THESIS FOR THE DEGREE OF LICENTIATE OF ENGINEERING

Techniques to Tighten the Upper Bound on the Execution
Time of Task-based Parallel Applications

PETROS VOUDOURIS

Division of Computer Engineering
Department of Computer Science & Engineering
Chalmers University of Technology
Gothenburg, Sweden, 2018

Techniques to Tighten the Upper Bound on the Execution Time of Task-based
Parallel Applications

PETROS VOUDOURIS

Copyright ©2018 Petros Voudouris
except where otherwise stated.
All rights reserved.

Technical Report No 1911

ISSN 1652-876X

Department of Computer Science & Engineering

Division of Computer Engineering

Chalmers University of Technology and Gothenburg University
Gothenburg, Sweden

This thesis has been prepared using IXTEX.
Printed by Chalmers Reproservice,
Gothenburg, Sweden 2018.

il

Abstract

To use multiprocessors in hard real-time systems, schedulability analysis is needed
to provide formally proven guarantees for the timing behavior of the system. Pro-
gramming models for parallel applications, such as OpenMP, use pragmas to specify
parts of the application as parallel tasks, for example, a function or a body of a loop.
Worst-case-execution-time (WCET) analysis is used to find a safe upper bound of the
execution time of a task (i.e., sequential code). However, determining a safe upper
bound on the execution time of the entire parallel application on a multiprocessor
platform, called the makespan, is a challenging problem.

Parallel applications can be modeled as directed acyclic graphs (DAG) (nodes are
tasks and edges dependencies) where every node is characterized by its WCET. On
a homogeneous platform, the simulation of a greedy, i.e., work-conserving schedule
cannot be used to find a safe upper bound on the execution time due to timing
anomalies. Timing anomalies is the main obstacle to calculate a safe upper bound
of the makespan which is necessary to provide timing guarantees for parallel real-
time applications. In the presence of timing anomalies, analytical approaches with
pessimistic assumptions regarding the schedule of the tasks are used in the earlier
works to calculate a safe upper bound on the makespan of parallel application on a
homogeneous platform.

This thesis first provides a simulation based approach to calculate the makespan,
with the use of time predictable and dynamic schedulers. A first contribution is
a scheduler called Strict Lazy that fulfills the basic requirements to provide a
timing anomaly-free schedule. As a result, a safe estimation of the makespan for
homogeneous multiprocessors is calculated. Furthermore, the thesis builds upon
Strict Lazy to develop another scheduler, called the Lazy scheduler, that has
proven to be timing-anomaly free. As a result, the simulation of the schedule of a DAG
with Lazy where all the nodes are executed for their WCET calculates a safe upper
bound of the makespan. The proposed approach provides tighter and more scalable
(to the number of processors) makespan estimations compared to the state-of-the-art.

A heterogeneous multiprocessor model is more general than a homogeneous mul-
tiprocessor model as it can cover a broad range of multiprocessor platforms including
platforms with single instruction set architecture (ISA) but different microarchitectures,
coexistence of processors with different ISAs and architectures with special-purpose
accelerators. To the best of our knowledge, no earlier work considers the problem
of how to calculate the makespan for schedules of parallel applications on unrelated
multiprocessor platforms. This thesis finally proposes a polynomial time complexity,
closed-form expression to calculate a safe upper bound on the makespan of DAGs
for the unrelated multiprocessor model. The proposed method is applicable to a
wide range of (greedy) schedulers and is also reducible to the state-of-art results for
homogeneous and related multiprocessor models.

Keywords

Hard, Real-Time Systems, Parallel applications, Homogeneous and heterogeneous
multiprocessors, WCET, DAG, Dynamic Scheduling, Makespan

Acknowledgment

First of all, I would like to thank my supervisor Per Stenstrém for giving me the
opportunity to pursue a PhD degree under his supervision. His knowledge, guidance
and support have been invaluable to my development as student. I really enjoyed the
stories that he was telling that helped me to continue this work.

Special thanks to my co-supervisor Risat Pathan for the countless hours that we
have spend to find and solve problems. Without him this thesis would not be possible.

Also, I would like to thank to Vassilis Papaefstathiou, Miquel Pericas, Madha-
van Mannivanan, Yiannis Sourdis and Jan Jonsson for their valuable feedback and
guidance.

I would like to thank my colleagues and friends here in Gothenburg Chloe, Babis,
Aras, Ivan, Stavros, Vaggelis, Albin, Lea, Prajith, Alirad, Ashen, Stefano, Waqar,
Mehrzad, Alexandra, Nadja, Angelos, Yiannis, losif, Maria, Vassiliki, Hannah, Chris-
tos, Dimitris, Georgia and Bilio.

This research has been funded by the MECCA project under the ERC grant ERC-
2013-AdG 340328-MECCA

List of Publications

Appended publications
This thesis is based on the following publications:

I Petros Voudouris, Per Stenstrom, Risat Pathan “Timing-Anomaly Free Dynamic
Scheduling of Task-Based Parallel Applications”
IEEE Real-Time Systems Symposium (RTSS), Work in progress, 2016.

IT Petros Voudouris, Per Stenstrom, Risat Pathan “Timing-Anomaly Free Dynamic
Scheduling of Task-Based Parallel Applications”
IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS),
2017.

IIT Petros Voudouris, Per Stenstrom, Risat Pathan “Bounding the Execution Time of
Task-based Parallel Applications on Unrelated Multiprocessors”
Technical report, https://research.chalmers.se/en/publication/505944, 2018.

Other publications

The following publications were published during my PhD studies, but they are not
part of this thesis.

IV Risat Pathan, Petros Voudouris, Per Stenstrom “Scheduling Parallel Real-Time
Recurrent Tasks on Multicore Platforms”
IEEE Transactions on Parallel and Distributed Systems (TPDS), 2018.

V Petros Voudouris, Per Stenstrom, Risat Pathan “A Safe and Tight Estimation of
the Worst-Case Execution Time of Dynamically Scheduled Parallel Applications”
MULTIPROG workshop, High-Performance and Embedded Architectures and
Compilers (HiPEAC), 2016.

vii

viii

Contents

Abstract
Acknowledgement
List of Publications

1 Introduction
1.1 Background
1.2 Timing-anomaly free execution
1.2.1 Priority assignment
1.2.2 Scheduling Policy: Strict Lazy
1.2.3 Scheduling Policy: Lazy
1.2.4 Summary of experimental results
1.3 Makespan for unrelated multiprocessors
1.3.1 Platform characterization
1.3.2 Efficient makespan calculation
1.3.3 Summary of experimental results
1.4 Conclusions and future work

2 Paperl
3 PaperIl
4 Paper II1

X

11

15

27

CONTENTS

Chapter 1

Introduction

In real-time systems, the correctness of the system does not depend only on the func-
tional correctness of the result but also on when the result is produced [1]. There is
an increasing demand for computation power from real-time applications. Multipro-
cessors can offer high and predictable performance, through parallelism, for real-time
applications. To use them in real-time systems requires multiprocessor schedulability
analysis [2] to provably guarantee the timing behavior of parallel applications.

Parallel applications can be modeled as a Directed Acyclic Graph (DAG), where
every node is a task (sequential code) characterized by its worst-case execution time
(WCET) [3] and the edges are dependencies between the tasks. To provide guarantees
when they are executed on a multiprocessor platform, the primary challenge is to
provide tight bounds of the worst-case schedule length, also called makespan.

Scheduling policies can be separated into two categories: static and dynamic. In
static scheduling tasks are pre-assigned to fixed cores offline. With static scheduling,
the multiprocessor platform will be underutilized due to load imbalance or communi-
cation overheads. Dynamic scheduling, on the other hand, can significantly improve
resource utilization by assigning the tasks to the cores online, at run-time. An im-
portant class of dynamic schedulers is greedy, i.e., work-conserving, it schedules an
available task whenever there is an idle processor [4]. However, any greedy scheduler
may suffer from timing anomalies. Specifically, the execution time of a dynamically
scheduled parallel application may increase when some tasks take less than their
WCETs at run-time. This is known as an execution-time-based timing anomaly [5-7],
which is a main obstacle to minimize the pessimism for the calculation of makespan
when we consider any greedy scheduler. The first problem that this thesis addresses
is how to dynamically schedule the tasks of a parallel application so we can avoid
execution-time-based timing anomalies.

Modern multiprocessor platforms through parallelism [8—16] and acceleration
[17-22] can provide performance and energy efficiency gains for real-time applica-
tions. Based on the speed relation that tasks have with the processors, the platform
models can be separated into three categories: homogeneous, related and unrelated [2].
In homogeneous multiprocessors, there is a single processor type. Hence, the WCET
for a specific task is the same on all processors. In related multiprocessors, each
processor type is associated with a speed factor. The WCET of any task is scaled
with the speed factor of the processor type (related multiprocessors are also known
as uniform multiprocessor platforms [23]). In unrelated multiprocessors, a speed

1

2 CHAPTER 1. INTRODUCTION

factor is associated with each task-type and processor-type pair. Hence, the unrelated
multiprocessor model is one of the most general model for a heterogeneous multipro-
cessor platform. Note that, since there are execution-time-based timing anomalies
for the homogeneous multiprocessor model which is a special case of related and
unrelated multiprocessor models, timing anomalies also exist in the context of related
and unrelated heterogeneous multiprocessors.

The unrelated multiprocessor model can cover a broad range of heterogeneous plat-
forms including platforms with single instruction set architecture (ISA) but different
microarchitectures [19], coexistence of processors with different ISAs [17], architec-
tures with special purpose accelerators for example, convolution [20], inference [21]
and matrix multiplication [22] for machine learning. The second problem that this
thesis addresses is how to calculate the makespan for parallel applications modeled as
DAGs executed on unrelated multiprocessors. To the best of our knowledge no related
work considers this problem.

The contributions of this thesis are the following:

* Paper I introduces a fixed priority, non-preemptive, non-greedy, dynamic sched-
uler called Strict Lazy that fulfills the basic requirements to provide an
execution-time-based timing anomaly-free schedule and, as a result, a safe
estimation of the makespan for homogeneous multiprocessors.

» Paper II presents a fixed priority, non-preemptive, non-greedy, dynamic sched-
uler called Lazy that, for the first time, has proven to be execution-time-based
timing anomaly-free. As a result, the simulation of the schedule with Lazy of a
DAG, where all the nodes are executed for their WCET calculates the makespan.

e Paper III proposes a polynomial time-complexity method to calculate the
makespan of task-based parallel applications modeled as a DAG using the
unrelated multiprocessor model.

The rest of the introduction of this thesis is organized as follows: Section 1.1
provides the background for the analytical approach for the makespan calculation and
presents the timing anomalies. Section 1.2 presents the contributions of Paper I and
Paper II. Section 1.3 presents the contributions of Paper III. Section 1.4 concludes
the introduction of the thesis and discusses future work.

1.1 Background

Initially, we provide an example of timing anomalies that we have defined as the
limiting factor for the makespan calculation in Paper I and Paper II. Then we present
related work on analytical approaches to calculate the makespan on a homogeneous
platform with any greedy scheduler. This analysis is used as baseline for the evaluation
of Paper I and Paper II and is the specialized version of the makespan calculation
for related and unrelated heterogeneous multiprocessors in Paper III.

An example of an execution-time-based timing anomaly is illustrated in Figure 1.1.
The value alongside each node is the WCET of the corresponding task. The DAG is
executed based on a non-preemptive Breadth First Schedule (BFS) on two processors
Py and P;. Consider, the DAG and the schedule on the left-hand side of Figure 1.1.
The execution time of the application is 9 units. Now consider the case when node
B does not execute for 3 units but finishes after 1 unit and all other nodes execute

1.2. TIMING-ANOMALY FREE EXECUTION 3

according to their WCET. The DAG and the schedule for this scenario are shown on
the right-hand side of Figure 1.1. The execution time of the application is 10 units.
Hence, the overall execution time of the application is increased (from 9 to 10 units)
when node B takes fewer time units than its WCET.

Processors
4

P,

BAIBTD T F [G]

Time Time
1234567 8910 12345678910

Figure 1.1: Example of execution time-based timing anomaly.

We can characterize a DAG by two parameters 77 and T, where, T} is the sum of
the WCET of all the tasks and T, is the sum of the WCET of the tasks that belong to
the longest path of the DAG. Due to the problem of timing anomalies, the makespan
calculation given by equation Eq. (1.1) of a parallel application modeled as a DAG
executed on M processors [4,24,25], requires to make pessimistic assumptions about
the schedule of the task on the multiprocessor platform.

(Tl — TOO)
% 1.1
The second term of Eq. (1.1) shows the sum of the WCET of the nodes that do

not belong to the longest path divided by the number of processors. The addition
of the T\, implies that no task that belongs to the longest path can be executed in
parallel with some task that does not belong to the longest path. Since during the
actual execution, this is a highly unlikely scenario, this method introduces unnecessary
pessimism which is an opportunity for improvement of the makespan calculation.

Thr = Too +

1.2 Timing-anomaly free execution

The state-of-the-art analytical approach given by Eq. (1.1) abstracts the details of the
dynamic greedy scheduler and pessimistically assumes that no task can run in parallel
with the tasks that belong to the longest path of the DAG. The main advantage of using a
dynamic scheduler for the tasks is to be able to utilize the platform efficiently. However,
an overestimated makespan would under-utilize the platform since it would need to
reserve the computing power of the processors of the platform for some unnecessary
extra time. The main challenge to reduce the pessimism of the makespan calculation
for dynamically scheduled tasks is to prevent execution-time-based anomalies.

This section presents the proposed schedulers of Paper I and Paper II. Two
fixed priority, non-preemptive, non-greedy dynamic schedulers are introduced that
are execution-time-based timing-anomaly free. As a result, the simulation of their
schedule where all the nodes are executed for their WCET calculates a safe upper
bound for the makespan, even if some task execute for less than their WCET during

4 CHAPTER 1. INTRODUCTION

run-time. The dispatch condition for the two schedulers are introduced in Section
1.2.2 and 1.2.3 and finally brief results are presented in Section 1.2.4.

1.2.1 Priority assignment

Many priority assignments are used in the literature to achieve high utilization of the
underlying platform. In addition to that, the goal of the proposed priority assignment
is to provide unique priorities to the tasks. If all tasks have unique priorities a total
order of the tasks can be enforced to achieve a time predictable execution.

Each node in the DAG is assigned a fixed priority. The fixed priority of a child node
is assigned based on the fixed priority of its parent. Parallel tasks generated by the same
parent usually need to synchronize their results (e.g., using the taskwait pragma
in OpenMP). Such synchronization nodes are generally the sequential bottleneck in
exploiting parallelism at the higher level of a DAG. Special priorities are assigned to
these nodes to ensure that are executed with higher priority to exploit parallelism.

Parallel applications implemented in OpenMP [26] and Cilk [4] dynamically
(during run-time) generate the parallel work (nodes of the DAG) with the use of
recursions and loops. The proposed priority assignment has constant time complexity,
so it can be used as a run-time mechanism that monitors the current level of a node and
assigns priorities to dynamically generated nodes of a DAG, without prior knowledge
about the structure (topology) of the DAG. It requires as input the maximum degree
of the DAG and the current level of a currently executing node that would spawn
new nodes of the DAG. Paper I and Paper II use different priority assignments
which provide different makespan estimations. If we know statically the topology
of the graph we can apply a topological sort [27] that provides unique priorities and
guarantees that the priority of a parent node is higher than its children is suitable with
the proposed scheduler and can offer a safe makespan.

1.2.2 Scheduling Policy: Strict Lazy

In Paper I a scheduler is introduced that is based on a constant-time check of the
priority of the highest priority ready task. The dispatch condition checks if all the
highest priority tasks have already been dispatched. In other words, the tasks are
executed in strict decreasing-priority order. This dispatch condition provides an
execution-time-based anomaly-free execution and can provide a safe estimation of
the makespan. The main idea behind the anomaly freedom proof is the fact that the
dispatch order of the tasks used for estimating the makespan is maintained during
actual execution. Hence, it can be guaranteed that even if some task’s actual execution
time is smaller than its WCET, no timing anomaly can occur. However, the strict
ordering of the dispatching condition limits the performance since some processors
may remain idle while there are nodes awaiting execution in the ready queue.

1.2.3 Scheduling Policy: Lazy

In Paper II the dispatch condition presented in Paper I is extended to allow a higher
number of tasks to be dispatched safely. The scheduler, called Lazy, is based on
a constant-time check of the priority of the current highest priority ready task. The
dispatch condition checks if there are available processors for all the higher priority
tasks that may come in the future. If it is true, the task is dispatched to a processor.

1.2. TIMING-ANOMALY FREE EXECUTION 5

Otherwise, the task is not dispatched for execution even if some processor is idle (i.e.,
Lazy is non-greedy).

The Lazy scheduler is able to dispatch a lower-priority task if there are enough
processors to execute the higher priority tasks that are ready for execution or may
become ready in the future. Consequently, during run-time, it is guaranteed that a
lower priority task cannot start executing later compared to the starting time that is
used offline for the estimation of the makespan.

To prove the anomaly freedom, we compare two schedules of the DAG on the
same platform. We compare the schedule Sy ¢ pr where all tasks execute for their
WCET and schedule S where some nodes execute less than their WCET. The starting
time of a task in .S can be at most as in Sy o g7 since we have reserved processors for
all higher priority tasks. We have assumed that the scheduler is non-preemptive and
consequently the same holds for the completion time. So the makespan of S cannot be
longer than Sy cgr.

1.2.4 Summary of experimental results

The Lazy scheduler presented in Paper II dominates (always smaller or same
makespan) the Strict Lazy scheduler from Paper I and always will perform
better. The dispatch condition of the Strict Lazy scheduler will allow a subset
of tasks that the Lazy scheduler will allow being dispatched. To preserve the strict
decreasing priority order of the task it will idle the processors frequently which leads
to under-utilization of the platform and as a result to pessimistic makespan. However,
the Strict Lazy scheduler will never be worse than the sequential execution since
there is always at least one task that is executing.

To assess the effectiveness of the Lazy scheduler in determining makespan of
parallel applications, we study its performance in the dynamic scheduling of Fibonacci,
Sort, Strassen and FFT task-based parallel OpenMP applications from the BOTS
benchmark suite [28]. As a baseline, we establish a safe upper bound of the makespan
using the analytical approach of Eq. (1.1) which is pessimistic but safely estimates
the makespan of parallel applications for any greedy dynamic scheduling algorithm.
We use tightness and scalability (based on Gustafson’s Law [29]) as key metrics to
compare the effectiveness of Lazy in determining the makespan with the baseline.

For all the cases, the estimation of makespan of the Lazy scheduler is tighter
compared to state of the art for each application. The worst-case assumption in deriving
Eq. (1.1) is that the nodes that are not on the longest path do not run in parallel (i.e.,
always interfere) with the nodes of the longest path. However, the structure of a DAG
may allow the nodes in the longest path to execute in parallel with nodes that are not
part of the longest path. For different applications and different number of processors,
the simulation of the Lazy scheduler achieves on average 9% and a maximum of 36%
tighter estimation of the makespan in comparison to the state-of-the-art in Eq. (1.1).
Furthermore, for all the applications, the Lazy scheduler scales better or similar to
the state-of-the-art. For the different applications and configurations the increase in
scalability, of the Lazy scheduler in comparison to the state-of-the-art is on average
14% and maximally 30%.

6 CHAPTER 1. INTRODUCTION

1.3 Makespan for unrelated multiprocessors

To the best of our knowledge, no related work provides a makespan calculation for
parallel applications modeled as DAGs when they are executed on an unrelated multi-
processor platform under any greedy scheduler. This section presents the contributions
of Paper III where a polynomial time complexity method to calculate the makespan of
task-based parallel applications modeled as a DAG using the unrelated multiprocessor
model is introduced. Section 1.3.1 presents the method to characterize the unrelated
multiprocessor platform. Section 1.3.2 presents the makespan calculation method-
ology. Finally, Section 1.3.3 presents the evaluations of the makespan calculation
methodology regarding tightness and pessimism.

1.3.1 Platform characterization

Formally characterizing the platform by specifying its capacities is a prerequisite for
the schedulability analysis presented in Paper III. We assume a greedy scheduler
that dispatches a task to an idle processor on which the task would execute the fastest
with respect to other (if any) idle processors. Tasks can migrate to a faster processor
if it becomes available during the execution of the task. The assumptions about the
scheduler cover a broad classes of well-known scheduling principles like fixed-priority
and earliest deadline first (EDF) which are also greedy.

The parameters to characterize a the uniform (related) platform, processor capac-
ity and uniformity already presented in [23,30] are adapted for the unrelated platform
model. The term “heterogeneity” instead of “uniformity” is used for the unrelated
platform model.

Since in the unrelated multiprocessors, a speed factor is associated with each
task-type and processor-type pair, to characterize a platform we need to analyze to
which processors the tasks are mapped for execution. We split the execution of the
tasks in two cases. First, when all the processors are busy and second when at least
one processors is idle. The parameter processor capacity, denoted by .S, (where M is
the number of processors), shows the minimum capability of the platform to consume
the workload of the application when all the processors are busy. The parameter
heterogeneity, denoted by A, shows the maximum wastage of processor capacity that
we can have throughout the execution of the tasks when some processors are idle.

The processor capacity and heterogeneity are used to enhance the analysis of the
homogeneous multiprocessors given by Eq. (1.1). With these parameters, the impact
of the different speeds of the tasks for the different processor types is modeled for the
worst-case.

1.3.2 Efficient makespan calculation

In the context of unrelated multiprocessors, every task in the DAG of the application
has multiple WCETs; there is one WCET for each processor type. To characterize the
applications we use the D AG™™ which is isomorphic to the DAG of the application
where every node has one WCET which is equal to the minimum WCET between the
different processor types for this task. We can characterize the DAG with the use of
DAG™™ in a similar way that we have done for the homogeneous multiprocessors by
two parameters C' and L, where C is the sum of the WCET of all the tasks and L is
the sum of the WCET of the tasks that belong to the longest path.

1.3. MAKESPAN FOR UNRELATED MULTIPROCESSORS 7

We use a combinatorial approach to analyze all the possible execution scenarios of
the tasks on different processor types exhaustively and we propose two approaches
to calculate the makespan. These two approaches have exponential time-complexity
to the number of processors and the number of tasks. As a result, they are useful
only to analyze small-scale platforms. However, we use this analysis as a stepping
stone to develop a third efficient makespan calculation (denoted by, TA%) which has
polynomial time complexity and can also be used for large-scale platforms.

The makespan calculation for homogeneous multiprocessors given by Eq. (1.1) is
extended with S, and X that characterize a platform with M processors to estimate
the makespan for unrelated multiprocessors given by Eq. (1.2).

<C+)\-L

< (1.2)
S

Ty
Initially, from Eq. (1.2) it can be seen that the processor capacity S, influences
the workload of all the tasks (C') since all the tasks can be executed when all processors
are busy. Next, we can see that the heterogeneity A influences only the workload of
the tasks that belong to the longest path (L). The assumed scheduler is greedy, so
when there are idle processors it is guaranteed that tasks that belong to the longest path
are executing; as a result, we have processor capacity wastage. Finally, the makespan
calculation method can also be applied to the more specialized platform models:
related and homogeneous multiprocessors. The proposed makespan calculation will
be the same as the approaches that are provided from [25,30] for the related and the
homogeneous platform model, respectively. For example, the homogeneous model
can be modeled by setting the S, = M and A = M — 1. As a result, the makespan
calculation given by Eq. (1.2) is the same as the Eq. (1.1), for an application where
C=Tyand L =T.

1.3.3 Summary of experimental results

To evaluate our proposed makespan calculations we use four OpenMP, task-based
parallel applications from the BOTS benchmark suit [26] modeled as DAGs: Fibonacci,
Sort, Strassen and FFT. Also, synthetic DAGs are used, to measure the sensitivity of
the proposed approach concerning different simulation parameters.

We could not find any literature on makespan computation of DAGs on unrelated
machines. Instead, we measure the tightness of T]\[f[by comparing the makespan with
our two proposed exhaustive approaches. To find the level of pessimism, a lower bound
of the makespan is derived by simulating the actual execution of parallel applications
under the assumed scheduler and compare it with the makespan T3 .

By comparing the results of the exhaustive approach and the T]\% approach for up to
8 processors with a fixed number of processors types, the T, approach overestimates
the makespan of the four applications on average only by 1% and up to 3%. By
comparing the T, with the simulation of the execution for up to 1024 processors
with up to 8 processor types, we have on average 23% and up to 59% pessimism. In
other words, our estimated makespan is at most 59% longer than the exact makespan.
Next, for a platform with 8 processors and varying the number of processors types, the
tightness of the T, , compared to the two-permutation based approach, is on average
1% and at most 1.3%. By comparing the T, to the simulation of the execution, we
have on average 12% and up to 24% pessimism.

8 CHAPTER 1. INTRODUCTION

1.4 Conclusions and future work

This thesis presents techniques to improve the makespan for task-based parallel ap-
plications for homogeneous and unrelated heterogeneous platforms. The goal is to
minimize the pessimism of the makespan to such a level that parallel platforms would
be beneficial for real-time applications.

Paper I and Paper II propose a simulation based approach to calculate the
makespan of a parallel application modeled as a DAG. With the use of formally
proven time predictable dynamic schedulers, namely Strict Lazy and Lazy, the
makespan can be calculated by the simulation of the schedule by assuming that every
node of the DAG is executed for its WCET. The proposed schedulers can be seen as
part of an makespan analysis tool for parallel applications or as a run-time mechanism
with constant time priority check on a already sorted ready queue.

In Paper III, unrelated heterogeneous multiprocessor platforms and parallel appli-
cations modeled as DAGs are considered. An analytically approach is used to propose
a closed-form solution for the calculation of the makespan. The main advantages
of the proposed approach are: (i) the applicability to a wide range of already used
and future coming schedulers and platforms (ii) the reducibility to the state-of-art for
homogeneous and related multiprocessor platforms models.

Regarding the future work, we have seen that the makespan calculation for the
heterogeneous multiprocessor platform that is proposed in Section 1.3 and in Paper
III is based on Eq. (1.1). As a result, it makes the same fundamental assumption that
the tasks that are not in the longest path do not run in parallel (i.e., always interfere)
with the tasks of the longest path. A simulation-based approach of dynamic scheduled
parallel applications that efficiently utilizes the underlying platform and was followed
in Paper I and Paper II can also be applied in the context of unrelated multiprocessor
platforms. The main challenge will be the development of a new dynamic scheduler
for the unrelated heterogeneous platform and the proof of anomaly freedom. With
this method we expect to achieve tighter and more scalable makespan calculation
compared to the makespan proposed in the previous section.

Furthermore, for the presented work, we have assumed a simplified model of the
platform where the executed tasks do not share any hardware resources. However, in
practice, the tasks are sharing many common resources like memory, interconnect
and power budget. A possible research direction would be to extend the platform
model of the homogeneous multiprocessor platform with shared hardware resources
and then propose a makespan calculation. The main challenge will be the mapping of
the shared resources to the different tasks. Different shared-resource mappings would
lead to different WCET for a task. A preliminary observation is that the makespan
on a homogeneous platform with shared resources can be calculated by the makespan
calculation of unrelated multiprocessor platform presented in Paper III if we can
determine all the possible mappings. The minimum WCET of task (which is needed
to calculate L and C') will be determined by providing to the task all the resources.
Different mappings will act as the different processor types.

Multiprocessor platforms can provide computation power for real-time applications
that require schedulability analysis to provide formal timing guarantees. The presented
techniques and the future work can provide time-predictable and high performance
execution for real-time systems.

Bibliography

[1] John A. Stankovic. Misconceptions about real-time computing: A serious
problem for next-generation systems. /EEE Computer, 1988.

[2] Sanjoy Baruah, Marko Bertogna, and Giorgio Buttazzo. Multiprocessor schedul-
ing for real-time systems. Springer, 2015.

[3] Wilhelm Reinhard et al. The worst-case execution-time problem overview of
methods and survey of tools. ACM TECS, 2008.

[4] Robert D Blumofe and Charles E Leiserson. Scheduling multithreaded computa-
tions by work stealing. JACM, 1999.

[5] Ronald L. Graham. Bounds on multiprocessing timing anomalies. SIAM journal
on Applied Mathematics, 1969.

[6] Thomas Lundqvist and Per Stenstrém. Timing anomalies in dynamically sched-
uled microprocessors. In IEEE RTSS, 1999.

[7] Jan Reineke et al. A definition and classification of timing anomalies. In WCET,
2006.

[8] Benny Akesson, Kees Goossens, and Markus Ringhofer. Predator: a predictable
sdram memory controller. In CODES+ISSS. ACM, 2007.

[9] Martin Schoeberl. Time-predictable computer architecture. EURASIP Journal
on Embedded Systems, 2009.

[10] Theo Ungerer et al. parmerasa—multi-core execution of parallelised hard real-
time applications supporting analysability. In Digital System Design (DSD),
2013 Euromicro Conference on. IEEE, 2013.

[11] Dumitru Potop-Butucaru and Isabelle Puaut. Integrated worst-case execution
time estimation of multicore applications. In WCET Workshop, 2013.

[12] Michael Zimmer, David Broman, Chris Shaver, and Edward A Lee. Flexpret: A
processor platform for mixed-criticality systems. In RTAS. IEEE, 2014.

[13] Christine Rochange, Pascal Sainrat, and Sascha Uhrig. Time-Predictable Archi-
tectures. John Wiley & Sons, 2014.

[14] Martin Schoeberl et al. T-crest: Time-predictable multi-core architecture for
embedded systems. Journal of Systems Architecture, 2015.

9

10 BIBLIOGRAPHY

[15] Hokeun Kim et al. A predictable and command-level priority-based dram con-
troller for mixed-criticality systems. In RTAS. IEEE, 2015.

[16] KALRAY. Mppa 2, 256 bostan processor. In Kalray Whitepaper, 2016.

[17] Ali Bakhoda, George L Yuan, Wilson WL Fung, Henry Wong, and Tor M
Aamodt. Analyzing cuda workloads using a detailed gpu simulator. In IEEE
ISPASS, 2009.

[18] NVIDIA. Tegra x1 nvidia new mobile superchip. In White pa-
per "https://international.download.nvidia.com/pdf/tegra/Tegra-X1-whitepaper-
v1.0.pdf", 2015.

[19] ARM Peter Greenhalgh. Big.little processing with arm cortex-al5 and cortex-a7
improving energy efficiency in high-performance mobile platforms. In White
paper, "http:/fwww.cl.cam.ac.uk/ rdm34/big. LITTLE.pdf", 2011.

[20] Wajahat Qadeer et al. Convolution engine: balancing efficiency & flexibility in
specialized computing. In ACM ISCA, 2013.

[21] Han Song et al. Eie: efficient inference engine on compressed deep neural
network. In IEEE ISCA, 2016.

[22] Jouppi Norman P et al. In-datacenter performance analysis of a tensor processing
unit. ACM ISCA, 2017.

[23] Shelby Funk, Joel Goossens, and Sanjoy Baruah. On-line scheduling on uniform
multiprocessors. In IEEE RTSS, 2001.

[24] Richard P Brent. The parallel evaluation of general arithmetic expressions.
JACM, 1974.

[25] Alessandra Melani, Marko Bertogna, Vincenzo Bonifaci, Alberto Marchetti-
Spaccamela, and Giorgio C Buttazzo. Response-time analysis of conditional dag
tasks in multiprocessor systems. In ECRTS, 2015.

[26] Eduard Ayguadé et al. The design of openmp tasks. IEEE TPDS, 2009.

[27] Risat Pathan, Petros Voudouris, and Per Stenstrom. Scheduling parallel real-time
recurrent tasks on multicore platforms. /IEEE TPDS, 2018.

[28] Alejandro Duran et al. Barcelona openmp tasks suite: A set of benchmarks
targeting the exploitation of task parallelism in openmp. In /CPP, 2002.

[29] John L Gustafson. Reevaluating amdahl’s law. Communications of the ACM,
1988.

[30] Xu Jiang, Nan Guan, Xiang Long, and Wang Yi. Semi-federated scheduling of
parallel real-time tasks on multiprocessors. IEEE RTSS, 2017.

