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ABSTRACT
The use of sparse precision (inverse covariance) matrices has become popular because they allow for effi-
cient algorithms for joint inference in high-dimensionalmodels.Many applications require the computation
of certain elements of the covariance matrix, such as the marginal variances, which may be nontrivial to
obtain when the dimension is large. This article introduces a fast Rao–Blackwellized Monte Carlo sampling-
based method for efficiently approximating selected elements of the covariance matrix. The variance and
confidence bounds of the approximations can be precisely estimated without additional computational
costs. Furthermore, a method that iterates over subdomains is introduced, and is shown to additionally
reduce the approximation errors to practically negligible levels in an application on functional magnetic
resonance imaging data. Both methods have low memory requirements, which is typically the bottleneck
for competing direct methods.

1. Introduction

We consider the problem of computing selected elements
of the covariance matrix � of a multivariate normal distri-
bution, which is parameterized using the precision matrix
Q = �−1. Specifying models with the precision matrix rather
than the covariance matrix is useful (or even necessary) in
many high-dimensional applications, since it allows for a sparse
representation, typically leading to smaller time and memory
complexity. Their use has a long history in spatial statistics
(Besag 1974; Rue and Held 2005), image processing (Jeng and
Woods 1991), and probabilistic graphical models (Lauritzen
1996; Malioutov, Johnson, and Willsky 2006).

The desire to compute certain elements of the covariance
matrix arises in many applications. If Q is the posterior preci-
sion matrix in a Bayesian analysis, then the diagonal of � con-
tains the posteriormarginal variances, which are often presented
as a measure of marginal uncertainty. Furthermore, joint poste-
rior statistics of larger subdomains will normally also require the
computation of certain off-diagonal elements of �. This is, for
example, the case when computing the posterior probability of
exceeding a threshold in a specific subdomain, which is the topic
of Bolin and Lindgren (2015), and which has applications in
temperature modeling (Furrer et al. 2007), astrophysics (Beaky,
Scherrer, and Villumsen 1992), and brain imaging (Sidén et al.
2017). Computing submatrices of� is also needed for character-
izing the uncertainty of a robot’s location in an unknown envi-
ronment (Thrun, Burgard, and Fox 2005).

Even thoughQ is sparse, � is dense in general, and the naive
direct inversion � = Q−1 is not an option even for relatively
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small dimensions. Fortunately, as described in the next section,
when only selected elements of � are required, a number of
less computationally intensive exact methods exist in the lit-
erature. However, for modern applications the dimensionality
of the problem can be too large even for these methods to be
computationally feasible. Usually the bottleneck is in the mem-
ory requirements, even though computation times can also be
unpleasantly long. This often leads to investigators choosing to
perform their analyses on smaller subsets of the data indepen-
dently or at a lower resolution than desired. Another situation in
which the memory is normally a limitation is when performing
these operations on robots or other embedded systems.

In this article, we develop a fast Rao–Blackwellized Monte
Carlo sampling-based method for approximating the elements
of the covariance matrix, and show its efficiency compared to
existing sampling-based methods. We further show that the
variances and confidence bounds of the approximations can
be cheaply computed by inserting the approximated values
into analytical expressions. In addition, a second, more exact
method is developed, which by using the estimates from the
firstmethod as starting values and by iterating over subdomains,
produces estimates with negligible error in practice. Both meth-
ods build on decompositions of the domain onwhich theGMRF
is defined, into subdomains that can be processed nearly inde-
pendently, leading to lowmemory requirements and algorithms
that are easily parallelized. We evaluate the methods on preci-
sion matrices from theoretical models and on a posterior pre-
cision matrix from a functional magnetic resonance imaging
(fMRI) experiment.
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The outline of the article follows. In the next section, we
give a theoretical background to the problem and an overview
of existing methods and their limitations. We present the
developed methods in Section 3 and numerically evaluate their
performance in Section 4. Section 5 is a discussion and Section
6 concludes. A Matlab implementation of the methods in the
article is available at https://github.com/psiden/CovApprox.

2. Background and Literature Review

We assume that x ∼ N(μ,Q−1) is an N-dimensional multivari-
ate normally distributed random variable, and thatQ is a sparse
symmetric positive definite precision matrix. Such a distribu-
tion is commonly referred to as a GaussianMarkov randomfield
(GMRF; Rue and Held 2005) and the sparsity pattern ofQ has a
natural interpretation in that an element Qi, j is zero if and only
if the corresponding elements xi and x j are conditionally inde-
pendent given all other elements. We assume, for simplicity and
without loss of generality, that μ = 0.

Selected inversion refers to the computation of �S for some
set of indices S ⊂ {(i, j); 1 ≤ i, j ≤ N}, with |S| � N2, for
example, S = SI = {(i, j); i = j} gives the diagonal. We will
also use the (slightly abusive) notation σ2 = [σ 2

1 , . . . , σ 2
N] =

�SI , to denote themarginal variances. Other commonly appear-
ing examples of index sets for selected inversion are SaaT =
{(i, j); ai �= 0, a j �= 0}, for some sparse column vector a, and
SR = {(i, j);Ri j �= 0}, for some sparse symmetricmatrixR. The
first can be used to compute var(aTx) = aT�a = ∑

i, j aia j�i, j,
and the second when computing tr(R�) = ∑

i, j Ri, j�i, j, which
is commonly needed in some inference methods such as the
expectation maximization (EM) algorithm (Bolin et al. 2009)
and variational Bayes (VB; Rue, Martino, and Chopin 2009).
Depending onS and the sparsity pattern ofQ, differentmethods
for selected inversion might be preferable.

A naive method for selected inversion that always works in
theory for any S , is of course to completely compute � = Q−1

using a standard method, for example, Gaussian elimination,
and then extract�S . Such amethod is of time complexityO(N3)

and memory complexity O(N2) which is prohibitive even for
rather small values of N. By exploiting the sparsity patterns in
S andQ, this complexity can often be greatly reduced.

Another trivial idea for selected inversion is that column j
of � can be computed by solving Qz = e j for z, where e j is the
jth column of the N × N identity matrix. The computational
cost of this operationmay be high for largeN, but can be greatly
reduced by using iterative methods such as the preconditioned
conjugate gradient (PCG) algorithm (Manteuffel 1980; Barrett
et al. 1994). This method produces an approximate solution
by iteratively minimizing the relative residual ‖Qz − e j‖/‖e j‖
until it decreases below some specified level δ, that can be set
arbitrarily low. The time complexity of iterative methods can be
nearly linear inN for diagonally dominantmatricesQ, which are
matrices Qi,i >

∑
i �= j |Qi, j| for all i (Spielman and Teng 2004).

However, in general PCG has complexity O(m
√

κ), where m
is the number of nonzero elements in Q and κ is its condi-
tion number. This, for example, gives complexity O(N1+1/d ) if
Q is obtained from a finite element approximation of a second-
order elliptic boundary value problemposed on ad-dimensional
domain (Shewchuk 1994). This strategy will therefore have at

least quadratic complexity when the selected elements are in all
columns (e.g., when computing �SI ), which will often be too
costly, but it can be useful when the number of selected elements
is small.

Direct methods for selected inversion usually rely on first
computing the Cholesky decomposition LLT = Q, where L is
lower triangular. This operation also takes O(N3) time in gen-
eral, but by using reordering techniques, for example, approx-
imate minimum degree reordering (Amestoy, Davis, and Duff
1996), it can generally be reduced to O(N3/2) for 2D problems
andO(N2) for 3D problems (Rue andHeld 2005). It is, however,
the memory requirements that normally make these methods
unfeasible (Aune, Simpson, and Eidsvik 2014). The complex-
ity mainly depends on the sparsity pattern of L, whose depen-
dency on Q is nicely explained from a graph theoretical point
of view in Vandenberghe and Andersen (2014). We denote the
index set of the symbolic Cholesky factorization by LQ (edges
in the chordal extension of the graph corresponding to Q),
which has the property thatLQ ⊇ SL+LT ∪ SQ, but inmost cases
LQ = SL+LT . Largely speaking, the complexity is low whenever
the fill-in LQ \ SQ is small.

The probably oldest idea for direct selected inversion,
referred to as the Takahashi equations (Takahashi, Fagan, and
Chen 1973; Erisman and Tinney 1975), was nicely presented
and compactly derived by Rue and Martino (2007). A statisti-
cal derivation in the same article begins by noting that

xi|xi+1:N ∼ N

(
− 1
Li,i

N∑
k=i+1

Lk,ixk, 1/L2i,i

)
, (1)

which provides a sequential representation of the GMRF. For
j ≥ i, it is straightforward to derive that

�i j = E(xix j) = E[E(xix j|xi+1:N )] = 1{i= j}
L2i,i

− 1
Li,i

N∑
k=i+1

Lk,i�k, j.

(2)

By iterating backward, for i = N, . . . , 1 and for each i,
j = N, . . . , i, one can compute the full � recursively. Further-
more, because of the sparsity structure of L, many terms of the
sum in Equation (2) will be zero, and the authors show that it
is enough to compute �i j for iterations where (i, j) ∈ LQ and
to sum over indices where (k, i) ∈ LQ for the computations to
be correct for all of �LQ . Therefore, if the selected elements S
form a subset of LQ, which is true, for example, for SQ and SI ,
this method is sufficient for computing the selected inverse. If
S = SR is not a subset of LQ, then one could easily show that
it will be sufficient to iterate over the Takahashi equations for
indices in L|Q|+|R| instead, by applying Theorem 1 in Rue and
Martino (2007) on the graph corresponding to |Q| + |R|. The
time complexity of solving the Takahashi equations is similar
that of Cholesky factorization as illustrated in Vandenberghe
and Andersen (2014, Fig. 9.5).

In the literature on numerical linear algebra, some effort
has in recent years been devoted to improving this and similar
direct methods (Li et al. 2008; Lin et al. 2011a, 2011b; Rouet
2012; Amestoy et al. 2012; Kuzmin, Luisier, and Schenk 2013;
Vandenberghe and Andersen 2014; Amestoy et al. 2015; Xia
et al. 2015; Jacquelin, Lin, and Yang 2015). The new techniques

https://github.com/psiden/CovApprox
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use various reorderings, multifrontal, and supernodal strate-
gies, cleverly adapted to the sparsity structure inQ, to distribute
computations and storage in efficient ways, see Vandenberghe
and Andersen (2014) for an in depth explanation. For problems
of moderate size, these methods are very competitive, but
will always have memory limitations for problems of higher
dimensionality.

In the field of probabilistic graphical models, belief prop-
agation (BP) and loopy belief propagation (LBP; Pearl 1988;
Malioutov, Johnson, and Willsky 2006) are well-known algo-
rithms for inferring the marginal distributions of the nodes of a
graphical model, by iteratively passingmessages between neigh-
boring nodes using various message passing schemes. When
applied to GMRFs, these algorithms compute the means and
marginal variances of all nodes, resulting in the covariance
matrix diagonal. In this case, each message passing step is
related to computing the Schur complement �I,I = (QI,I −
QI,IcQ−1

Ic,IcQIc,I )−1, applied to a single node, I = {i}, see
Malioutov, Johnson, and Willsky (2006) for details. Of course,
Q−1

Ic,Ic is unavailable for large graphs, but an approximation,
based on saved results from previous iterations of the algorithm,
can be computed for elements corresponding to neighbors of
node i. These are the only ones required due to the sparsity pat-
tern ofQI,Ic . If the graph is a tree, BP can be used to produce the
exact marginal variances in a finite number of iterations. This
largely corresponds to applying the Cholesky factorization and
Takahashi equations in the case with no fill-in, which is also
computationally cheap. In the common case that the graph is
not a tree, LBP must be used, which is known to not converge
for all models. Malioutov, Johnson, and Willsky (2006) showed
that a sufficient condition for the convergence of the means and
variances is that themodel iswalk-summable, a property includ-
ing, for example, models that have a diagonally dominant Q.
However, only the means, and not the variances, are guaran-
teed to converge to the true values, which together with the fact
that manymodels are not walk-summable limits the use of these
methods.

As a remedy, Liu et al. (2012) introduced a modified version
named feedback message passing (FMP), that first removes a
number of “feedback nodes” from the graph so that the remain-
ing graph is cycle-free. BP is then used to get the exact solution
for this graph, that can be passed back to the feedback nodes
which in turn can now also get the correct variances computed.
In a final step, information from the feedback nodes is used to
compute the exact variances in the cycle-free part of the graph.
The method is exact and bears resemblance with some of the
methods from numerical linear algebra presented above, but
also becomes computationally intractable as the problem, and
in particular the number of required feedback nodes, becomes
large. In addition, a separate, faster, approximate FMP method
is developed, in which a smaller number of feedback nodes
is selected so that the remaining graph is no longer cycle-
free, but at least walk-summable or almost walk-summable.
Approximate FMP is not exact, but is empirically shown to pro-
duce reasonable approximations of the variances on some small
examples.

A number of articles look at sampling-based approaches for
estimating the selected inverse. The idea in Bekas, Kokiopoulou,
and Saad (2007) origins from the article by Hutchinson (1990)

and suggests estimating the matrix diagonal as

σ̂
2 =

⎡⎣ Ns∑
j=1

v( j)  �v( j)

⎤⎦�
⎡⎣ Ns∑

j=1

v( j)  v( j)

⎤⎦ , (3)

where  and � means component-wise multiplication and
division of vectors, respectively, where v( j) is an N-dimensional
random vector, for example, a vector where each element inde-
pendently has value 1 or −1 with equal probability, and where
Ns is the number of sampled vectors. The method requires
the computation of �v( j), which in our case can be done by
solving Qz = v( j) for z, using PCG methods. The estimator
in Equation (3) is unbiased, and it is also exact if the rows
(i and j) of Vs = [v(1), . . . , v(Ns)] are orthogonal for all i and
j for which �i, j �= 0. If � is dense, this condition implies that
Ns = N is required for exactness (e.g., by choosing v( j) = e j),
which is not very helpful. However, this condition still moti-
vates choosing the columns of Vs deterministically, such that
the rows are nonorthogonal only for i and j such that �i, j is
small. By assuming that the off-diagonal elements of � decays
with distance, Bekas, Kokiopoulou, and Saad (2007) motivated
selectingVs as a Hadamardmatrix to get a good approximation.
The same sort of argument can be used to motivate selecting
v j as probing vectors (Tang and Saad 2012), but this requires
first coloring the graph corresponding to Qp for some suitable
integer p. Malioutov et al. (2008) also used coloring to select the
rows ofVs as orthogonal for nodes that are close, but in addition
they provided amultiscale wavelet basis forVs, that works better
for long-range correlation models and multiscale models.

Papandreou and Yuille (2010) developed an algorithm
for fast sampling from N(0,Q−1) when Q can be written as
GTG + HTH, for some sparsematricesG andH, which is a situ-
ation that often appears naturallywhenQ is a posterior precision
matrix, see, for example, the models in Section 4. In these cases,
a sample can be produced as x( j) = Q−1(GTz1 + HTz2), where
z1 and z2 are standard normal iid sampled vectors of appropriate
lengths. For efficiency, the PCGmethod can also here be used to
solve the equation systemwith respect toQ. A similar algorithm
is provided by Bhattacharya, Chakraborty, and Mallick (2016)
to sample from the conditional posterior in high-dimensional
regression with Gaussian scale mixture priors. Given Ns inde-
pendent samples of x, denoted X = [x(1), . . . , x(Ns )], simple
Monte Carlo (MC) estimators of � and σ 2

i are

�̂MC = 1
Ns

Ns∑
j=1

x( j)x( j)T = 1
Ns

XXT , σ 2
MC,i = 1

Ns

Ns∑
j=1

(
x( j)
i
)2,
(4)

which are further explored in Papandreou and Yuille (2011).
The estimators follow scaled Wishart and chi-squared distri-
butions with Ns degrees of freedom, �̂MC ∼ 1

Ns
Wishart(�,Ns)

and σ̂ 2
MC,i ∼ σ 2

i
Ns

χ2
Ns
, and are thus unbiased, see, for example,

Mardia, Kent, andBibby (1979, , chap. 3). By defining the relative
error with respect to the true marginal variances of the second
estimator as rMC,i = (σ̂ 2

MC,i − σ 2
i )/σ 2

i and the relative root

mean square error (relative RMSE) as RMSEMC,i =
√
E[r2MC,i],

the unbiasedness and the variance of a χ2-distributed variable
gives RMSEMC,i =

√
var[σ̂ 2

MC,i/σ
2
i ] = √

2/Ns. This means, for
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example, 20% relative RMSE when usingNs = 50 samples. Note
that the relative RMSE does not depend on the true variances.
The MC estimator provides a simple way to estimate �S for
any reasonably sized index set S . The computational bottleneck
is usually in producing the samples X, and given these, the
additional computational costs are very low in both time and
memory. At the same time, the estimator is a bit simplistic in the
sense that information about the distribution encoded in the
precision matrix Q is discarded when only using the samples
X. We therefore propose an improved Rao–Blackwellized MC
estimator in the next section.

3. Methods

3.1. Rao–BlackwellizedMonte Carlo

The simple, yet effective, idea of this section will be to improve
the MC estimator (Papandreou and Yuille 2010, 2011), by using
the fact that the precision matrix is known. We will start by
deriving what we call the simple Rao–Blackwellized Monte
Carlo (simple RBMC) estimator and then propose a number
of improvements resulting in what we will refer to as the block
RBMC estimator.

We derive the simple RBMC approximation for σ 2
i by using

the law of total variance

var(xi) = E[var(xi|x−i)] + var[E(xi|x−i)]
= Q−1

i,i + var
[− Q−1

i,i Qi,−ix−i
]

≈ Q−1
i,i + 1

Ns

Ns∑
j=1

(
Q−1

i,i Qi,−ix
( j)
−i
)2 = σ̂ 2

i|−i, (5)

with −i denoting all indices but i and the notation ·| − i
denotes that the part of the variance that comes from indices
−i are approximated usingMC samples. This estimator also fol-
lows a (translated and scaled) chi-squared distribution, σ̂ 2

i|−i ∼
Q−1

i,i + σ 2
i −Q−1

i,i
Ns

χ2
Ns
, and is clearly unbiased, see Section 3.1.2.

The relative RMSE is (1 − Q−1
i,i /σ 2

i )
√
2/Ns, so the reduction in

relative RMSE by using this estimator instead of the MC esti-
mator is Q−1

i,i /σ 2
i . The logic here is that the closer Q

−1
i,i is to σ 2

i
(they become equal when Q is diagonal) the smaller the error
becomes, as a larger portion of the variance is then explained
by Q−1

i,i . So for a GMRF which has close to independent ele-
ments, the simple RBMC approximation is much better, and as
the dependence between the elements increases the difference
in relative RMSE between the methods decreases, but RBMC is
always better.

Let D(Q) denote the diagonal matrix with the same diag-
onal as Q. As the expression Qi,−ix

( j)
−i can be compactly com-

puted for all i and j as (Q − D(Q))X, it is clear that, given X,
the computational cost of the simple RBMC estimator for all
marginal variances is dominated by Ns (sparse) matrix-vector-
multiplications of sizeN. This is normally cheap, more precisely
O(N · Ns)when the number of nonzero elements in each row of
Q does not depend on N.

The reduction in error compared to the MC estimator can
be understood from the two terms in Equation (5), where the
first one is now computed exactly and only the second one is

approximated using MC samples. The estimator can be further
improved by enlarging the set of nodes forwhich covariances are
computed exactly. A more general RBMC estimator is written
as

�̂S|Ic = [var(xI |xIc ) + v̂ar[E(xI |xIc )]]S

=
⎡⎣Q−1

I,I + 1
Ns

Ns∑
j=1

κ
( j)
I κ

( j)T
I

⎤⎦
S

, (6)

where κ
( j)
I = Q−1

I,IQI,Icx( j)
Ic , I is a subset of all nodes and the

operator [·]S extracts the elements in S ⊆ {(i, j); i, j ∈ I}.
Also this estimator can easily be shown to be unbiased, and fol-
lows a Wishart distribution, see Section 3.1.2. The set of nodes
I should be thought of as a spatial enclosure of the nodes in
S , and assuming spatial dependence that decays with distance,
the approximation will be better the further inside the interior
of I the nodes in S are. If I is chosen as the whole domain,
we get the exact inverse. There is thus a tradeoff between
computing cost and error when selecting I for this estimator;
a larger enclosure size M = |I| leads to smaller error, but also
to heavier computations since Equation (6) contains an inverse
of an M × M matrix. We illustrate the error reduction with an
example.

A stationary AR(1)-process is possibly the simplest exam-
ple of a GMRF and can be defined as xi = φxi−1 + εi, with
εi ∼ N(0, 1)which gives marginal variances (1 − φ2)−1. Ignor-
ing the boundaries, the precision matrix Q for the AR(1) is
tridiagonal, with 1 + φ2 on the diagonal and −φ on the super-
/sub-diagonal, while � is full. Figure 1 depicts the analytically
derived relative RMSE for the MC estimator and three differ-
ent RBMC estimators for this model, plotted as a function of φ

whenNs = 50, illustrating how the RBMC error increases when
the spatial dependence is increased and decreases when M is
increased.
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Figure . Relative RMSE of marginal variance estimators (RMSE =√
E[((σ̂ 2

i − σ 2
i )/σ 2

i )2]) of the MC estimator (RMSE = √
2/Ns) and RBMC

estimators σ̂ 2
i|−i (M = 1), σ̂ 2

i|−{i−1,i,i+1} (M = 3), and σ̂ 2
i|−{i−5,...,i+5} (M = 11)

(RMSE = 2φM+1

1+φM+1

√
2/Ns) for the AR(1)-model as a function of the AR-parameter φ

and Ns = 50.



902 P. SIDÉN ET AL.

0 5 10 15 20

0

5

10

15

20

RBMC blocks

0 5 10 15 20

0

5

10

15

20

Block 5 with enclosure

Figure . Disjoint blocks {Y1, . . . ,Y9} for block RBMC in different colors (left) and block  together with its spatial enclosure I(Y5), that is, all nodes inside of the filled
square (right).

... Block RBMC
To compute thematrix diagonal using the improved RBMC esti-
mator, we could use the following strategy. For each element i, we
select a spatial enclosureI(i)of sizeM and compute σ̂ 2

i|I(i)c using
Equation (6). The computational bottleneck of the method will
then be in the N Cholesky factorizations of M × M-matrices,
needed to compute Q−1

I(i),I(i) and κ
( j)
I(i) for each i. In practice,

this strategy might lead to substantial overhead costs when N is
large. In the numerical experiments in Section 4, we will there-
fore resort to a different strategy which we refer to as block
RBMC. In block RBMC, we partition the domain into Nb dis-
joint sets {Y1, . . . ,YNb} and compute �̂Yi |I(Yi )c for each block i
using Equation (6). An example for a 20 by 20 lattice and 9 blocks
is displayed in Figure 2.

When we are only interested in the covariance matrix diag-
onal, the important elements of Equation (6) can be computed
more efficiently. We start by reordering the nodes in the spa-
tial enclosure I(Yi) using constrained approximate minimum
degree (CAMD) reordering (Liu 1989; Amestoy, Davis, and
Duff 1996), such that the block nodes Yi comes last. Assuming
|I(Yi)| is reasonably small, we can then compute the Cholesky
factor of QI(Yi ),I(Yi ) cheaply and also the sparse inverse of
QI(Yi ),I(Yi ) using the Takahashi equations (see Equation (2)).
Since we placed the block nodes last, we do not need to iterate
backward the whole way to i = 1 but can break as soon as the
variances of the block nodes are computed. We thus have com-
puted the first term of Equation (6) and to obtain the second
term we can compute κ

( j)
I(Yi )

for all j with forward and back-
ward substitution using the Cholesky factor. The block RBMC
method is summarized in Algorithm 1. As presented there,
block RBMC can be used to compute, for example, the covari-
ance matrix diagonal. For some other possible choices of S ,
trivial extensions to the algorithm could be required, including
making the blocks overlapping and computing additional ele-
ments in the Takahashi equation step.

In the results presented in Section 4, the choices of blocks
Yi and enclosures I(Yi) will for simplicity be done correspond-
ingly to how the blocks are chosen for the iterative interface
method presented in Section 3.2 That is, for each block we select

Algorithm 1 Block RBMC
Require: Precision matrix Q, Ns Gaussian samples

X, blocks
{Y1, . . . ,YNb

}
, and block enclosures{I (Y1) , . . . , I (YNb

)}
1: for i = 1 to Nb do
2: Reorder the nodes in I (Yi) using CAMD such that Yi

comes last
3: Compute LI(Yi) as the Cholesky factor of QI(Yi),I(Yi)

4: for j = |I (Yi)| to |I (Yi)| − |Yi| + 1 do
5: Use the Takahashi equations to compute sparse

elements ( j, k) ofQ−1
I(Yi),I(Yi)

, for k ≥ j
6: end for
7: for j = 1 to Ns do

8: Solve LI(Yi)κ̃ = QI(Yi),I(Yi)
cx( j)

I(Yi)
c for κ̃

9: Solve LTI(Yi)
κ

( j)
I(Yi)

= κ̃ for κ
( j)
I(Yi)

10: end for
11: Compute selected covariances in block Yi using

Equation (6)
12: Optionally compute the uncertainty measures using

Equation (7)
13: end for

Yi as the smallest rectangle (or cuboid in the 3D case) that con-
tains all nodes in Zi and I(Yi) = I(Wi) (see definitions of Zi
and I(Wi) in Section 3.2, and the illustration in Figure 3). This
seems to be a pragmatic choice of blocks for the RBMCmethod
in practice.

... Approximation Variance and Confidence Bounds
Precise estimates of the variance and uncertainty bounds of the
different RBMC estimators can be cheaply obtained by noting
that the estimator in Equation (6) follows aWishart distribution.
See Mardia, Kent, and Bibby (1979, chap. 3) for some funda-
mental properties that connects the Wishart, Gaussian, and
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Figure . The iterative interface method illustrated for the  by  lattice with nine subblocks. All interface nodes (top left) and those updated in the iterations , , and ,
divided into the setsW , V , andZ . In addition, I(W ) denotes all nodes inside the frame and U denotes all nodes on and inside the frame V .

χ2-distributions. It can be seen that κ( j)
I in Equation (6) is mul-

tivariate normal with mean zero and covariance matrix �I,I −
Q−1

I,I since x( j) is normal and since the law of total variance
gives that �I,I = Q−1

I,I + var(−κ
( j)
I ). It thereby follows that

�̂(I,I )|Ic ∼ Q−1
I,I + 1

Ns
Wishart

(
�I,I − Q−1

I,I ,Ns
)
, (7)

and taking the mean directly shows the unbiasedness of the
estimator.

We thus know the analytical distribution of the different
RBMC estimators. This can be used to compute uncertainty
measures such as the variances and confidence bounds of the
different elements, apart from that we do not know �I,I which
is in fact what we are trying to estimate. However, if �̂(I,I )|Ic is
a reasonably good estimate of �I,I , then plugging it into Equa-
tion (7) instead of �I,I gives good estimates also of the uncer-
tainty measures, as shown empirically in Section 4. Note that
�̂(I,I )|Ic − Q−1

I,I is positive definite, due to the construction in
Equation (6). Also note that both �̂(I,I )|Ic andQ−1

I,I are already
computed for selected elements in Algorithm 1, so computing
the uncertainty measures generates very little additional com-
putational cost.

As an example, we give explicit uncertainty measures for the
RBMC estimates of the elements of covariance matrix diagonal
σ̂ 2
i|Ic . These can be derived by noting that the diagonal elements

of a Wishart distributed matrix are χ2-distributed, so

σ̂ 2
i|Ic ∼ [

Q−1
I,I
]
i,i +

1
Ns

(
σ 2
i − [

Q−1
I,I
]
i,i

)
χ2
Ns

,

var
(
σ̂ 2
i|Ic

) = 2
Ns

(
σ 2
i − [

Q−1
I,I
]
i,i

)2
, (8)

and the quantiles of the χ2-distribution can directly be used to
compute confidence intervals (CIs). In practice, the uncertainty
measures can be approximated using σ 2

i = σ̂ 2
i|Ic .

3.2. Iterative InterfaceMethod

In this section, we introduce a method that can be used to
further improve the RBMC covariance estimates by iterating
over certain subdomains, which we call interfaces. For the ease
of presentation, we will here assume that we have a GMRF
defined on a 2D lattice with nearest neighbor Markov structure
(5-point-stencil), but it is straightforward to extend this to 3D
(we provide numerical results for this case in Section 4) and also
possible for other types of domains or Markov structures. The
underlying idea can be explained using Figure 3, which depicts a
20 by 20 lattice with all the interface nodes marked with unfilled
dots in the top left graph. The other three graphs illustrate sit-
uations in which a subset of interface nodes Wi (unfilled) have
been enclosed within a frame of other interface nodesVi (filled).
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The nodes in Wi are divided into an inner set Zi (unfilled cir-
cles) and an outer set Wi \ Zi (unfilled squares) for reasons
that will be apparent shortly. We also use the notation I(Wi)

for all nodes within the frame and Ui = I(Wi) ∪ Vi, that is, Ui
are all nodes on and inside the frame. Because of the Markov
assumption, if we would know the covariance matrix �Vi,Vi of
the frame, we could compute the covariance matrix of the inner
nodes �Wi,Wi without having to consider the distribution out-
side of the frame. The basic idea is therefore to iterate between
interface subdomains, as the three illustrated, and in each step
compute the covariances of the inner nodes W i based on the
covariances of the frame Vi and Q (for the example in Figure 3,
nine steps are required to iterate through all interface nodes
once).

The algorithm, summarized in Algorithm 2, can be divided
into three phases. In the first phase, starting values are computed
using a slightly modified version of the block RBMCmethod, in
which the full covariance matrix of the innermost nodes Zi are
computed together with the cross-covariances between Zi and
Wi \ Zi. The starting variances of the nodes inWi \ Zi are how-
ever estimated in a different block where these nodes are further
inside the frame, which leads to smaller error (consider, e.g., the
two bottommost square nodes in iteration 1 of Figure 3, which
are more centrally located in iteration 2). In the second phase,
the algorithm iteratesNiter times over allNb blocks and computes
�Wi,Wi each time treating �Vi,Vi as known. In the final phase,
all selected covariances (not only those that happen to belong
to interface nodes) are computed using the Takahashi equations
with the modification that the covariances on the frame, �Vi,Vi ,
are treated as known. More formal derivations and motivations
of the different steps in Algorithm 2 are given in the following
subsection.

... AlgorithmDerivation
Note that every step in Algorithm 2 is done within the context
of a single subblock/interface, so here we drop the subindex i
fromall sets, for readability. Consider the casewhenwe are inter-
ested in computing the dense covariancematrix�W,W knowing
�V,V and using that p(xW |xV , xU c ) = p(xW |xV ). For computa-
tional efficiency, first reorder the nodes inQI(W ),I(W ) such that
W comes last, using CAMD. Now, similar to when the RBMC
method was derived

var(xI(W )) = �I(W ),I(W )

= E[var(xI(W )|xV )] + var[E(xI(W )|xV )]
= Q−1

I(W ),I(W ) + var
(
Q−1

I(W ),I(W )QI(W ),VxV
)

= L−TL−1 + var
(
L−TL−1QI(W ),VxV

)
= L−T (I|I(W )| + var

(
L−1QI(W ),VxV

))
L−1

= L−T (I|I(W )| + M�V,VMT )L−1, (9)

where QI(W ),I(W ) = LLT is the Cholesky decomposition and
M = L−1QI(W ),V . This equation provides a way to com-
pute �I(W ),I(W ) when �V,V is known, but since we are only
interested in the covariance matrix �W,W , this would be
unnecessary. We divide the Cholesky factor L using the subsets

W̃ := I(W ) \ W andW so that

L =
[

LW̃
LW,W̃ LW

]
⇒ L−1 =

[
L−1
W̃−L−1

W LW,W̃L−1
W̃ L−1

W

]
=
[
L−1
W̃−S L−1

W

]
, (10)

and divide M as MT = [MT
W̃ MT

W ]. Equation (9) can now be
written as[
�W̃,W̃ �W̃,W
�W,W̃ �W,W

]
=
[
L−T
W̃ −S

L−T
W

]
(11)

×
([

I|W̃| + MW̃�V,VMT
W̃ MW̃�V,VMT

W
MW�V,VMT

W̃ I|W| + MW�V,VMT
W

])

×
[
L−1
W̃−S L−1

W

]
,

fromwhich the bottom right block can be extracted. This gives

�W,W = L−T
W
(
I|W| + MW�V,VMT

W
)
L−1
W , (12)

and we now have a formula to update �W,W given �V,V , which
is used on line 10 in Algorithm 2. If �V,V is approximated by
samples in Equation (12) we get the RBMC estimator for the
starting values in line 5

�̂
start
W,W = L−T

W

⎛⎝I|W| + 1
Ns

Ns∑
j=1

(
MWx( j)

V
)(
MWx( j)

V
)T⎞⎠ L−1

W .

(13)

... Convergence and Error
The hope is to bring the interface covariances closer to the exact
values in each iteration. However, the error will not converge to
zero in general since the necessary covariances between some
nodes in each frame cannot be computed, and will instead be
assumed to be zero. For example, in the bottom right subgraph
of Figure 3, the covariance between the top left and bottom right
nodes in the frame will never be computed since these nodes are
not in the same Wi for any i. Still, for all interface nodes that
are close to each other the covariance will be computed in some
block i and hopefully the approximation error fromnot comput-
ing the covariance of distant nodes will be small. If not we can
always increase the sizes of the interface blocks, which increases
the distance between the nodes for which the covariance can-
not be computed. This will, however, bring additional computa-
tional costs.

3.3. Correcting for Linear Constraints

A situation that occurs quite frequently in practice is that we
have some linear constraintsAx = e on the GMRF x, for exam-
ple, that

∑
i xi = 0, that is, A = 1T and e = 0 (Rue and Held

2005). In such a situation, Rue and Martino (2007) provided a
general strategy to compute selected elements of the covariance
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Algorithm 2 Iterative interface method
Require: Precision matrix Q, Gaussian samples X, and node

setsWi, I (Wi), Vi, Zi, Ui for all i
1: for i = 1 to Nb do � start phase one
2: Reorder the nodes in I (Wi) using CAMD such thatWi

comes last
3: Compute L as the Cholesky factor of QI(Wi ),I(Wi ) and

extract LWi as the bottom right |Wi| × |Wi| block of L
4: ComputeM = L−1QI(Wi ),Vi and extractMWi as the last

|Wi| rows ofM
5: Compute starting values as �̂

start
Wi,Wi

=
L−T
Wi

(I|Wi| + 1
Ns

∑Ns
j=1(MWix

( j)
Vi

)(MWix
( j)
Vi

)T )L−1
Wi

6: Set �̂S = �̂
start
S for S = (Zi × Zi) ∪ ((Wi \ Zi) × Zi)

∪(Zi × (Wi \ Zi))

7: end for
8: for j = 1 to Niter do � start phase two
9: for i = 1 to Nb do

10: Compute �̂Wi,Wi = L−T
Wi

(
I|Wi| + MWi�̂Vi,ViMT

Wi

)
L−1
Wi

11: end for
12: end for
13: for i = 1 to Nb do � start phase three
14: Reorder the nodes in Ui using CAMD such that Vi

comes last
15: Compute LUi as the Cholesky factor of QUi,Ui

16: for j = |I (Wi)| to 1 do
17: Use the Takahashi equations to compute sparse

elements ( j, k) of �̂Ui,Ui , for k ≥ j treating the last
block �̂Vi,Vi as known.

18: end for
19: end for

matrix �∗ of x∗ = (x|Ax = e) using that

�∗ = � − Q−1AT (AQ−1AT )−1AQ−1

= � − W(AW)−1WT = � − C, (14)

whereW = Q−1AT and C = W(AW)−1WT . If A is of size k ×
N, then the cost of computing W is equal to that of solving k
equation systems QW = AT , which can be done with PCG as
explained earlier, as long as k is reasonably small. In this case,
computing selected elements of C is also cheap, requiring one
k × k matrix inversion and an additional k × k matrix-vector-
multiplication per element. Thereby, given an estimate �̂S for
some index set S from any of the methods above, an estimate
�̂

∗
S = �̂S − CS of selected elements of the covariance matrix of

the constrained field is straightforward to compute. As CS can
be computed exactly the variance of the estimator �̂

∗
S is the same

as the variance of �̂S .
When this method is used for the diagonal elements of �∗,

the marginal variances, some attention should be drawn to the
fact that some estimates could become negative if �̂i,i < Ci,i
for some i. One possible approach to remedy this situation in

practice is to replace any negative estimates with the MC esti-
mates computed using samples from the constrained field itself
(with subtracted mean), which can be computed by correcting
the samples from the original field asX∗ = X − W(AW)−1AX,

see Rue and Held (2005, Algorithm 2.6).

4. Results

In this section, we will investigate the performance of the intro-
duced methods for selected inversion empirically on various
posterior precision matrices. We first compare sampling-based
methods on a simple theoretical model and then consider a spa-
tial model for neuroimaging and evaluate all our methods using
data from both simulated and real fMRI experiments. All com-
putations were performed on a Linux workstation with a 4-core
(8 threads) Intel Xeon E5-1620 processor at 3.5GHz and 128GB
RAM.Themain part of the codewaswritten inMatlab, but some
(nonoptimized) C++ code was called for evaluating the Taka-
hashi equations and the SuiteSparse library (Davis 2017) was
used for calling CAMDand the functions for symbolic Cholesky
factorization.

The first task consists in computing the covariance matrix
diagonal corresponding to the sparse posterior matrix of a sim-
ple model with independent Gaussian measurements and a
first-order random walk prior on the 3D lattice, that is, yi ∼
N(xi, λ−1

i ) and xi − x j ∼ N(0, 1) for all adjacent nodes i and j
on the lattice a priori. λi were uniformly sampled on the inter-
val (0.1, 0.2) for all i. The posterior distribution for x|y is a
GMRF with precision matrix Q = diag(λ) + GTG, with λ =
[λ1, . . . , λN] and G is a matrix with one row for every pair of
adjacent nodes i and j, with 1 in column i and −1 in column j.
We compare the simple RBMC and block RBMCmethods to the
MC and Hutchinson sampling-based methods in Table 1.

For each node i, we compute the relative error ri =
(σ̂ 2

i − σ 2
i )/σ 2

i using σ 2
i computed exactly using the Takahashi

equations. The maximum error is computed as maxi |ri| and the
RMSE is computed empirically for ri across all nodes for each
method. For each σ̂ 2

i for the block RBMCmethod, we also com-
pute a confidence interval (CI) based on the χ2-distribution
in Equation (8), with σ 2

i = σ̂ 2
i|Ic , and count the share of nodes

for which the true value σ 2
i is outside the CI. The CI com-

putation for the MC method uses that σ̂ 2
MC,i ∼ σ 2

i
Ns

χ2
Ns
. For the

Hutchinson method, we do not have a simple method to com-
pute CIs, so this measure is not reported. The lattice is of size
80 × 80 × 80 = 512, 000 and for block RBMC we use 5, 10, or
20 blocks in each dimension and we present results using 20 and
100 random samples.

Table 1 clearly shows that our simple RBMC method per-
forms significantly better than previous methods (MC and
Hutchinson) with the same computing time. We see that the
error can be further decreased using the block RBMC method,
but with additional computational cost. If low error is desir-
able, the results indicate that block RBMC with few samples
is preferable over simple RBMC with many samples, as block
RBMC with 1000 blocks and 20 samples gives far lower error
than simple RBMC with 100 samples, in less time. Out of the
two previous methods, Hutchinson seems to give lower error
than MC, but we noted a drawback in that Hutchinson can
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Table . Computing times, empirical errors, and proportion of confidence intervals not covering the true value when computing the posterior covariance matrix diagonal
of a theoretical spatial model on a 80 × 80 × 80 lattice, using different methods and different number of random samples. The presented results are averages ± one
standard deviation across  runs with different random seeds.

Method Nbr. of blocks Nbr. of samples Comp. time (s) Max relative error (%) Relative RMSE (%) % Outside % CI

MC  .  ±  . ± . . ± .
Hutchinson  .  ±  . ± .
Simple RBMC  . . ± . . ± . . ± .
Block RBMC   . . ± . . ± . . ± .
Block RBMC   . . ± . . ± . . ± .
Block RBMC    . ± . (. ± .)E- . ± .
MC   . ± . . ± . . ± .
Hutchinson   . ± . . ± .
Simple RBMC   . ± . . ± . . ± .
Block RBMC    . ± . . ± . . ± .
Block RBMC    . ± . . ± . . ± .
Block RBMC    . ± . (. ± .)E- . ± .

sometimes produce negative variance estimates. The computed
CIs can be seen to cover close to the desired 95% of the true val-
ues, but they are slightly biased because σ̂ 2

i is used in place of
σ 2
i . The bias is reduced when using a larger number of samples,

and since it is so systematic it could probably be corrected for,
knowing the distribution of σ̂ 2

i . However, for most applications,
this level of error in the uncertainty of the estimated covari-
ances is likely to be acceptable, so we leave such a task to future
work.

Next, we consider a spatial regression model for neuroimag-
ing (Penny, Flandin, and Trujillo-Barreto 2007; Sidén et al.
2017). Brain activity is modeled as a GMRF on a 3D lattice of
voxels over the brain, with K different variables in each voxel,
corresponding to activations of different tasks and an intercept.
The resulting variational Bayes (VB) posterior is a GMRF of size
KN, where N is the number of voxels, and the Markov assump-
tions of the model makes all nonadjacent voxels conditionally
independent. Thismakes the use of our developedmethods pos-
sible, if we for the iterative interface include all K variables in
each voxel on, for example, the frame to the corresponding inter-
face set Vi. We present results for the block RBMC and itera-
tive interface methods in Table 2 for data simulated in the same
way as in Sidén et al. (2017, Appendix D) on a 50 × 50 × 40 lat-
tice andK = 5 (the resulting GMRF has 500,000 variables). The
errors are computed relative to the exact values computed using
the Takahashi equations. We use Ns = 20 samples in X for both
methods and our experience has shown that the iterative inter-
face methods does not improve much after the first iteration, so
we use Niter = 1, and we use 5, 10, and 15 interface blocks in
each of the three dimensions.

Table 2 shows that the iterative interface method can reduce
the error beyond what is achievable using the block RBMC
method, but that it requires more computing time and mem-
ory. The computing time of the exact Takahashi equations could
probably be significantly reduced by optimizing the code, but
its large memory requirements (55GB) is just that of storing
the Cholesky factor and the corresponding sparse inverse of
Q, which is difficult to reduce further, showing the infeasibil-
ity of exact methods for large problems. The iterative interface
method can also be rather costly memory-wise, but by choosing
the appropriate block sizes one could adapt the memory usage
to the current limitations.

So far we have only evaluated the methods on marginal vari-
ances, but the methods can be used to estimate all covariances.
To show that the error is small also for the covariances we com-
puted the empirical absolute RMSE for �̂i, j across all i and j
corresponding to the same variable in adjacent voxels, estimated
with the iterative interfacemethodwith 1000 blocks (the relative
RMSE is not suitable for covariances as they can be zero or nega-
tive). The RMSEwas 4.04 · 10−5 for these off-diagonal elements,
which can be compared to 3.02 · 10−5 for the diagonal elements,
indicating that the errors are in the same order of magnitude.

Finally, we visualize the improvement of our methods on
some real fMRI data. The top left subfigure in Figure 4 replicates
the bottommiddle subfigure in Sidén et al. (2017, Fig. 3), show-
ingMC estimatedmarginal standard deviations of brain activity
over a brain slice. The top right subfigure shows the ratio (σ̂i/σi)
compared to the exact marginal standard deviations computed
with the Takahashi equations. The bottom row shows the same,
but with simple RBMC estimates instead of MC. It is clear that

Table . Computing times, memory usage, and errors relative to the exact values from the Takahashi equations, when computing the posterior covariance matrix of
the spatial model in Sidén et al. () using simulated fMRI data on a 50 × 50 × 40 with a five-dimensional variable in each lattice point, using different methods and
different number of blocks and  random samples. The presented results are averages ± one standard deviation across  runs with different random seeds, except for
the Takahashi equations.

Method Nbr. of blocks Comp. time Memory Max relative error (%) Relative RMSE (%)

MC  s <  GB  ±  . ± .
Simple RBMC  s <  GB . ± . . ± .
Block RBMC   s <  GB . ± . . ± .
Block RBMC   s <  GB . ± . . ± .
Block RBMC  . h <  GB (. ± .)E- (. ± .)E-
Iterative interface  . h  GB . ± . (. ± .)E-
Iterative interface  . h  GB (. ± .)E- (. ± .)E-
Iterative interface  . h  GB (. ± .)E- (. ± .)E-
Takahashi equations . h  GB



JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS 907

Figure . Posterior marginal standard deviation estimates for the fMRI data andmodel in Sidén et al. (), based onMC estimation (top row) and simple RBMC estimation
(bottom row). The second column shows the estimated standard deviations divided with the exact values, computed using the slower Takahashi equations method.

the simple RBMC estimates have much smaller error and using
the even more exact block RBMC or iterative interface methods
would reduce the error to levels that would be hardly visible to
the naked eye.

5. Discussion and FutureWork

The results show that our suggestedmethods, the simple RBMC,
the block RBMC, and the iterative interface method outperform
other sampling-based methods in terms of accuracy for a given
computing time, and exact methods in terms of memory usage.

For a practical problem, one could find the desired balance
between error, computing time, and memory requirements by
choosing between our proposed methods, the number of sam-
ples, and the number of blocks (or block sizes). For the RBMC
methods, the error will decrease linearly with

√
Ns, while time

and memory requirements grow linearly with Ns. As usual with
Monte Carlo methods this gives asymptotical exactness, but this
limit is not attainable in practice.

Both the RBMC and iterative interface methods also con-
verges with block size, as Nb = 1 will be the same as the exact
Takahashi equations. Exactly how the error, computing time
and memory depend on the block sizes is a difficult question
to answer in general, but by assuming a field that is, fairly sta-
tionary, the following strategy could be employed to find the
required block size for a given error: Compute the block RBMC
estimates for just one or a small number of blocks and also

compute the corresponding uncertainty measures, as explained
in Section 3.1.2. Redo this procedure with increasing block sizes
until the uncertainty is sufficiently small, before computing the
estimates for the whole domain. Since the iterative interface
method uses block RBMC for starting values and then reduces
the error, this gives an upper bound for the uncertainty also for
that method. Especially, models with longer spatial correlation
range will require larger blocks to obtain a given accuracy.

There are a number of ways in which our algorithms can be
parallelized. All samples in X are independent, so these can be
generated in parallel. Also, all steps in the RBMC and iterative
interface methods are done independently for each block and
are straightforward to parallelize over blocks, apart from phase
two in the iterative interface method, but this phase can prob-
ably be run in parallel by letting different threads operate on
separate parts of the domain.

As wementioned in Section 2, our developedmethods can be
used for trace estimation needed for EM and VB, but they could
also be used in other methods, for example, integrated nested
Laplace approximation (INLA;Rue,Martino, andChopin 2009).
INLA normally uses the Cholesky factor of Q for computing
marginal posterior variances and log |Q|. To avoid the Cholesky
factorization, the variances could instead be approximated using
our methods and the log determinant could be approximated,
for example, using the methods in Aune, Simpson, and Eidsvik
(2014) or Ubaru, Chen, and Saad (2017). The usefulness of
our methods within MCMC algorithms is probably limited, as
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posterior samples can normally be sampled using Q directly
with, for example, the method in Papandreou and Yuille (2010),
without the need of computing elements of the covariance
matrix. However, our algorithms could possibly be employed in
MCMC post processing to more efficiently compute marginal
variances. The usefulness of our methods for models that are
not always formulated using precision matrices, such as vector
autoregressive (VAR)models (Koop 2013), could also be further
explored.

6. Conclusions

We presented a number of methods for estimating selected ele-
ments of the covariance matrix when the precision matrix is
sparse and the corresponding Gaussian density can be sampled
from, but too large for full inversion or even Cholesky factoriza-
tion. Our methods extends the idea of Papandreou and Yuille
(2010) to use MC sampling to estimate covariances, but bet-
ter uses the information from the known precision matrix to
reduce the error, while simultaneously having lower computa-
tional requirements than known exact methods.
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