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Research on intense terahertz (THz) electromag-
netic sources has received an increasing attention ow-
ing to numerous applications,  for  example,  in time-
domain spectroscopy, biomedical imaging or security
screening  [1].  Among  the  various  techniques  em-
ployed  to  generate  THz  radiation,  focusing  intense
two-color  femtosecond pulses  in  air  or  noble  gases
provides interesting features like absence of material
damage, large generated bandwidth (up to ~100 THz)
and high amplitudes of the emitted THz pulses (> 100
MV/m) [2].  First  reported  by Cook et  al.  [3],  THz
emission from intense two-color pulses was initially
attributed to optical rectification via third-order non-
linearity. However, it was shown later that the plasma
built-up by tunneling photoionization is necessary to
explain the high amplitudes of the THz field [4], and a
quasi-dc plasma current generated by the temporally
asymmetric  two-color  field  is  responsible  for  THz
emission [5].

Numerous  experimental  results  show  that  the
laser-induced free electron density has a strong impact
on the THz emission [4,6,7].  While it  is  frequently
observed that  a  larger  free electron  density leads to
broader THz spectra, the origin of the effect remains
controversial.  In [6,7], homogeneous plasma oscilla-
tions were proposed as an explanation, even though
those oscillations are in principle non-radiative [8,9].
Moreover,  nonlinear  propagation  effects  have  been
held responsible for THz spectral broadening as well
[10]

On the other hand, the gas plasma produced by
the fs laser pulse is a finite conducting structure with
a lifetime largely exceeding the fs time scale. Thus,
one can expect that the gas plasma features plasmonic
resonances which may have a strong impact  on the
THz emission propertie [11]. However, no direct evi-
dence of plasmonic effects in laser-induced gas-plas-
mas  was  observed  so far:  To make an  evidence  of
plasmonic effects, those need to be distinguished from
nonlinear propagation effects. Also from the theoreti-
cal  point of view capturing plasmonic effects is not
trivial: plasmonic effects require at least a full two-di-
mensional  Maxwell-consistent  description,  and  re-
duced models like the unidirectional  pulse propaga-
tion equation [12], which are frequently used to de-
scribe plasma-based THz generation [5,7,10], are by
construction  not  capable  of  capturing  such resonant
effects.

In this work, we consider the two-color-laser-in-
duced plasma as  a plasmonic structure,  and investi-

gate under which conditions such plasmonic perspec-
tive is important. In the context of plasmonic nanoan-
tennas  (or  metamaterials),  e.g,  for  second-harmonic
generation, tailoring plasmonic resonances by tuning
the shape of the plasmonic particle is a standard ap-
proach.  Therefore,  we follow a similar  strategy and
modify the usually prolate spheroidal  plasma shape.
Going to tri-axial ellipsiods which can be achieved by
using elliptically shaped laser beams turns out to be
already  sufficient  [13].  Depending  on  whether  the
laser polarization is oriented along the long beam axis
(quasi  transverse  electric,  qTE)  or  along  the  short
beam  axis  (quasi  transverse  magnetic,  qTM),  plas-
monic resonances are triggered or not (see Fig. 1).

Fig. 1. Illustrated configurations of THz emission from
an ellipsoidal plasma induced by a two-color Gaussian laser
pulse~(funamental in red, second-harmonic in purple) with
strongly  elliptical  beam  shape  propagating  along  z.  The
laser electric field is y-polarized (along the long axis of the
beam,  qTE)  in  (a)  and  x-polarized  (along  the  short  axis,
qTM) in (b). The plasma is sketched as blue surface. Simu-
lated forward emitted  THz pulses  are  presented as  white
lines demonstrating a significantly shorter pulse duration for
qTM polarization,  which can be attributed to triggering a
plasmonic resonance.

While nonlinear  propagation effects  are  in  both
cases equally present, any difference between the THz
emission spectra in this two cases is linked to plas-
monic effects.  We demonstrate experimental results
which reveal a significant difference: THz pulses are
shorter and have a broader emission spectrum when
the plasma is excited by the laser field in the direction
with  the  short  focal  beam width  and  plasma width
(see Fig. 2). A simple analytical model allows us to
link the broadening to a leaky mode. It turns out that
the resonance  has  a  strong impact  on the  spectrum
whenever  electrons  are  excited  along  a  direction
where  the  plasma  size  is  smaller  than  the  plasma
wavelength.  Finally,  direct  three-dimensional  (3D)
Maxwell consistent simulations in tightly focused ge-
ometry confirm that  these  plasmonic resonances  in-
deed broaden the emitted THz spectrum significantly.
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Fig. 2. Experimental THz spectra for qTE (a) and qTM
(b) polarization (see text for details). Corresponding on-axis
THz waveforms are shown as insets. The dashed lines spec-
ify the estimated maximum plasma frequency.
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