinated program of activities
across functional areas including product development,
professional services, support, and sales and marketing, which
stresses the importance of having a repeatable process for
software development implementation. The last “maturity”
stage occurs when the company has evolved from a startup into
a mature organization, where, e.g., market size, share, and
growth rate have been established In this stage also all
processes necessary to support product development and sales
are in place [9].

C. Startups and Technical debt

There is a lack of research studies on TD management in
software startups [25]. Giardino et al. [10], conducted an
empirical study addressing how startups employ software
development strategies, using a Greenfield Startup Model
(GSM), which also covers startups and TD to some extent.
Giardino et al. describe that to be faster, startups may introduce
TD as an investment, whose repayment may never come due,
with the long-term negative effects on morale, productivity,
and product quality. Further, in their study they state that
“Startups achieve high development speed by radically
ignoring aspects related to documentation, structures, and
processes”, and that “instead of traditional requirement
engineering activities, startups make use of informal
specification of functionalities through ticket-based tools to
manage low-precision lists of features to implement, written in
the form of self-explanatory user stories”.

Gralha et al. [21] investigated the evolution of requirements
practices of software startups. They found that TD is one of the
six factors that influence the requirements practices of a
startup. They identified three phases regarding the
accumulation of TD in startups. They also identified trigger
points that cause startups to transition from one phase to the
next. An increase in the number of employees and software
features causes startups to transition from simply knowing and
accepting TD to tracking and recording it. Then, when their
client retention rate goes down, or they begin to see an increase
in negative feedback, they begin to manage and control TD.

Another study which to some extent covers TD in startups
is presented by Yli-Huumo et al. [28]. In that study, they
investigate the relationship between business model
experimentation and TD, with the goal of understanding if
conducting these types of experimentations have any effect on
the amount of TD occurring during the software life cycle. The
concept of a business model experimentation in their study
refers to when a company uses the technique to validate
assumptions made on a product from real customers before the
actual product is created. An example of this can be illustrated
when a Minimum Viable Product (MVP) is used to test the
business model by collecting and measuring customer feedback
[28]. Since adopting the technique of business model
experimentation is a conventional approach in both startups
and larger companies [28], this study is somewhat related to
ours. The result of their research showed that there is a
relationship between business model experimentation and the
occurrence of TD and also that focusing too much on business
model experimentation and not on remediation of TD can have
consequences to the product quality.

In a recent study by Klotins et al. [13], where the authors
explore how startups estimate TD, the precedents for
accumulating TD, and to what extent startups experience
outcomes associated with TD, it was found that TD peaks at
the growth stage and that the number of people in a team
amplifies precedents for TD and finally that there is an
association between a startup outcome and their TD
management strategy.

Unterkalmsteiner et al.’s [25] research agenda for software
startups states that researchers must build a more
comprehensive, empirical knowledge base to support
forthcoming software startups. They list several research
question related to TD, and by answering these questions, they
state that it could help clarify the role of design decisions in
software development in the context of a software product
roadmap, similarly to what happens in other engineering
disciplines. The overall goal of the research questions listed by
Unterkalmsteiner et al. [25] address in what way practitioners
will be able to make better decisions considering the
characteristics of the current software product implementation.

III. RESEARCH METHODOLOGY

The goal of this study is to understand how software
startups reason about TD. In particular, we are interested in the
organizational factors that impact TD together with the
potential benefits and challenges of TD. We, therefore, aim at
answering the following research questions:

RQ1: What organizational factors influence the accumulation
of TD in software startups?

RQ2: What are the challenges and benefits of Technical Debt
for software startups?

In order to answer these research questions, we investigated
the strategy of software development in different software
startup companies by interviewing 16 practitioners in seven
different startup companies, working in seven different areas.

A. Participants

We collected data from software professionals active in
seven different software startup companies, shown in TABLE
I. The sample population was selected using a non-probability
sampling technique [27], where the selection of participant
companies was obtained using convenience sampling. The
startup companies were located in two different countries. The
companies are described in more detail in Section IV.

B. Data Collection

Initially, we ran two workshops (one in each country) with
participants from four different startups (A, B, C, and D). The
workshops included both a presentation made by one of the
authors about TD, followed by a group discussion where the
participants explored their own experiences with TD within
their startup companies. Each workshop lasted about 120
minutes and in total 12 practitioners from the investigated
startup companies participated.

TABLE I. STUDY PARTICIPANTS

Role Company Country Segment

Developer
A Sweden Sport

Developer

Developer
B Sweden Energy

Developer

Developer

C New Zealand Retail

CEO / Developer

Co-founder / Developer

Co-founder / Developer

Co-founder / Developer

CEO

D New Zealand Medical
CFO

COO

Senior architect

Advisor (Business and

Technology)
E Sweden Media

CEO F Sweden
Software
Development

Chairman of the board G Sweden Mental Health

The goal of these workshops was to introduce the
participants to the study, to align and equip them with relevant
knowledge about the concept of TD and to gather background
and contextual information on each participating startup
company in preparation for the following interviews.

We conducted semi-structured (as suggested in [20]), face-
to-face interviews with 16 professionals from seven different
companies in two different countries. To improve the reliability
of collected data at least two of the authors participated in each
interview session. Each interview lasted between 60 and 120
minutes and was digitally recorded and transcribed verbatim.
The questions were prepared by three of the authors together.

The aim of the interviews was to understand the
accumulation and refactoring of TD and what contextual
aspects (related to the startup's environment) influenced such
accumulation. We started by asking participants to describe
their startup company and product and a. We asked follow-ups
to learn about the contextual aspects of the startups (inspired by
[18]). Next, we asked about TD. Specifically, we asked:

 Describe some critical TD issues.

 Which TD issues were refactored (and when)?

 Which TD issues are planned to be refactored (and when)?

 If TD issues are not planned to be refactored, why not?

 What value did the accumulated TD give the company?

 What cost was (or will be) paid to remove the TD?

 What extra costs were (or will be) paid because of the TD?

 What led to the accumulation of TD?

 What roles, processes, guidelines, and strategies were used
for TD?

Finally, to get more insight into the existing TD, we also
jointly ran the software SonarQube [2], and AnaConDebt [1]
during the interviews. None of the companies previously used
these tools, and they were not familiar with the output from the
tools in advance. We asked questions on:

 What issues were revealed and were they already known?

 Would it have helped to use the tool (and when)?

 Will you use the tool in the next iterations?

C. Data Analysis

We used thematic analysis [5] to identify, analyze, and
report patterns and themes within the interview data. Thematic
analysis involves searching across a dataset to find repeated
patterns of meaning. The thematic analysis provides a flexible
and useful research tool, which offers a detailed, and yet
complex account of the collected data.

The thematic analysis was conducted using a six-phase
guide. First, the audio-recorded qualitative data collected from
interviews were transcribed, and we familiarized ourselves
with the data through careful reading of the transcripts. The
second step involved the production of initial codes from the
data, where we organized the data into meaningful groups. The
third phase focused on searching for themes by sorting the
different codes into potential themes and collating all the
relevant coded data extracts within each identified theme. Each
extract of data was assigned to at least one theme and, in many
cases, to multiple themes. For example, the citation “if it [the
software from a third-party application] lifts and take off, we
can build our own solution” was coded as “Third party” in the
theme “Software development Process.” To ensure that the
coding was performed in a consistent and reliable fashion and
in order to triangulate the interpretation of the data and to avoid
bias as much as possible, two authors synchronized some of the
output of the coding, following guidelines provided by

Campbell et al. [6]. The fourth phase focused on the revised set
of candidate themes, involving the refinement of those themes.
When needed, we revised the themes or created a new theme.
The fifth phase focused on identifying the essence of each
theme and determining what aspect of the data is captured by
each theme. The final phase of the thematic analysis took place
when we had a set of fully developed themes, and involved the
final analysis and write-up of the publication. We have made a
figure illustrating how the codes and the corresponding themes
were assigned during the thematic analysis available at
https://figshare.com/articles/Thematical_Analysis/6115172.

IV. DESCRIPTION OF CASES

In this Section, to provide more context for our study, we
describe the companies in more detail. TABLE II. summarizes
the seven companies that participated in this study. As can be
seen, there is diversity across all aspects. We also indicate the
startup stage for each company (using the stages in Crown’s
[9] classification of startups, which we described in Section
II.B). Across the seven cases, all stages are represented by at
least one of the cases in this study.

Figure 1 shows how TD was accumulated or addressed in
each stage. All companies reported accumulating significant
TD in the startup phase. Surprisingly, two companies reported
undertaking either a major refactoring or a complete redesign
during the startup phase prior to securing their first customer.
Both of these cases were due to unintentional issues with the
code or the design. During the stabilization phase, most
companies reported addressing the TD that accumulated in the
previous stage either by taking on formal refactoring initiatives
or by informally removing TD as needed. The two companies
in the growth and maturity stages indicated that most of the TD
had been addressed before entering these stages. Only two of
the companies, C and F, had not yet performed a large
refactoring or redesign, but both planned this for the future.

TABLE II. DESCRIPTION OF CASES

C
o

m
p

a
n

y

P
ro

d
u

ct

D
o

m
a

in

Y
ea

rs
 s

in
ce

fo
u

n
d

in
g

F
o

u
n

d
er

s
S

W

K
n

o
w

le
d

g
e

S
o

ft
w

a
re

d
ev

el
o

p
ed

C
u

rr
en

t

E
m

p
lo

y
ee

s

E
x

p
er

ie
n

ce
 o

f

S
o

ft
w

a
re

D
ev

el
o

p
er

s

D
ev

el
o

p
m

en
t

P
ra

ct
ic

es

A Mobile app Sport 2.5 None Initially external then
in-house

Founder, CTO, CMO, 3
developers, one salesperson

2 junior, 1 senior
+ senior CTO

Some agile practices
(e.g. sprint planning)

B Mobile and
web apps

Energy 6 High In-house CEO, 5 developers, two sale
reps

4 senior, 1 junior Scrum

C Web app Retail 2 High In-house 4 Founders All junior No formal process

D Web app Medical 2 None In-house 3 Founders, 2 Technical staff All senior Some agile practices
(e.g. Kanban, CI)

E SaaS app Media 9* Low In-house 35 employees (Two-thirds are
developers)

All junior Some agile practices

F Web app Software 2 High Combination in-house
and consultant

Founder + consultant as
needed

Senior Scrum

G Mobile app Mental
Health

6 None Initially external then
in-house

Founder, CTO, 3 developers,
1 salesperson

3 junior + senior
CTO

Scrum

* Today this startup is 9 years old, but the data collected for this startup reflects a time period of 3-5 years after they were founded

https://figshare.com/articles/Thematical_Analysis/6115172

Fig. 1. Overview of TD strategies across Crowne’s [9] stages for each Startup.

V. RESULTS

The following subsections present results for the research
questions presented in Section III and the results are grouped
according to each research question.

A. What organizational factors influence the accumulation of
TD in software startups? (RQ1)

Our analysis has identified many factors that influenced the
amount of TD that the startups accumulated.

1) Experience of software developers

Our results indicate that the experience level of the
software developers can have both positive and negative
influence on the accumulation of TD. As startups are typically
very small in terms of number of developers initially, the
experience level of individual developers can be impactful.

Less experienced (junior) developers often unintentionally
accumulate TD due to their lack of experience. As one
interviewee from Company A stated, “It's really good to have
at least one guy that is more experience in the team.” Another
interviewee from Company E explained this as: “Junior
developer are less able to project outcome to the future about
how the system is likely to evolve, which means that they have
a tendency to focus on the ‘here and now’, and solve the
today's requirement whereas people that are experienced can
often predict a little bit more easily what is likely to come in
the future and already start to prepare the system for that.”
Thus, junior developers are more likely to introduce
unintentional TD due to their lack of experience.

More experienced (senior) software developers are more
aware of and have accumulated more experience about the
effect of introducing TD, compared to junior developers. Thus,
having senior developers to guide the development is very
beneficial. However, senior developers are more expensive,

and startups typically cannot afford to have many senior
developers. “I think that it would be very expensive to get
another very experienced person. And maybe it's not worth it.”

In addition to high salary costs, senior developers may be
less likely to intentionally accumulate TD if they have
experience working on more mature software products that are
not under such extreme time pressures to get to market. A
participant from Company D stated, “If we had had the
knowledge or the insight, we probably would have taken on
board technical debt earlier on, but I think because we ended
up hiring senior developers that were used to working in
certain ways with testing and re-testing everything. They
ended up building, a fairly robust, as far as we can tell, but for
our purposes, there might have been something over-
engineered perhaps.” Senior developers may be less willing to
operate in an unstructured and less quality oriented approach.
For example, one interviewee from Company A said: “So, you
need to be more flexible, and if you are senior maybe you
aren’t ready to cope with that.” This could cause startups
delays in getting to market if TD is always avoided in favor of
producing high quality software.

2) Software knowledge of startup founders

We found that the knowledge of the founders, related to
software development, has an impact on how TD is
accumulated. Founders with limited software development
knowledge are less likely to accumulate TD intentionally.
Since they are unable to implement the product themselves,
they are likely to employ an external consultancy company or
hire in-house developers to implement the first software
solution, which involves a significant investment prior to being
able to receive revenue from the software. The founders
typically expect a high-quality implementation in return for
this investment since they tend to have no knowledge about the
benefits of TD.

On the other hand, when the startup founders are
experienced software developers, they are more likely to
implement the product on their own. They often accumulate a
large amount of TD because they focus on producing the first
release quickly. They view the initial release as more
expendable since they have not invested money towards its
development (despite having invested their time).

3) Employee growth

We found that when startup teams were remaining stable in
terms of the number of developers, they did not feel a need to
reduce their TD since the issues related to the TD affected only
the developers, not the customers. The participants did not
believe their TD impacted product performance or usability.
While the TD did make the code more difficult to extend or
modify, the existing developers were already familiar with the
TD in the code, so it was not necessary to reduce the TD.

However, the addition of new developers caused the TD to
decrease for several reasons. First, the existing developers
reduce the technical debt prior to hiring new developers. The
developers want the code to be easier to understand so that new
developers can be onboarded more quickly. They also do not
want new developers to unintentionally introduce additional
technical debt because they are modeling their own code on
existing TD. For example, an interviewee at company B stated:
“But as time goes on, the quality of real code, or its readability
and how easy it is to work with, becomes more and more
important. It is very easy when you as a developer comes into a
project that you start writing code in the way of the existing
code base. You kind of go ‘oh, this is how they do it here,’ and
that is not always a positive thing. A lot of time that is quite a
negative thing, because, you slip into those habits and before
you know it, all the things that you personally hold true about
what good code is, you are not doing that anymore”. This fear
of duplicating TD was also described by one interviewee from
Company A stating: “And if you come in as a new developer,
you might copy-paste some code, and you copy-paste that old
thing of doing it, and we get the more messy code. And that is
what we don't want.”

In addition to the existing developers purposely reducing
TD, new developers also remove TD as it is difficult to extend.
The existing developers may be so familiar with the code, that
they no longer notice the problems, while they will be more
obvious to the new developers. For example, a developer from
Company D said “I mean there’s a big refactor when they
brought me on. …[we] ended up throwing a lot of code out and
rewriting it. And that was probably because of the technical
debt side of things in there, using constants throughout and the
like.” Our results corroborates to some extent the results found
by Klotins et al. [13] stating that “increase in team size is also
associated with outcomes of technical debt”.

4) Uncertainty

In general, uncertainty about the future of the organization
and product is very common characteristic in the startup
companies. Our results suggest that, not surprisingly, the
uncertainty plays a major role when making decisions about
TD. One of the interviewees from Company C put this as
“with these sorts of projects, you need to build a business case,

and you’d be silly to like build something with no technical
debt in it until you’ve at least proven that it’s something you
have to pay for. As soon as we confirm that there will be
[revenue], and see the money starting to come in, that’s when
you probably start to look at the repaying the technical debt”.
Another participant from Company D stated “there was a point
where basically we said, okay, now we just need to stop
spending money because we don’t know if this is even going to
be a viable project and if it’s going to generate any money or
anybody’s going to want to buy it”. This uncertainty causes
startups to accumulate significant TD so they can release a
proof-of-concept as quickly as possible. Once their idea is
validated and they have a number of paying clients, they can
worry about paying off their TD – possibly be rewriting the
entire codebase from scratch.

5) Lack of development process

None of the interviewed startup companies adopted a
systematic software development process, and the need of
having such a process was not considered by the interviewees
to be important during the first phases in the startups’ life-
cycle. However, this topic was brought up as a challenge,
especially when the startup grows and hires more developers.
A lack of processes for the management, identification, and
prioritization of TD means that TD decisions are often made ad
hoc, and there are no consistent decisions being made across
the team. This is especially important as the team grows to
ensure there is conformity. As one interviewee in company A
said: “Multiple ways of doing things, are spreading at the same
time… I mean, it is quite important for me, when we start to
grow, that we have the same way of writing code.”

6) Autonomy of developers (related to TD)

Related to the lack of development process, developers
often have full autonomy to decide when to take on TD and
plan when to refactor the TD. Developers typically do not
discuss TD-related decisions with others. While this allows for
flexible work and short decision paths, it means developers,
who are often not financially invested in the project, are
making very important decisions without possibly considering
the financial repercussions of these decisions.

This can be especially problematic when employing
external software consultancies since decisions tend to made
based on the benefits to the consultancy company, rather than
making the best decision for the software product under
development. The consultancy could decide to minimize TD
because they want to maintain a high-quality reputation for
their company and do not want to deliver software that is not
maintainable. If the development is not on a fixed price
contract, this desire for perfection could cost the startup
significant time and money. On the other hand, they may be
driven to take on significant TD since they know they do not
need to maintain the software and they are driven by the desire
to save money during the development. For example, the
interviewee from Company G stated: “the externally hired
consultants, they just did what was asked of them in their
contract, with the lowest possible development effort. That is
commonly how it works with externally hired developers, they
do not really care about Technical Debt, they care about
delivering the software according to the given specification

they are paid for.” We saw only one case where developers
were not given full autonomy regarding TD decisions. The
founders of this company found being involved in even trivial
implementation decisions very useful. One of the founders of
Company D said “I think that they got used to basically
involving us in their decision-making even though on a
relatively trivial scale so that they’d ask about everything…
And then we could understand and be involved in making those
decisions about, how much debt and things will take on, even
though we didn’t call it debt. And there was a point probably
about two-thirds of the way through the project where ‘cause
we’d often get updates on estimates of hours required to
complete certain tasks so we’d keep an eye on how much
money we were spending.”

TABLE III. ORGANIZATIONAL FACTORS INFLUENCING TD IN STARTUPS

Factor Level TD Reason

Experience

of

developers

low
(junior)

increases
poor design decisions
(unintentional)

high
(senior)

increases
developers aware of benefits of TD

(intentional)

decreases
developers accustomed to producing

high quality software

Software

knowledge

of founders

low decreases

founders unaware of TD benefits;

large investment for developers
causes desire for high-quality

high increases
founders develop product

themselves; code seen as expendable

Employee

growth

stable stable
devs already familiar with code (and

its TD); no impact to customer

increasing decreases

existing devs refactor to make
onboarding easier

existing devs refactor to prevent a

culture of “bad” code

new devs refactor because code not
readable

Uncertainty
high increases goal: reduce dev time and cost

decreasing decreases TD repaid after market validation

Lack of dev.

process
--- varies ad hoc decisions

Autonomy

of

developers

high varies

developers make decisions without

any guidance (possible poor

business decisions)

low varies strategic decisions made

B. What are the challenges and benefits of deliberately
introducing Technical Debt for software startups? (RQ2)

In this section, we explore how software startups determine
and reason about both the challenges and benefits of
intentionally introducing TD. In general, startup companies
deliberately introducing TD, have a positive attitude of doing
that. They are also relatively aware of the harmful effects these

decisions can have on the future software in terms of impeding
innovation and expansion of their software systems.

1) Benefits of intentional technical debt

We identified many benefits of intentionally introducing
TD in software startups.

Cutting development time in order to be able to release
the product as quickly as possible is seen as a large benefit for
startups. Getting to market quickly can:

 enable fast feedback from the customers. An interviewee in
Company A said: “We prefer to cut some corners to
improve the speed, and get something out instead of making
it more mature directly” ….”It is more important to get to
the market fast and get feedback from the users, then to
focus on avoiding TD, taking on TD is ok.”

 increase revenue. One of Company C’s founders said,
“Yeah, we probably wouldn’t have got the contract earlier,
right… Then we wouldn’t have the capital”. Another
participant from Company A said “we are a startup, and we
need to make money. We need to get things working, but
they don't need to be perfect”.

Another benefit is the preservation of startup capital
since commonly startup companies have less money in the
early stages. A participant from Company D stated, “it’s just
that we had to get the code out the door. And we had to get it
so that we could afford it.” Another participant from Company
F said “by taking the first technical debt, we spent 10% of what
we would have spent if we would have done the whole product
without TD.”

Related to saving money and time, another benefit is the
decreased risk. Since the startups involve uncertainty, it is
sometimes wise to invest as little money and time as possible
prior to validating the idea through evaluation of the product. A
participant from Company F said: “In case the product would
turn out to be a failure, we would have saved 90% of the
money…we avoided a big risk, and we reduced uncertainty
thanks to technical debt. It was a great decision, I think.”

Intentional TD also allows startups to stay flexible. When
they do not spend large amounts of money or time developing
new features, they are more willing to discard them and alter
the product significantly when needed. Thus, the TD allows
them to make more objective decisions. “If you put too much
time and effort in there, it could be harder to throw it away in
the next version. So, I think it's not always bad that you don't
do the best”.

2) Challenges of intentional technical debt

Despite the benefits of intentional TD, we also identified
challenges since the sub-optimal solutions would eventually
need to be fixed. The two companies who initially hired an
external consultancy company to implement the first software
solution failed in doing so. Most of the initial implementation
was later removed and replaced by in-house developers,
causing significant delays and additional expenditures. In such
extreme cases, TD can cause the product failure or a business
disruption. Another challenge of TD is the reduced
scalability it often introduces. “If you validated it and it’s

Answer to RQ1: We identified six organizational factors that
influence the accumulation of technical debt: experience of
developers, software knowledge of startup founders, employee
growth, uncertainty, lack of development process, and the
autonomy of developers regarding technical debt decisions.
The results are summarized in TABLE III.

looking good, you wanna be able to put your foot on the gas
and go quickly and scale. And if the architecture’s not
ready…” A first, light and sub-optimal solution may only work
in a specific setting but will need to be refactored in order to
scale the software. One developer from Company A put it
“growing is not just like taking what we have and do the exact
same thing because that will only scale to a specific
limit…There was no segmentation of the code in any part. We
started to split the code up, we started to segment and to
separate the code, so that we also can scale different part of
the code.”

The interviewees mentioned different TD types such as
architectural, infrastructural and source code related TD as
having a substantial negative impact on the system growth.
Another challenge is that the harmful effects of TD increases in
severity as the software grows and when more developers were
involved in the development process. Thus, the introduction of
TD can have compounding effects on the development time
and resources, since it will take more time to develop code on
top of existing TD. Then, if the TD is removed later, it all of
the code built on top of the TD will also potentially be
impacted. As one interviewee at Company B put it: “In a
greenfield project, I think there is an argument hacking
together something that works quickly. But as time goes on, the
quality of real code, or its readability and then how easy it is to
work with, it becomes more and more important.” Another
challenge is that fixing TD could increase risk. When fixing
TD, it might create new bugs in the code, adding to the amount
of future work that needs to be done. “The bugs will probably
grow, especially if we try and fix it, spend time trying to fix it.”

Finally, the introduction of TD requires the loss of
productivity to be managed later. We found that during the
early phases, startups rarely manage their TD and decisions are
often made on an ad hoc basis and none of the interviewed
startups used any software tools assisting their TD
management strategy. In order to understand if the startups
would consider using tools as beneficial, we jointly run both
SonarQube and AnaConDebt on four of the startups' software
(A, B, C, and D). After running the tools we went through the
output and assessed whether the result was perceived as useful
or not. All the startups using SonarQube found it specifically
valuable identifying specific areas within their codebase that
could further be improved in terms of refactoring initiatives of
TD. As the founder from Company D said, “I think this is very
useful in terms of prioritizing the back end of what we have
and what we need to sort of like work on.”

The result of running AnaConDebt provided the startups
with estimates on the TD principal and interest and also the
growth of them with respect to different future scenarios, was
also unanimous perceived as valuable to the startups’ TD
management strategy. However, using these kind of tools was
not a considered as a good choice during the first startup phase
since it would have distracted the developers from being fast
with the first product release. The output from running the
tools cannot be reported due to confidentiality reasons.

3) Good Enough Level

When startup companies deliberately introduce TD, they
implicitly decide what a Good Enough Level (GEL) of the

software quality is and what amount of TD is acceptable to
take on. They weigh the benefits and challenges of the TD
when making their decisions (illustrated in 1). However, it is
not usually an easy decision. A founder of Company D said
“It’s difficult to balance where you’re constantly making
decisions how do we balance what we’re spending on this,
versus the likelihood of producing these results.”

Fig. 2. Good Enough Level is achieved by considering the ideal balance

between the benefits and challenges associated with intentional TD.

VI. DISCUSSION

In this section, we discuss recommendations for startups,
compare our results to existing knowledge on accumulation
and refactoring of TD in other contexts, and describe the
limitations of this study.

A. Recommendations for software startups

Based on the finding related to the organizational factors
that influence TD in startups and the benefits and challenges
associated with TD, we have the following recommendations
for startups.

Balanced experience levels (of developers) needed. We
found that junior developers often introduce unintentional TD.
Senior developers are often more calculated in their TD
decisions. However, senior developers may be less risk adverse
if they have more experience working on more structured,
mature products where quality is paramount. A mix of both
senior and junior developers seems ideal to find the right
balance between TD and quality. These results are in line with
the ideas of Crown [9], who states that “The principal
developer for the company must be highly experienced, and
familiar with all aspects of software engineering practice. This
person must also be an accomplished technical leader, as they
will need to influence their less experienced colleagues”.
Though, we advocate that junior developers are equally
important.

Answer to RQ2: Intentionally introducing technical debt
allows startups to cut development time, enabling faster
feedback and increased revenue, preserve their resources,
decrease risk, and make more objective decisions. However,
the technical debt causes reduced scalability, becomes more
severe as the product grows, and introduces future
development risks. Thus, deliberately introducing technical
debt brings both benefits and challenges and startups must
weigh these to determine a “Good Enough Level”.

Unbiased technical advisors needed. When the startup
founders do not have software development knowledge, those
implementing the software are likely to make decisions that
benefit their own needs, rather than the startup company. For
example, they may cut corners to save their own time, or they
may gold plate the software to build up their own reputation
(and to increase their own revenue). Thus, startup founders
who lack software development expertise should consider
seeking technical guidance from someone other than the
company or developers they hire to implement the solution so
they can obtain unbiased advice related to TD decisions.
Depending on the stage of the startup (and the available
capital), this advice could be obtained by the introduction of a
CTO or from an external consultant.

Consider “contagiousness” of TD in prioritization. We
found that TD is often removed as the number of developers
increases. This is in line with the results of Gralha et al. [17].
We found there are various reasons for this decrease in TD.
One of which is the removal of TD that could be “contagious”
– new developers may model their code off existing TD or may
directly duplicate poorly written code. Thus, in addition to
prioritizing TD that might block key features planned in the
upcoming iterations [8], contagious TD [16] should also be
prioritized, especially during times of growth in the
development team. If such TD is not removed, it can generate
new TD in a vicious spiral, reducing the growth time and
compromising the software quality [22], [12] and culture of the
startup in the future.

Encourage autonomy with high-level guidance. We
found that in most startups, developers make TD-related
decisions with full autonomy. Thus, they could possibly be
making poor business decisions without considering the
strategic repercussions of their decisions. Providing overall
guidance to the developers, so they know what level and types
of TD are appropriate can mitigate this risk, while still
maintaining developer autonomy.

B. Strategy to balance TD over time

Startups need to balance several factors affecting the
accumulation of TD, to reach a Good Enough Level. However,
how do startups do this over time? We report, in Fig. 32, a first
interpretation that helps to understand the strategy adopted by
the studied cases in different phases.

Fig. 2 shows the accumulation of TD with respect to each
startup phase and key events. The black line suggests the
accumulation of Technical Debt that has been preferred by the
studied startups. We also show GELs ("Good Enough Level”),
or else thresholds under which TD needs to be kept via
strategic refactorings, otherwise causing possible disruptive
events (red lines and crosses). Finally, in the bottom of the
picture, we outline which mechanisms have been reported by
the participants to be necessary and effective to keep a GEL of
TD in a specific phase. In the startup phase, startups recklessly
accumulate TD. This has been reported to be not only
necessary, but very valuable to quickly satisfy the first
customers, to reduce risks and costs. However, too much TD
can still be disruptive in the first phase, leading to product
failure and business disruption, if the acquired TD prevents the

successful delivery of the MVP itself. In particular, the cases
report that the domain specific technology needs to be well
understood and that the usability of the product should not be
overlooked (GEL1). In the stabilization phase, a partial
refactoring (Stabilization refactoring) is recommended to reach
GEL2. In this case, the TD to be prioritized is the one blocking
key features planned in the upcoming iterations for the delivery
of the product to key customers. In addition, TD that is judged
to be especially contagious (likely to spread to the new features
and to be picked up by new developers) should be at least
considered. The challenges if the startup fails to keep this level
of TD is the difficulty (if not the halt) of evolving the system
with new features, with the consequent loss of key customers.
Additionally, while entering the growth phase, TD that is
accessed by new developers can generate new TD in a vicious
spiral, reducing the growth time and compromising the code
and culture of the startup in the future. Here the high-level
guidance and the experience of the developers are key to keep
the right level of TD, but a budget needs to be allocated for the
refactoring to reach GEL2. During the growth phase, there is a
need to remove some more TD (Growth refactoring) to reach a
GEL3. If the contagious debt is not removed in the previous
phase, it needs to be removed here before hiring new
developers. In addition, the code is optimized to be scalable
and to be delivered to several customers in the market: the
architecture of the system should be refactored to allow the
productive management of customer variability, to reduce the
cost of maintenance and operations for the developers, to avoid
a loss of productivity. In the growth phase, several other
mechanisms can be introduced to not only reduce the current
TD, but also to prevent the accumulation of future TD (e.g.
tools, processes). TD needs to be well communicated in order
to make business decisions. In their maturity phase, startups
seem to start behaving like mature companies. However, in this
study, we do not have enough cases to report common
practices related to this phase.

C. Comparison of TD Management with non-Startups

Looking at the current literature, we can see some
differences with how startups accumulate and refactor TD,
compared to large and more mature organizations. Some large
and mature organizations might have internal innovation
projects that have a more similar context to startups or might
have high turnover of junior developers. Since we did not find
studies on such context and TD, such cases are excluded from
the following analysis and will require additional studies. In
both startups and mature organizations, there is often a peak of
accumulated TD at the beginning of feature development [17].
However, in mature organizations, there is usually a defined
quality threshold, in the form of the desired software
architecture or other quality models. In such cases, TD is
referred to the divergence from such desired thresholds. Such
reference points do not seem to exist in startups. Consequently,
they tend to accumulate more TD, which is also considered a
benefit. There is, naturally, some level of uncertainty in both
startups and mature organizations at the start of a new project.
However, the uncertainty in young startup companies is greater
than in a mature company [11]. Thus, taking on a right amount
of TD seems to be a well-established strategy to deal with the
high levels of uncertainty. Another difference can be found on

how inexperienced developers are considered in startups and
mature companies. Inexperienced developers seems to be
considered as less aware of the long-term effects of TD, which
consequently leads them to be keener to accumulate it.

Technical Debt
Accumulation

and Levels

Product failure,
Business
disruption Business disruption,

Compounding
Effects

Increased Risk,
Loss of
productivity

GEL1

GEL2

GEL3

Stabilization
refactoring

Growth
refactoring

• Experience
• Unbiased

Technical
Advisor

• Experience
• High level guidance
• Allocated time for

Stabilization
refactoring to reach
GEL2

• High level
guidance

• Time for Growth
refactoring to
reach GEL3

• TD process and
Tools

Mechanisms
to keep TD

level

Legend

Disruptive effect

Common TD

accumulation

Disruptive
accumulation

Startup MaturityStabilization GrowthPhase

First release
First customers
First revenues

Additional key features
Additional customers

Scaling to several customers
Key Events

Fig. 3. TD balanced differently in different startup phases

This choice seems to fit with the importance to accrue TD
in startups. However, as we have seen in all the analyzed cases,
an experienced developer (technical lead or CTO) is crucial in
the startup team to keep the TD level to desired thresholds. In
contrast, in mature organizations, it is preferred to have team
members that have a higher understanding of TD and to make
sure that TD is not accumulated [15]. One of the main reasons
is that code developed by mature organizations, especially in
large projects, is continuously integrated with a large codebase
and needs to be available and reliable for other teams’ work. In
other words, TD has a bigger impact. Such impact is not
present in the startup and stabilization phase of startup
companies, but comes into play when the startup enters the
growing phase.

A similar difference can be seen with respect to processes
and tools: a recent survey in the large organization [15]
highlights how a third of the participants, answering the
survey, use tools to track TD. In startups, we could see the
complete lack and conscious avoidance of such processes and
tools until the company reaches the growing phase. On the
other hand, both in startups and partially (2/3 of the
participants) in large organizations [15], we notice the lack of
knowledge on how to implement such processes and what tools
to use to keep TD at bay. Learning how to manage TD seems
to be equally important for large companies and for startups
entering the growth phase.

In summary, despite some similarities exist regarding TD
management between large, mature organizations and startups,
the first three startup phases seem to stand out with respect to
managing TD. This is due to the level of uncertainty, the
environment, and the business context being different.
Although this analysis includes a small sample of both startups
and large companies, and more studies are needed to
corroborate this analysis, we have some initial evidence
suggesting that the strategic management of TD in startups
might differ from the best practices related to large
organizations.

D. Limitations and Threats to Validity

The main limitations of this study are related to the limited
sample of startups investigated and to the qualitative nature of
the investigation. However, these are limitations that can be
considered acceptable in light of the exploratory purpose of
this study. We preferred to gain a deep and rich understanding
of the context of a few cases to build a holistic first theory
rather than surveying the topic on a high level only.

Specific threats to validity include construct validity related
to the concept of TD, external validity with respect to the
limited contexts analyzed, and reliability of the results affected
by the high level of interpretation that both interviewees and
researchers might have been injected in the study [20].

To mitigate construct validity, we held a workshop with
several of the participants in the startups to clearly define and
align on what TD was. We gave concrete examples, we used
the up to date definition of TD reported in the Dagstuhl
seminar [4], and we asked the participants to share examples in
order to test if their understanding matched the community’s
definition. Additionally, when asking questions, we have
always asked and probed the claims by inquiring for additional
concrete examples.

To mitigate the external validity threat, we collected
information from two different countries in different
geographical areas. In addition, the case companies represent
different segments, and we interviewed different roles, from
developers to CTOs to CEOs, to external advisors.

Although we do not claim to provide fully generalizable
results in this exploratory study, we have aimed at maximizing
the coverage of our cases. Furthermore, we plan to expand our
sample in the future, to reach a higher degree of validation of
our results. Reliability threats were mitigated by assuring that
two researchers were always present when conducting
interviews, that one of the researchers was always attending all
workshops and interviews for consistency purposes, and that
the analysis was organized in two groups where researchers
analyzed the codes separately and then merged the findings. In
other words, we made sure that different observers were
contributing in different phases of the data collection and
analysis, reducing the bias of single researchers.

VII. CONCLUSION

This exploratory study set out to provide a first
understanding of how software startups reason about TD.
Through interviews with 16 software professionals in seven
different startup companies, we identified six organizational
factors that influence the accumulation of TD in software
startups (experience of developers, software knowledge of
startup founders, employee growth, uncertainty, lack of
development process, and the autonomy of developers
regarding TD decisions). We also found that startups must
strive towards a Good Enough Level, over time, for their
product, while weighing the benefits and challenges associated
with taking on TD. This study provides a set of
recommendations and a first strategy which can be used by
software startups to support their decisions related to the
accumulation and refactoring of TD.

REFERENCES

[1] https://anacondebt.com/.

[2] https://www.sonarqube.org/.

[3] P. Avgeriou, P. Kruchten, R. L. Nord, I. Ozkaya, and C. Seaman,
“Reducing friction in software development,” IEEE Software, vol. 33, no.

1, 2016, pp. 66-72.

[4] P. Avgeriou, P. Kruchten, I. Ozkaya, and C. Seaman, “Managing
Technical Debt in Software Engineering (Dagstuhl Seminar 16162),”

Dagstuhl Reports, vol. 6, no. 4, 2016, pp. 110-138.

[5] V. Braun and V. Clarke, "Using thematic analysis in psychology,
Qualitative research in psychology, 3(2)," 2006, pp. 77-101.

[6] J. L. Campbell, C. Quincy, J. Osserman, and O. K. Pedersen, “Coding In-

depth Semistructured Interviews Problems of Unitization and Intercoder
Reliability and Agreement,” Sociological Methods & Research, 2013.

[7] M. Chicote, "Startups and Technical Debt: Managing Technical Debt with

Visual Thinking," in 2017 IEEE/ACM 1st International Workshop on
Software Engineering for Startups (SoftStart), 2017, pp. 10-11.

[8] Z. Codabux and B. Williams, "Managing technical debt: an industrial case

study," presented at the Proceedings of the 4th International Workshop on

Managing Technical Debt, San Francisco, California, 2013.

[9] M. Crowne, "Why software product startups fail and what to do about it.

Evolution of software product development in startup companies," in IEEE
International Engineering Management Conference, 2002, pp. 338-343

vol.1.

[10] C. Giardino, N. Paternoster, M. Unterkalmsteiner, T. Gorschek, and P.
Abrahamsson, “Software Development in Startup Companies: The

Greenfield Startup Model,” IEEE Transactions on Software Engineering,

vol. 42, no. 6, 2016, pp. 585-604.
[11] P. A. Gompers, “Grandstanding in the venture capital industry,” Journal of

Financial Economics, vol. 42, no. 1, 1996/09/01/, 1996, pp. 133-156.
[12] Y. Guo, R. Spínola, and C. Seaman, “Exploring the costs of technical debt

management – a case study,” Empirical Software Engineering,

2014/11/30, 2014, pp. 1-24.
[13] E. Klotins, M. Unterkalmsteiner, P. Chatzipetrou, T. Gorschek, R.

Prikladnicki, N. Tripathi, et al., "Exploration of Technical Debt in Start-

ups," in ACM/IEEE 40th International Conference on Software
Engineering: Software Engineering in Practice, Gothenburg, Sweden,

2018.

[14] P. Kruchten, R. L. Nord, I. Ozkaya, and D. Falessi, “Technical debt:
towards a crisper definition report on the 4th international workshop on

managing technical debt,” SIGSOFT Softw. Eng. Notes, vol. 38, no. 5,

2013, pp. 51-54.
[15] A. Martini, T. Besker, and J. Bosch, “Technical debt tracking: Current

state of practice a survey and multiple case study in 15 large

organizations,” Science of Computer Programming, 2018.
[16] A. Martini and J. Bosch, “On the interest of architectural technical debt:

Uncovering the contagious debt phenomenon,” Journal of Software:

Evolution and Process, 2017.
[17] A. Martini, J. Bosch, and M. Chaudron, “Investigating Architectural

Technical Debt accumulation and refactoring over time: A multiple-case

study,” Information and Software Technology, vol. 67, 2015, pp. 237-253.
[18] N. Paternoster, C. Giardino, M. Unterkalmsteiner, T. Gorschek, and P.

Abrahamsson, “Software development in startup companies: A systematic

mapping study,” Information and Software Technology, vol. 56, no. 10,
2014/10/01/, 2014, pp. 1200-1218.

[19] M. Reddy, "Chapter 4 - Design," in API Design for C++, M. Reddy, Ed.,

ed Boston: Morgan Kaufmann, 2011, pp. 105-150.
[20] P. Runeson and M. Höst, “Guidelines for conducting and reporting case

study research in software engineering,” Empirical Software Engineering,

vol. 14, no. 2, 2009, pp. 131-164.
[21] S. Gralha, D. Damian, A. Wasserman, M. Goulao, and J. Araujo, "The

Evolution of Requirements Practices in Software Startups," in

International Conference on Software Engineering (ICSE), to appear,
2018.

[22] C. Seaman, Y. Guo, N. Zazworka, F. Shull, C. Izurieta, Y. Cai, et al.,

"Using technical debt data in decision making: Potential decision
approaches," in 2012 Third International Workshop on Managing

Technical Debt (MTD), 2012, pp. 45-48.

[23] S. M. Sutton, “The role of process in software start-up,” IEEE Software,

vol. 17, no. 4, 2000, pp. 33-39.
[24] E. Tom, A. Aurum, and R. Vidgen, “An exploration of technical debt,”

Journal of Systems and Software, vol. 86, no. 6, 2013, pp. 1498-1516.

[25] M. Unterkalmsteiner, P. Abrahamsson, X. Wang, A. Nguyen-Duc, S.
Shah, S. S. Bajwa, et al., “Software Startups – A Research Agenda,” e-

Informatica Software Engineering Journal, vol. 10, no. 1, 2016, pp. 89–

123.
[26] M. Waseem and N. Ikram, "Architecting activities evolution and

emergence in agile software development: An empirical investigation

initial research proposal," in Lecture Notes in Business Information
Processing vol. 251, ed, 2016.

[27] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A.

Wesslen, Experimentation in software engineering: an introduction:
Kluwer Academic Publishers, 2000.

[28] J. Yli-Huumo, T. Rissanen, A. Maglyas, K. Smolander, and L.-M. Sainio,

"The Relationship Between Business Model Experimentation and
Technical Debt," in Software Business, Cham, 2015, pp. 17-29.

https://anacondebt.com/
https://www.sonarqube.org/

